
ENGR 103 – Introduction to Engineering Computing

SECTION 5: 
STRUCTURED 
PROGRAMMING IN PYTHON
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• if statements
• Logical and relational operators
• if…else statements

Conditional Statements2
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The if Statement

 We’ve already seen the if structure
 If X is true, do Y, if not, don’t do Y
 In either case, then proceed to do Z

 In Python:          
if condition:

statements
⋮

 Statements are executed if condition is True
 Statement block defined by indenting those lines of code

 Condition is a logical expression
 Boolean - either True or False
 Makes use of logical and relational operators

 May use a single line for a single statement:

if condition: statement
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Operator Relationship or Logical Operation Example

== Equal to x == b

!= Not equal to k != 0

< Less than t < 12

> Greater than a > -5

<= Less than or equal to 7 <= f

>= Greater than or equal to (4+r/6) >= 2

and AND – both expressions must evaluate to 
true for result to be true (t > 0) and (c == 5)

or OR – either expression must evaluate to 
true for result to be true (p > 1) or (m > 3)

not NOT– negates the logical value of an 
expression not (b < 4*g)

4

Logical and Relational Operators
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The if…else Structure

 The if … else structure
 Perform one process if a condition 

is true
 Perform another if it is false

 In Python:

if condition:
statements1

else:
statements2

 Note that if and else code 
blocks are defined by indents
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The if…elif…else Structure

 In Python:

if condition1:
statements1

elif condition2:
statements2

else:
statements3

 The if … elif … else structure
 If a condition evaluates as false, check another condition
 May have an arbitrary number of elif statements
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The if…else, if…elif…else Structures

 Some examples:

 Note that code blocks are defined by indents
 Each line must have the same indent - use the Tab key
 Meaningful whitespace is a distinguishing characteristic of Python
 Other languages use brackets or end statements 
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The if…elif Structure

 We can have an if
statement without an else

 Similarly, an if…elif
structure need not have an 
else

 In Python:

if condition1:
statements1:

elif condition2:
statements2
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while Loops9
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The while loop

 The while loop
 While X is true, do A
 Once X becomes false, proceed to B

 In Python:          

while condition:
statements

⋮

 Statements are executed as long as 
condition remains true
 Condition is a logical expression

 Whitespace (indent) defines while block
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while Loop – Example 1 

 Consider the following while loop example
 Repeatedly increment x by 7 as long as x is less than or equal to 30
 Value of x is displayed on each iteration

 x values displayed: 19, 26, 33
 x gets incremented beyond 30

 All loop code is executed as long as the condition was true at the 
start of the loop
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The break Statement

 Let’s say we don’t want x to increment beyond 30
 Add a conditional break statement to the loop

 break statement causes loop exit before executing all code
 Now, if (x+7)>30, the program will break out of the loop and 

continue with the next line of code
 x values displayed: 19, 26
 For nested loops, a break statement breaks out of the current 

loop level only
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while Loop – Example 1 

 The previous example could be simplified by modifying the 
while condition, and not using a break at all

 Now the result is the same as with the break statement
 x values displayed: 19, 26

 This is not always the case
 The break statement can be very useful
 May want to break based on a condition other than the loop condition

 break works with both while and for loops
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while Loop – Example 2 

 Next, let’s revisit the while loop 
examples from Section 4

 Use input() to prompt for input
 Use print() to return the result
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while Loop – Example 3 

 Here, we use a while loop to 
calculate the factorial value of a 
specified number
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while Loop – Example 3 

 Add error checking to ensure that x
is an integer

 One way to check if x is an integer:
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while Loop – Example 3 

 Another possible method for 
checking if x is an integer:
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Infinite Loops

 A loop that never terminates is an infinite loop
 Often, this unintentional

 Coding error

 Other times infinite loops are intentional
 E.g., microcontroller in a control system

 A while loop will never terminate if the while condition 
is always true
 By definition, True is always true:

while True:
statements repeat infinitely
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while True

 The while True syntax can be used in conjunction with a 
break statement, e.g.:

 Useful for 
multiple break 
conditions

 Control over 
break point

 Could also 
modify the while 
condition



Webb ENGR 103

for Loops20
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The for Loop

 The for loop
 Loop executed a specified number of times

for var in iterable:
statements

⋮

 iterable: any iterable object (ndarray, list, tuple, 
dict, str)

 var: variable that assumes each successive value in 
iterable on each iteration

 Statements: code block that is executed once for 
each item in iterable

 Collection-based, not counter-based
 Iterates through each item in a collection
 Can be counter-based, like flowchart to the right
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for Loop – Example 1

 A collection-based (or iterator-
based) for loop
 Iterates through each value in a list 

of days
 No explicit loop counter
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for Loop – Example 2 – range() 

 Counter-based for loop
 Use Python's range() function:

range(start, stop, step)

 Generate a list of loop counter values to 
iterate through

 Technically, still collection-based
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for Loop – Example 3 – enumerate()

 Sometimes we may want a combination of a collection-
based and counter-based for loop
 Iterate over both the values and indices of all items in an iterable
 Use Python's enumerate() function
 Generates an (index, value) pair for each item in the iterable

 For example, consider a list of numbers:
x = [2, 4, 6, 8, 10]

 Generate (index, value) pairs for each item in x:
i, val = enumerate(x)

 Generates the following (i, val) pairs:
(0, 2), (1, 4), (2, 6), (3, 8)

 Can iterate over these (index, value) pairs with a for loop
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for Loop – Example 3 – enumerate()

 Loop through an array of numbers to 
find the maximum value and its index
 Use enumerate() to simultaneously 

loop through array values and their 
indices
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 The step response of a first-order system is given by

𝑦𝑦 𝑡𝑡 = 1 − 𝑒𝑒−
𝑡𝑡
𝜏𝜏

 Write a script to do the following:
 Generate an array of 𝜏𝜏 values:

𝜏𝜏 = 1.0 1.5 2.0 2.5 3.0 𝑠𝑠𝑠𝑠𝑠𝑠
 Generate a time vector with 2000 values between 0 and 

5 ∗ max 𝜏𝜏
 In a for loop, using the enumerate function, iterate 

through the values in 𝜏𝜏 and:
 Calculate 𝑦𝑦 𝑡𝑡
 Store the result as one column of a matrix, y

 Outside of the for loop, plot each of the columns of y on 
a single set of axes

Exercise – for Loop, enumerate()
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Nested Loops27
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Nested Loop – Example 1 

 Use a nested for loop to find the maximum value in a 
matrix or 2-D array
 Outer loop steps through rows
 Inner loop steps through columns
 Store the largest value seen as the maximum value

 Consider an (m×n) matrix, A
 A[0] indexes the first row, so

for row in A:

 Steps through the rows in A one-by-one
 row = A[0], row = A[1], up to row = A[-1]

 An inner loop steps through each element in each row
for row in A:

for val in row:
<code to check for max>

 val = row[0], val = row[1], and so on
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Nested Loop – Example 1 
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Nested for Loop – Example 2

 Evaluate a function of two variables:

𝑧𝑧 = 𝑥𝑥 ⋅ 𝑒𝑒−𝑥𝑥2−𝑦𝑦2

over a range of    −2 ≤ 𝑥𝑥 ≤ 2 and  −2 ≤ 𝑦𝑦 ≤ 2

 A surface in three-
dimensional space

 Later in the course, we’ll 
learn how to generate 
such a plot
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Nested for Loop – Example 2

𝑧𝑧 = 𝑥𝑥 ⋅ 𝑒𝑒−𝑥𝑥2−𝑦𝑦2

 Evaluate the function over a range of 𝑥𝑥 and 𝑦𝑦
 First, define x and y 

vectors 
 Initialize the Z matrix
 Use a nested for loop 

to step through all 
points in this range of 
the x-y plane
 Use enumerate() to 

iterate through 
indices and values
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Nested Loops

 We just saw how we can use nested loops to:
 Find the maximum value in a matrix or 2-D array
 Evaluate a function of two variables 

 A good illustration of nested loops, BUT
 There are easier, more efficient ways to do both of these 

things in Python
 Looping is slow – avoid if possible
 Operate directly on arrays
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The Spyder Debugger33
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Debugging

 You’ve probably already realized that it’s not uncommon for your 
code to have errors
 Computer code errors referred to as bugs

 Three main categories of errors
 Syntax errors prevent your code from running and generate a Python 

error message
 Runtime errors – not syntactically incorrect, but generate an error upon 

execution – e.g., indexing beyond matrix dimensions 
 Algorithmic errors don’t prevent your code from executing, but do 

produce an unintended result

 Syntax and runtime errors are usually more easily fixed than 
algorithmic errors

 Debugging – the process of identifying and fixing errors is an 
important skill to develop
 Spyder has a built-in debugger to facilitate this process
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Debugging

 Identifying and fixing errors is difficult because: 
 Programs run seemingly instantaneously
 Incorrect output results, but can’t see the intermediate 

steps that produced that output

 Basic debugging principles: 
 Slow code execution down – allow for stepping through 

line-by-line
 Provide visibility into the code execution – allow for 

monitoring of intermediate steps and variable values
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Spyder Debugger – Breakpoints 

 Breakpoint – specification of a line of code at which 
Spyder should pause execution

 Set by clicking next to the number to the left of a 
line of code in a script
 Spyder will execute the script up to this line, then pause

 Clicking here sets a 
breakpoint
 Indicated by red 

circle
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Spyder Debugger – Breakpoints 

 Click 'Debug file' to begin 
execution

 Execution halts at the 
breakpoint 
 Before executing that line

 Console prompt changes 
to  IPdb [n]:
 Can now interactively 

enter commands
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Spyder Debugger – Breakpoints 

 Click 'Run current line' to 
execute the current line 
of code

 Arrow indicator advances 
to the next line

 Variable, m, defined on 
previous line (line 16) 
now exists in the 
namespace
 Available in the console
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Debugger – Example 

 Recall a previous example of an algorithm to square every 
element in a matrix

 Let’s say we run our script and get the following result:

 Resulting matrix is transposed
 Use the debugger to figure out why
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Debugger – Example 

 Set a breakpoint in the 
innermost for loop

 Click 'Debug file'
 Code executes up to the 

breakpoint
 Variable Explorer shows 
i=0 and j=0

 Click 'Run current line'
 Display B[i,j] and 
C[i,j] in the console
 Both are as expected
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Debugger – Example 

 Click 'Run current line' 
twice
 Execute the next 

iteration of the loop
 Now, i=0 and j=1

 First row, second column

 B[i,j] = 10
 But, C[i,j] = 16

 Should be 100
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Debugger – Example 

 We see that C[1,2] = 16 = 4**2 = B[2,1]**2
 This leads us to an error on line 21 of the code

 Should be B[i,j]**2, not B[j,i]**2
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 Write a script to do the following:

 Create a 5x5 matrix of zeros, X
 Initialize a random number generator:

rng = np.random.default_rng()

 In a nested loop step through all elements in X
 Outer loop steps through rows, inner loop steps through 

columns
 Replace each element in X with a random integer:

X[i,j] = rng.integers(100)

 Set a breakpoint at the start of the outer loop and 
run the debugger

 Step through code line-by-line observing the 
evolution of the matrix X

Exercise – Nested Loops, Debugger
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