
ENGR 103 – Introduction to Engineering Computing

SECTION 5:
STRUCTURED
PROGRAMMING IN PYTHON

Webb ENGR 103

• if statements
• Logical and relational operators
• if…else statements

Conditional Statements2

Webb ENGR 103

3

The if Statement

 We’ve already seen the if structure
 If X is true, do Y, if not, don’t do Y
 In either case, then proceed to do Z

 In Python:
if condition:

statements
⋮

 Statements are executed if condition is True
 Statement block defined by indenting those lines of code

 Condition is a logical expression
 Boolean - either True or False
 Makes use of logical and relational operators

 May use a single line for a single statement:

if condition: statement

Webb ENGR 103

Operator Relationship or Logical Operation Example

== Equal to x == b

!= Not equal to k != 0

< Less than t < 12

> Greater than a > -5

<= Less than or equal to 7 <= f

>= Greater than or equal to (4+r/6) >= 2

and AND – both expressions must evaluate to
true for result to be true (t > 0) and (c == 5)

or OR – either expression must evaluate to
true for result to be true (p > 1) or (m > 3)

not NOT– negates the logical value of an
expression not (b < 4*g)

4

Logical and Relational Operators

Webb ENGR 103

5

The if…else Structure

 The if … else structure
 Perform one process if a condition

is true
 Perform another if it is false

 In Python:

if condition:
statements1

else:
statements2

 Note that if and else code
blocks are defined by indents

Webb ENGR 103

6

The if…elif…else Structure

 In Python:

if condition1:
statements1

elif condition2:
statements2

else:
statements3

 The if … elif … else structure
 If a condition evaluates as false, check another condition
 May have an arbitrary number of elif statements

Webb ENGR 103

7

The if…else, if…elif…else Structures

 Some examples:

 Note that code blocks are defined by indents
 Each line must have the same indent - use the Tab key
 Meaningful whitespace is a distinguishing characteristic of Python
 Other languages use brackets or end statements

Webb ENGR 103

8

The if…elif Structure

 We can have an if
statement without an else

 Similarly, an if…elif
structure need not have an
else

 In Python:

if condition1:
statements1:

elif condition2:
statements2

Webb ENGR 103

while Loops9

Webb ENGR 103

10

The while loop

 The while loop
 While X is true, do A
 Once X becomes false, proceed to B

 In Python:

while condition:
statements

⋮

 Statements are executed as long as
condition remains true
 Condition is a logical expression

 Whitespace (indent) defines while block

Webb ENGR 103

11

while Loop – Example 1

 Consider the following while loop example
 Repeatedly increment x by 7 as long as x is less than or equal to 30
 Value of x is displayed on each iteration

 x values displayed: 19, 26, 33
 x gets incremented beyond 30

 All loop code is executed as long as the condition was true at the
start of the loop

Webb ENGR 103

12

The break Statement

 Let’s say we don’t want x to increment beyond 30
 Add a conditional break statement to the loop

 break statement causes loop exit before executing all code
 Now, if (x+7)>30, the program will break out of the loop and

continue with the next line of code
 x values displayed: 19, 26
 For nested loops, a break statement breaks out of the current

loop level only

Webb ENGR 103

13

while Loop – Example 1

 The previous example could be simplified by modifying the
while condition, and not using a break at all

 Now the result is the same as with the break statement
 x values displayed: 19, 26

 This is not always the case
 The break statement can be very useful
 May want to break based on a condition other than the loop condition

 break works with both while and for loops

Webb ENGR 103

14

while Loop – Example 2

 Next, let’s revisit the while loop
examples from Section 4

 Use input() to prompt for input
 Use print() to return the result

Webb ENGR 103

15

while Loop – Example 3

 Here, we use a while loop to
calculate the factorial value of a
specified number

Webb ENGR 103

16

while Loop – Example 3

 Add error checking to ensure that x
is an integer

 One way to check if x is an integer:

Webb ENGR 103

17

while Loop – Example 3

 Another possible method for
checking if x is an integer:

Webb ENGR 103

18

Infinite Loops

 A loop that never terminates is an infinite loop
 Often, this unintentional

 Coding error

 Other times infinite loops are intentional
 E.g., microcontroller in a control system

 A while loop will never terminate if the while condition
is always true
 By definition, True is always true:

while True:
statements repeat infinitely

Webb ENGR 103

19

while True

 The while True syntax can be used in conjunction with a
break statement, e.g.:

 Useful for
multiple break
conditions

 Control over
break point

 Could also
modify the while
condition

Webb ENGR 103

for Loops20

Webb ENGR 103

21

The for Loop

 The for loop
 Loop executed a specified number of times

for var in iterable:
statements

⋮

 iterable: any iterable object (ndarray, list, tuple,
dict, str)

 var: variable that assumes each successive value in
iterable on each iteration

 Statements: code block that is executed once for
each item in iterable

 Collection-based, not counter-based
 Iterates through each item in a collection
 Can be counter-based, like flowchart to the right

Webb ENGR 103

22

for Loop – Example 1

 A collection-based (or iterator-
based) for loop
 Iterates through each value in a list

of days
 No explicit loop counter

Webb ENGR 103

23

for Loop – Example 2 – range()

 Counter-based for loop
 Use Python's range() function:

range(start, stop, step)

 Generate a list of loop counter values to
iterate through

 Technically, still collection-based

Webb ENGR 103

24

for Loop – Example 3 – enumerate()

 Sometimes we may want a combination of a collection-
based and counter-based for loop
 Iterate over both the values and indices of all items in an iterable
 Use Python's enumerate() function
 Generates an (index, value) pair for each item in the iterable

 For example, consider a list of numbers:
x = [2, 4, 6, 8, 10]

 Generate (index, value) pairs for each item in x:
i, val = enumerate(x)

 Generates the following (i, val) pairs:
(0, 2), (1, 4), (2, 6), (3, 8)

 Can iterate over these (index, value) pairs with a for loop

Webb ENGR 103

25

for Loop – Example 3 – enumerate()

 Loop through an array of numbers to
find the maximum value and its index
 Use enumerate() to simultaneously

loop through array values and their
indices

Webb ENGR 103

26
Ex

er
ci

se
 The step response of a first-order system is given by

𝑦𝑦 𝑡𝑡 = 1 − 𝑒𝑒−
𝑡𝑡
𝜏𝜏

 Write a script to do the following:
 Generate an array of 𝜏𝜏 values:

𝜏𝜏 = 1.0 1.5 2.0 2.5 3.0 𝑠𝑠𝑒𝑒𝑠𝑠
 Generate a time vector with 2000 values between 0 and

5 ∗ max 𝜏𝜏
 In a for loop, using the enumerate function, iterate

through the values in 𝜏𝜏 and:
 Calculate 𝑦𝑦 𝑡𝑡
 Store the result as one column of a matrix, y

 Outside of the for loop, plot each of the columns of y on
a single set of axes

Exercise – for Loop, enumerate()

Webb ENGR 103

Nested Loops27

Webb ENGR 103

28

Nested Loop – Example 1

 Use a nested for loop to find the maximum value in a
matrix or 2-D array
 Outer loop steps through rows
 Inner loop steps through columns
 Store the largest value seen as the maximum value

 Consider an (m×n) matrix, A
 A[0] indexes the first row, so

for row in A:

 Steps through the rows in A one-by-one
 row = A[0], row = A[1], up to row = A[-1]

 An inner loop steps through each element in each row
for row in A:

for val in row:
<code to check for max>

 val = row[0], val = row[1], and so on

Webb ENGR 103

29

Nested Loop – Example 1

Webb ENGR 103

30

Nested for Loop – Example 2

 Evaluate a function of two variables:

𝑧𝑧 = 𝑥𝑥 ⋅ 𝑒𝑒−𝑥𝑥2−𝑦𝑦2

over a range of −2 ≤ 𝑥𝑥 ≤ 2 and −2 ≤ 𝑦𝑦 ≤ 2

 A surface in three-
dimensional space

 Later in the course, we’ll
learn how to generate
such a plot

Webb ENGR 103

31

Nested for Loop – Example 2

𝑧𝑧 = 𝑥𝑥 ⋅ 𝑒𝑒−𝑥𝑥2−𝑦𝑦2

 Evaluate the function over a range of 𝑥𝑥 and 𝑦𝑦
 First, define x and y

vectors
 Initialize the Z matrix
 Use a nested for loop

to step through all
points in this range of
the x-y plane
 Use enumerate() to

iterate through
indices and values

Webb ENGR 103

32

Nested Loops

 We just saw how we can use nested loops to:
 Find the maximum value in a matrix or 2-D array
 Evaluate a function of two variables

 A good illustration of nested loops, BUT
 There are easier, more efficient ways to do both of these

things in Python
 Looping is slow – avoid if possible
 Operate directly on arrays

Webb ENGR 103

The Spyder Debugger33

Webb ENGR 103

34

Debugging

 You’ve probably already realized that it’s not uncommon for your
code to have errors
 Computer code errors referred to as bugs

 Three main categories of errors
 Syntax errors prevent your code from running and generate a Python

error message
 Runtime errors – not syntactically incorrect, but generate an error upon

execution – e.g., indexing beyond matrix dimensions
 Algorithmic errors don’t prevent your code from executing, but do

produce an unintended result

 Syntax and runtime errors are usually more easily fixed than
algorithmic errors

 Debugging – the process of identifying and fixing errors is an
important skill to develop
 Spyder has a built-in debugger to facilitate this process

Webb ENGR 103

35

Debugging

 Identifying and fixing errors is difficult because:
 Programs run seemingly instantaneously
 Incorrect output results, but can’t see the intermediate

steps that produced that output

 Basic debugging principles:
 Slow code execution down – allow for stepping through

line-by-line
 Provide visibility into the code execution – allow for

monitoring of intermediate steps and variable values

Webb ENGR 103

36

Spyder Debugger – Breakpoints

 Breakpoint – specification of a line of code at which
Spyder should pause execution

 Set by clicking next to the number to the left of a
line of code in a script
 Spyder will execute the script up to this line, then pause

 Clicking here sets a
breakpoint
 Indicated by red

circle

Webb ENGR 103

37

Spyder Debugger – Breakpoints

 Click 'Debug file' to begin
execution

 Execution halts at the
breakpoint
 Before executing that line

 Console prompt changes
to IPdb [n]:
 Can now interactively

enter commands

Webb ENGR 103

38

Spyder Debugger – Breakpoints

 Click 'Run current line' to
execute the current line
of code

 Arrow indicator advances
to the next line

 Variable, m, defined on
previous line (line 16)
now exists in the
namespace
 Available in the console

Webb ENGR 103

39

Debugger – Example

 Recall a previous example of an algorithm to square every
element in a matrix

 Let’s say we run our script and get the following result:

 Resulting matrix is transposed
 Use the debugger to figure out why

Webb ENGR 103

40

Debugger – Example

 Set a breakpoint in the
innermost for loop

 Click 'Debug file'
 Code executes up to the

breakpoint
 Variable Explorer shows
i=0 and j=0

 Click 'Run current line'
 Display B[i,j] and
C[i,j] in the console
 Both are as expected

Webb ENGR 103

41

Debugger – Example

 Click 'Run current line'
twice
 Execute the next

iteration of the loop
 Now, i=0 and j=1

 First row, second column

 B[i,j] = 10
 But, C[i,j] = 16

 Should be 100

Webb ENGR 103

42

Debugger – Example

 We see that C[1,2] = 16 = 4**2 = B[2,1]**2
 This leads us to an error on line 21 of the code

 Should be B[i,j]**2, not B[j,i]**2

Webb ENGR 103

43
Ex

er
ci

se
 Write a script to do the following:

 Create a 5x5 matrix of zeros, X
 Initialize a random number generator:

rng = np.random.default_rng()

 In a nested loop step through all elements in X
 Outer loop steps through rows, inner loop steps through

columns
 Replace each element in X with a random integer:

X[i,j] = rng.integers(100)

 Set a breakpoint at the start of the outer loop and
run the debugger

 Step through code line-by-line observing the
evolution of the matrix X

Exercise – Nested Loops, Debugger

	Section 5: �Structured Programming in Python
	Conditional Statements
	The if Statement
	Logical and Relational Operators
	The if…else Structure
	The if…elif…else Structure
	The if…else, if…elif…else Structures
	The if…elif Structure
	while Loops
	The while loop
	while Loop – Example 1
	The break Statement
	while Loop – Example 1
	while Loop – Example 2
	while Loop – Example 3
	while Loop – Example 3
	while Loop – Example 3
	Infinite Loops
	while True
	for Loops
	The for Loop
	for Loop – Example 1
	for Loop – Example 2 – range()
	for Loop – Example 3 – enumerate()
	for Loop – Example 3 – enumerate()
	Exercise – for Loop, enumerate()
	Nested Loops
	Nested Loop – Example 1
	Nested Loop – Example 1
	Nested for Loop – Example 2
	Nested for Loop – Example 2
	Nested Loops
	The Spyder Debugger
	Debugging
	Debugging
	Spyder Debugger – Breakpoints
	Spyder Debugger – Breakpoints
	Spyder Debugger – Breakpoints
	Debugger – Example
	Debugger – Example
	Debugger – Example
	Debugger – Example
	Exercise – Nested Loops, Debugger

