CLASS 8:
FLOWCHARTS - WHILE LOOPS

ENGR 102 - Introduction to Engineering

## 2 <br> Loops

## while loops

for loops

## Loops

$\square$ We've already seen some examples of flow charts that contain loops:

$\square$ Structures where the algorithmic flow loops back and repeats process steps
$\square$ Repeats as long as a certain condition is met, e.g., toaster has not popped up, toast is inedible, etc.

## Loops

$\square$ Algorithms employ two primary types of loops:

- while loops: loops that execute as long as a specified condition is met - loop executes as many times as is necessary
$\square$ for loops: loops that execute a specified exact number of times
$\square$ Similar looking flowchart structures
$\square$ for loop can be thought of as a special case of a while loop
- However, the distinction between the two is very important


## 5 <br> while Loop

## while Loop

$\square$ Repeatedly execute an instruction or set of instructions as long as (while) a certain condition is met (is true)
$\square$ Repeat A while X is true

- As soon as $X$ is no longer true, break out of the loop and continue on to $B$
- A may never execute
- A may execute only once
- A may execute forever - an infinite loop

- If A never causes X to be false
- Usually not intentional


## while Loop

$\square$ Algorithm loops while $x \leq 4$

- Loops three times:

| Iteration | x |
| :--- | :--- |
| 0 | 1 |
| 1 | 6 |
| 2 | 3 |
|  | 8 |
| 3 | 4 |
|  | 9 |

$\square$ Value of $x$ exceeds 4 several times during execution
$\square x$ value checked at the beginning of the loop

$\square$ Final value of $x$ is greater than 4

## while Loop - Infinite Loop

$\square$ Now looping continues as long as $x<12$
ㅁ $x$ never exceeds 12

- Loops forever - an infinite loop

| Iteration | x |
| :---: | :---: |
| 0 | 1 |
| 1 | 6 |
|  | 3 |
| 2 | 8 |
|  | 4 |
| 3 | 9 |
|  | 4.5 |
| 4 | 9.5 |
|  | 4.75 |
| 5 | 9.75 |
|  | 4.875 |
| 6 | 9.875 |
|  | 4.9375 |
| $\vdots$ |  |



## Infinite Loops

$\square$ Occasionally infinite loops are desirable

- Consider for example microcontroller code for an environmental monitoring system
- Continuously takes measurements and displays results while powered on
$\square$ Note the logical statement in the conditional block
- Logical statements are either true ( $\mathrm{Y}, 1$ )
 or false (N, 0)
- 1 is the Boolean representation of true or Y


## while Loop - Example 1

$\square$ Consider the following algorithm:
$\square$ Read in a number (e.g. user input, from a file, etc.)

- Determine the number of times that number can be successively divided by 2 before the result is $\leq 1$
$\square$ Use a while loop
- Divide by 2 while number is $>1$



## while Loop - Example 1

$\square$ Number of loop iterations depends on value of the input variable, $x$

- Characteristic of while loops
- \# of iterations unknown a priori
- If $x \leq 1$ loop instructions never execute
$\square$ Note the data I/O blocks
- Typical - many algorithms have inputs and outputs



## while Loop - Example 1

$\square$ Consider a few different input, x , values:

| count | x |  | x |  | x |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 0 | 5 | 16 | 0.8 |  |  |
| 1 | 2.5 | 8 |  | - |  |
| 2 | 1.25 | 4 | - |  |  |
| 3 | 0.625 | 2 | - |  |  |
| 4 | - | 1 | - |  |  |
| 5 | - |  | - | - |  |



## while Loop - Example 2

$\square$ Next, consider an algorithm to calculate $x$ !, the factorial of $x$ :
$\square$ Read in a number, $x$

- Compute the product of all integers between 1 and $x$
- Initialize result, fact, to 1
$\square$ Multiply fact by $x$
- Decrement x by 1
$\square$ Use a while loop
- Multiply fact by $x$, then decrement x while $\mathrm{x}>1$



## while Loop - Example 2

$\square$ Consider a few different input, x , values:

| $\mathbf{x}$ | fact |  | $\mathbf{x}$ | fact |  | $x$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| fact |  |  |  |  |  |  |
| 5 | 1 | 4 | 1 |  | 0 | 1 |
| 5 | 5 |  | 4 | 4 |  | - |
| 4 | 20 | 3 | 12 |  | - | - |
| 3 | 60 | 2 | 24 |  | - | - |
| 2 | 120 | 1 | 24 | - | - |  |
| 1 | 120 | - | - | - | - |  |



## while Loop - Example 2

$\square$ Let's say we want to define our factorial algorithm only for integer arguments
$\square$ Add error checking to the algorithm

- After reading in a value for x , check if it is an integer
- If not, generate an error message and exit
- Could also imagine rounding $x$, generating a warning message and continuing


