
ENGR 103 – Introduction to Engineering Computing

SECTION 5:
STRUCTURED
PROGRAMMING IN PYTHON

Webb ENGR 103

• if statements
• Logical and relational operators
• if…else statements

Conditional Statements2

Webb ENGR 103

3

The if Statement

 We’ve already seen the if structure
 If X is true, do Y, if not, don’t do Y
 In either case, then proceed to do Z

 In Python:
if condition:

statements
⋮

 Statements are executed if condition is True
 Statement block defined by indenting those lines of code

 Condition is a logical expression
 Boolean - either True or False
 Makes use of logical and relational operators

 May use a single line for a single statement:

if condition: statement

Webb ENGR 103

Operator Relationship or Logical Operation Example

== Equal to x == b

!= Not equal to k != 0

< Less than t < 12

> Greater than a > -5

<= Less than or equal to 7 <= f

>= Greater than or equal to (4+r/6) >= 2

and AND – both expressions must evaluate to
true for result to be true (t > 0) and (c == 5)

or OR – either expression must evaluate to
true for result to be true (p > 1) or (m > 3)

not NOT– negates the logical value of an
expression not (b < 4*g)

4

Logical and Relational Operators

Webb ENGR 103

5

The if…else Structure

 The if … else structure
 Perform one process if a condition

is true
 Perform another if it is false

 In Python:

if condition:
statements1

else:
statements2

 Note that if and else code
blocks are defined by indents

Webb ENGR 103

6

The if…elif…else Structure

 In Python:

if condition1:
statements1

elif condition2:
statements2

else:
statements3

 The if … elif … else structure
 If a condition evaluates as false, check another condition
 May have an arbitrary number of elif statements

Webb ENGR 103

7

The if…else, if…elif…else Structures

 Some examples:

 Note that code blocks are defined by indents
 Each line must have the same indent - use the Tab key
 Meaningful whitespace is a distinguishing characteristic of Python
 Other languages use brackets or end statements

Webb ENGR 103

8

The if…elif Structure

 We can have an if
statement without an else

 Similarly, an if…elif
structure need not have an
else

 In Python:

if condition1:
statements1:

elif condition2:
statements2

Webb ENGR 103

while Loops9

Webb ENGR 103

10

The while loop

 The while loop
 While X is true, do A
 Once X becomes false, proceed to B

 In Python:

while condition:
statements

⋮

 Statements are executed as long as
condition remains true
 Condition is a logical expression

 Whitespace (indent) defines while block

Webb ENGR 103

11

while Loop – Example 1

 Consider the following while loop example
 Repeatedly increment x by 7 as long as x is less than or equal to 30
 Value of x is displayed on each iteration

 x values displayed: 19, 26, 33
 x gets incremented beyond 30

 All loop code is executed as long as the condition was true at the
start of the loop

Webb ENGR 103

12

The break Statement

 Let’s say we don’t want x to increment beyond 30
 Add a conditional break statement to the loop

 break statement causes loop exit before executing all code
 Now, if (x+7)>30, the program will break out of the loop and

continue with the next line of code
 x values displayed: 19, 26
 For nested loops, a break statement breaks out of the current

loop level only

Webb ENGR 103

13

while Loop – Example 1

 The previous example could be simplified by modifying the
while condition, and not using a break at all

 Now the result is the same as with the break statement
 x values displayed: 19, 26

 This is not always the case
 The break statement can be very useful
 May want to break based on a condition other than the loop condition

 break works with both while and for loops

Webb ENGR 103

14

while Loop – Example 2

 Next, let’s revisit the while loop
examples from Section 4

 Use input() to prompt for input
 Use print() to return the result

Webb ENGR 103

15

while Loop – Example 3

 Here, we use a while loop to
calculate the factorial value of a
specified number

Webb ENGR 103

16

while Loop – Example 3

 Add error checking to ensure that x
is an integer

 One way to check if x is an integer:

Webb ENGR 103

17

while Loop – Example 3

 Another possible method for
checking if x is an integer:

Webb ENGR 103

18

Infinite Loops

 A loop that never terminates is an infinite loop
 Often, this unintentional

 Coding error

 Other times infinite loops are intentional
 E.g., microcontroller in a control system

 A while loop will never terminate if the while condition
is always true
 By definition, True is always true:

while True:
statements repeat infinitely

Webb ENGR 103

19

while True

 The while True syntax can be used in conjunction with a
break statement, e.g.:

 Useful for
multiple break
conditions

 Control over
break point

 Could also
modify the while
condition

Webb ENGR 103

for Loops20

Webb ENGR 103

21

The for Loop

 The for loop
 Loop executed a specified number of times

for var in iterable:
statements

⋮

 iterable: any iterable object (ndarray, list, tuple,
dict, str)

 var: variable that assumes each successive value in
iterable on each iteration

 Statements: code block that is executed once for
each item in iterable

 Collection-based, not counter-based
 Iterates through each item in a collection
 Can be counter-based, like flowchart to the right

Webb ENGR 103

22

for Loop – Example 1

 A collection-based (or iterator-
based) for loop
 Iterates through each value in a list

of days
 No explicit loop counter

Webb ENGR 103

23

for Loop – Example 2 – range()

 Counter-based for loop
 Use Python's range() function:

range(start, stop, step)

 Generate a list of loop counter values to
iterate through

 Technically, still collection-based

Webb ENGR 103

24

for Loop – Example 3 – enumerate()

 Sometimes we may want a combination of a collection-
based and counter-based for loop
 Iterate over both the values and indices of all items in an iterable
 Use Python's enumerate() function
 Generates an (index, value) pair for each item in the iterable

 For example, consider a list of numbers:
x = [2, 4, 6, 8, 10]

 Generate (index, value) pairs for each item in x:
i, val = enumerate(x)

 Generates the following (i, val) pairs:
(0, 2), (1, 4), (2, 6), (3, 8)

 Can iterate over these (index, value) pairs with a for loop

Webb ENGR 103

25

for Loop – Example 3 – enumerate()

 Loop through an array of numbers to
find the maximum value and its index
 Use enumerate() to simultaneously

loop through array values and their
indices

Webb ENGR 103

26
Ex

er
ci

se
 The step response of a first-order system is given by

𝑦𝑦 𝑡𝑡 = 1 − 𝑒𝑒−
𝑡𝑡
𝜏𝜏

 Write a script to do the following:
 Generate an array of 𝜏𝜏 values:

𝜏𝜏 = 1.0 1.5 2.0 2.5 3.0 𝑠𝑠𝑠𝑠𝑠𝑠
 Generate a time vector with 2000 values between 0 and

5 ∗ max 𝜏𝜏
 In a for loop, using the enumerate function, iterate

through the values in 𝜏𝜏 and:
 Calculate 𝑦𝑦 𝑡𝑡
 Store the result as one column of a matrix, y

 Outside of the for loop, plot each of the columns of y on
a single set of axes

Exercise – for Loop, enumerate()

Webb ENGR 103

Nested Loops27

Webb ENGR 103

28

Nested Loop – Example 1

 Use a nested for loop to find the maximum value in a
matrix or 2-D array
 Outer loop steps through rows
 Inner loop steps through columns
 Store the largest value seen as the maximum value

 Consider an (m×n) matrix, A
 A[0] indexes the first row, so

for row in A:

 Steps through the rows in A one-by-one
 row = A[0], row = A[1], up to row = A[-1]

 An inner loop steps through each element in each row
for row in A:

for val in row:
<code to check for max>

 val = row[0], val = row[1], and so on

Webb ENGR 103

29

Nested Loop – Example 1

Webb ENGR 103

30

Nested for Loop – Example 2

 Evaluate a function of two variables:

𝑧𝑧 = 𝑥𝑥 ⋅ 𝑒𝑒−𝑥𝑥2−𝑦𝑦2

over a range of −2 ≤ 𝑥𝑥 ≤ 2 and −2 ≤ 𝑦𝑦 ≤ 2

 A surface in three-
dimensional space

 Later in the course, we’ll
learn how to generate
such a plot

Webb ENGR 103

31

Nested for Loop – Example 2

𝑧𝑧 = 𝑥𝑥 ⋅ 𝑒𝑒−𝑥𝑥2−𝑦𝑦2

 Evaluate the function over a range of 𝑥𝑥 and 𝑦𝑦
 First, define x and y

vectors
 Initialize the Z matrix
 Use a nested for loop

to step through all
points in this range of
the x-y plane
 Use enumerate() to

iterate through
indices and values

Webb ENGR 103

32

Nested Loops

 We just saw how we can use nested loops to:
 Find the maximum value in a matrix or 2-D array
 Evaluate a function of two variables

 A good illustration of nested loops, BUT
 There are easier, more efficient ways to do both of these

things in Python
 Looping is slow – avoid if possible
 Operate directly on arrays

Webb ENGR 103

The Spyder Debugger33

Webb ENGR 103

34

Debugging

 You’ve probably already realized that it’s not uncommon for your
code to have errors
 Computer code errors referred to as bugs

 Three main categories of errors
 Syntax errors prevent your code from running and generate a Python

error message
 Runtime errors – not syntactically incorrect, but generate an error upon

execution – e.g., indexing beyond matrix dimensions
 Algorithmic errors don’t prevent your code from executing, but do

produce an unintended result

 Syntax and runtime errors are usually more easily fixed than
algorithmic errors

 Debugging – the process of identifying and fixing errors is an
important skill to develop
 Spyder has a built-in debugger to facilitate this process

Webb ENGR 103

35

Debugging

 Identifying and fixing errors is difficult because:
 Programs run seemingly instantaneously
 Incorrect output results, but can’t see the intermediate

steps that produced that output

 Basic debugging principles:
 Slow code execution down – allow for stepping through

line-by-line
 Provide visibility into the code execution – allow for

monitoring of intermediate steps and variable values

Webb ENGR 103

36

Spyder Debugger – Breakpoints

 Breakpoint – specification of a line of code at which
Spyder should pause execution

 Set by clicking next to the number to the left of a
line of code in a script
 Spyder will execute the script up to this line, then pause

 Clicking here sets a
breakpoint
 Indicated by red

circle

Webb ENGR 103

37

Spyder Debugger – Breakpoints

 Click 'Debug file' to begin
execution

 Execution halts at the
breakpoint
 Before executing that line

 Console prompt changes
to IPdb [n]:
 Can now interactively

enter commands

Webb ENGR 103

38

Spyder Debugger – Breakpoints

 Click 'Run current line' to
execute the current line
of code

 Arrow indicator advances
to the next line

 Variable, m, defined on
previous line (line 16)
now exists in the
namespace
 Available in the console

Webb ENGR 103

39

Debugger – Example

 Recall a previous example of an algorithm to square every
element in a matrix

 Let’s say we run our script and get the following result:

 Resulting matrix is transposed
 Use the debugger to figure out why

Webb ENGR 103

40

Debugger – Example

 Set a breakpoint in the
innermost for loop

 Click 'Debug file'
 Code executes up to the

breakpoint
 Variable Explorer shows
i=0 and j=0

 Click 'Run current line'
 Display B[i,j] and
C[i,j] in the console
 Both are as expected

Webb ENGR 103

41

Debugger – Example

 Click 'Run current line'
twice
 Execute the next

iteration of the loop
 Now, i=0 and j=1

 First row, second column

 B[i,j] = 10
 But, C[i,j] = 16

 Should be 100

Webb ENGR 103

42

Debugger – Example

 We see that C[1,2] = 16 = 4**2 = B[2,1]**2
 This leads us to an error on line 21 of the code

 Should be B[i,j]**2, not B[j,i]**2

Webb ENGR 103

43
Ex

er
ci

se
 Write a script to do the following:

 Create a 5x5 matrix of zeros, X
 Initialize a random number generator:

rng = np.random.default_rng()

 In a nested loop step through all elements in X
 Outer loop steps through rows, inner loop steps through

columns
 Replace each element in X with a random integer:

X[i,j] = rng.integers(100)

 Set a breakpoint at the start of the outer loop and
run the debugger

 Step through code line-by-line observing the
evolution of the matrix X

Exercise – Nested Loops, Debugger

	Section 5: �Structured Programming in Python
	Conditional Statements
	The if Statement
	Logical and Relational Operators
	The if…else Structure
	The if…elif…else Structure
	The if…else, if…elif…else Structures
	The if…elif Structure
	while Loops
	The while loop
	while Loop – Example 1
	The break Statement
	while Loop – Example 1
	while Loop – Example 2
	while Loop – Example 3
	while Loop – Example 3
	while Loop – Example 3
	Infinite Loops
	while True
	for Loops
	The for Loop
	for Loop – Example 1
	for Loop – Example 2 – range()
	for Loop – Example 3 – enumerate()
	for Loop – Example 3 – enumerate()
	Exercise – for Loop, enumerate()
	Nested Loops
	Nested Loop – Example 1
	Nested Loop – Example 1
	Nested for Loop – Example 2
	Nested for Loop – Example 2
	Nested Loops
	The Spyder Debugger
	Debugging
	Debugging
	Spyder Debugger – Breakpoints
	Spyder Debugger – Breakpoints
	Spyder Debugger – Breakpoints
	Debugger – Example
	Debugger – Example
	Debugger – Example
	Debugger – Example
	Exercise – Nested Loops, Debugger

