SECTION 1: ELECTRICAL FUNDAMENTALS

ENGR 201 – Electrical Fundamentals I

Electricity – what is it?

- Fundamental form of *energy* Resulting from charge differentials
- *Electrons* are the carriers of electrical charge
 Electron is negatively charged
 Hole absence of an electron is positively charged
- May occur naturally
 Lightning, static electricity
- May be produced by conversion from other forms of energy
 - Generator, battery, solar panel

Electricity – why do we care?

- Electricity can do *work* for us
 Mechanical, heat, light, etc.
- Efficient means of *energy transmission* Large regions supplied by a single power plant
- Used to process and transmit *information* Computers, mobile phones, TV, radio, etc.
 Instrumentation and measurement

Electrical Energy

- Energy is conserved, but may be converted from one form to another
- Electrical energy charge differentials produced from other forms of energy
 - Generator mechanical energy
 - Battery chemical energy

http://www.trimainternational.com/Products/de.htm

Electrical Energy

 Electrical energy can be converted into other useful forms of energy

- Motor mechanical energy
- Heater thermal energy
- Charged battery chemical energy

http://www.trimainternational.com/Products/de.htm

Energy Transmission

Electricity is an efficient means of *energy transmission*

Energy is transmitted broadly from a single power plant
 No longer need to grind our wheat at the windmill

- Imagine other modes of energy transmission
 - Hydraulic, pneumatic, cables, rotating shafts
 - Pneumatic was used in some European cities and was proposed for transmission of energy from Niagara to Buffalo in late 19th century

Relevance for **ALL** Engineers

Energy

- Efficient means of transmission & distribution
- Efficient conversion
 - Efficiency of motors vs. engines
- Very few engineered systems without electronics
 Aircraft, automobiles, robotics, etc.

Instrumentation and measurement

- All engineered products and systems must be tested, measured, and evaluated
- Electronic measurements are fast, accurate, repeatable, and can be automated

What is Electrical Engineering?

- 9
- Many categories of electrical engineers
- Most fall into one of two areas:

Electronics

- Computers
- Communications
- Instrumentation and measurement
- Controls/robotics
- Energy systems

Power systems

- Power generation, transmission, distribution, storage
- Electric drives
- Controls/robotics
- Energy systems

ENGR 201/202

- ENGR 201 Electrical Fundamentals I
 DC circuits
- ENGR 202 Electrical Fundamentals II
 AC circuits
- Objectives of these courses:
 - Develop an understanding of electrical circuit theory
 - **•** To prepare you for courses in:
 - Energy conversion systems ESE 450
 - Electrical power systems ESE 470
 - Energy storage systems ESE 471
 - Electronics/circuit design
 - System dynamics and Controls
 - Robotics

ENGR 201 – Course Overview

ENGR 201 – Electrical Fundamentals I

DC circuit analysis

- **Section 1**: Electrical Fundamentals
- **Section 2**: Resistive Circuit Analysis I
 - Fundamental laws
- Section 3: Resistive Circuit Analysis II
 - Circuit analysis methods
- **Section 4**: Operational Amplifiers
- **Section 5**: Capacitance and Inductance

Electronic Photo Flash Circuit

Electronic photo flash circuit

- Simple, yet very interesting circuit example
- Preview of what you will learn in ENGR 201

□ The problem:

- Use small, rechargeable battery to fire the camera flash
- The details:
 - 4 V battery maximum output power: ~1 W
 - Flash tube requires 100s of volts, ~1000 W
- By the end of ENGR 201, you'll understand:
 - How this works how the required voltage and power are supplied
 - How we determine the appropriate model for the battery
 - How long the battery will last how many flashes

¹⁴ Electrical Fundamentals

Electrical Potential

Potential or voltage or electromotive force (emf)

- A measure of electrical energy
- The energy required to move one unit of electrical charge from one point to another
 - Units of potential: volts (V)
 - Units of electrical charge: coulombs (C)
 - Units of energy: joules (J)

$$1V = 1\frac{J}{C}$$

Electrical Potential

- Electrical potential is a *differential quantity*
 - Voltage between two points in a circuit
 - Voltage between a point and a ground reference
- No such thing as an *absolute* voltage at a location, but...
 - We do talk about *node voltages*
 - Always referenced to ground
 - For example,
 - Node voltages:

$$V_a = 10 V$$
, $V_b = 5 V$

Differential voltage:

$$V_{ab} = V_a - V_b = 5 V$$

Electric Field

Electric field

- A field of force experienced by positively-charged particles
- Points from positive to negative charge (positive to negative potential)
- Positive charge wants to move in the direction of the E-field, toward negative charge
- Units: newtons per coulomb (N/C) or volts per meter (V/m)
- The negative gradient of the potential
- Electrical energy is stored in the electric field

Electrical Current

- Electrical current (I) is the flow of positive charge
 - Voltage is the driving potential
 - Units: amperes or amps (A) coulombs per second (C/s)
 - A *rate* of charge flow:

$$1A = 1\frac{C}{s}$$

- Current wants to flow from high to low potential
- Analogous to fluid flow or heat flow
 - Fluid flows from high to low pressure
 - Heat flows from high to low temperature

Current – what's really flowing?

- Current is defined as the *flow of positive charge*
- Really, current is the *flow of negatively-charged electrons in the opposite direction*
 - Electrons flow from low potential to high potential
 - Negative charge flow in one direction is equivalent to positive charge flow in the opposite direction

Conductors and Insulators

- 20
- Electrical current flows more easily in some materials (*conductors*) than in others (*insulators*)
- Good conductors:
 - Copper
 - Aluminum
 - Gold
 - Silver

- All have a single valence electron
 - Easy for electrons to move from one atom to the next
- Good insulators have full valence bands

Electrical-Mechanical Analogies

- Electrical systems are analogous to:
 - **G** Fluid systems
 - Thermal systems

Domain	Driving potential	Flowing quantity	Flow	(units)
Electrical	Voltage	Positive charge	Current	(A)
Fluid	Pressure	Fluid	Flow rate	(m³/s)
Thermal	Temperature	Heat	Heat flux	(W)

22 Electrical Circuits

Electrical Networks – Schematics

- Electrical circuits represented graphically with schematics
 - Schematic symbols represent circuit elements
 - Schematics detail connections between circuit elements
 - Schematics describe paths for the flow of electrical current
- □ Some examples:

Electrical Networks – Branches & Nodes

□ Nodes

- Connection points for circuit elements
- Node voltages given with respect to a reference node (0 V, ground)

■ E.g. V₃ = 0 V, here

 Current flows into and out of nodes

Branches

- Paths for current to flow
- Connections between nodes
- Branches are the components that comprise the circuit
- Voltage across a branch is the difference between node voltages at either end

²⁵ Electrical Signals & Waveforms

Electrical Signals

- Voltage and current are the two properties of electrical circuits that we are most often concerned with
 - Voltages and currents may be *constant as functions of time* Direct current, *DC*
 - Or they may be *time-varying*
 - Alternating current, AC
 - We can refer to these quantities as electrical *signals*
 - They carry information
 - More appropriate terminology in the world of electronics than power systems
- Voltages and currents can be plotted as functions of time – *waveforms*

DC vs. AC

 DC (direct current) electrical signals (voltages, currents) are timeinvariant

■ In ENGR 201, we will primarily focus on DC signals

AC (alternating current) electrical signals are *time-varying* Possibly *periodic*

Some Typical Waveforms

Square wave:

Triangle wave:

Noise:

Sinusoidal Signals

In ENGR 202, we will see that *sinusoidal* signals are of particular interest in the field of electrical engineering

$$v(t) = V_p \cos(\omega t + \phi) = V_p \cos(2\pi \cdot f \cdot t + \phi)$$

- Sinusoidal signals defined by three parameters:
 - **Amplitude**: V_p
 - **D** Frequency: ω or f
 - **□** *Phase*: *φ*

29

Amplitude

- Amplitude of a sinusoid is its peak voltage, Vp
- Peak-to-peak voltage,
 V_{pp}, is twice the amplitude
 - $V_{pp} = 2V_p$ $V_{pp} = V_{max} V_{min}$

$$v(t) = V_p \cdot \sin(\omega t + \phi) = V_p \cdot \sin(2\pi f t + \phi)$$

Frequency

- *Period* (*T*)
 Duration of one cycle
- Frequency (f)

Number of periods per second

$$f = \frac{1}{T}$$

- Ordinary frequency, f
 Units: hertz (Hz), sec⁻¹, cycles/sec
- Angular frequency, ω
 Units: rad/sec

$$\omega = 2\pi f$$
, $f = \frac{\omega}{2\pi}$

Phase

Phase

Angular constant in signal expression, ϕ

 $v(t) = V_p \sin(\omega t + \phi)$

- Requires a time reference
 Interested in relative, not absolute, phase
- 🗆 Here,
 - \bullet $v_1(t)$ leads $v_2(t)$
 - $v_2(t)$ lags $v_1(t)$
- Units: radians
 - Not technically correct, but OK to express in degrees, e.g.:

RMS Value

Root mean square (rms) voltage/current

- Square root of the time average of the voltage/current squared
- AC voltage applied across a resistor results in same power dissipation as a DC voltage where V_{DC} = V_{rms}

For sinusoids:

$$V_{rms} = \frac{V_p}{\sqrt{2}}$$

$$v(t) = \sqrt{2} V_{rms} \sin(\omega t + \phi)$$

³⁴ Electrical Energy & Power

Energy and Power

- True understanding of electrical systems comes from understanding how they behave in terms of *energy*
 - True for dynamic systems in any domain mechanical, electrical, etc.
- Electrical components can do one of four things:
 - Supply energy
 - Store energy
 - Dissipate energy
 - Transform/transmit/convert energy
- We're also concerned with the *rate* at which energy is supplied, stored, dissipated, or transformed
- Power is the rate of energy flow
 - Unit of energy: joule (*J*)
 - Unit of power: watt (*W*), $1 W = 1 \frac{J}{s}$

Energy and Power

Power is the *rate* of energy flow
 The *time derivative* of energy

$$P = \frac{dE}{dt}$$
$$[W] = \left[\frac{J}{s}\right]$$

□ Similarly, energy is given by the *integral* of power

$$E = \int p(t)dt$$

□ For constant power, this simplifies to the product of power and time

$$E = P \cdot t$$
$$[J] = \left[\frac{J}{s}\right] \cdot [s]$$

Electrical Energy

- The power utility company charges us for *energy*, not power
 - Units: watt-hours (Wh or kWh)
 - For example: \$0.12/kWh
- One watt-hour (1 Wh):

Quantity of energy equivalent to the consumption of 1 W for 1 hour

$$1 Wh = 1\frac{J}{s} \cdot 1 h = 1\frac{J}{s} \cdot 1 h \cdot \frac{3600 s}{1 hr} = 3600 J$$

$$1 Wh = 3.6 \times 10^3 J = 3.6 kJ$$

 $1 \, kWh = 3.6 \times 10^6 J = 3.6 \, MJ$

Electrical Power

- 38
- A circuit component will have voltage across it and current flowing through it

I In general, both are functions of time: v(t) and i(t)

Power flowing to/from that component is given by the *product of voltage and current*

$$p(t) = v(t) \cdot i(t)$$

- Instantaneous power
- A function of time
- If i(t) and v(t) are constant (DC) then p(t) is constant as well

$$P = V \cdot I$$

Power – Passive Sign Convention

- 39
- Power can be supplied or absorbed by electrical components
- For any component, power is given by

$$p(t) = v(t) \cdot i(t)$$

Use the *passive sign convention* to determine if power is supplied or absorbed:

Electrical Energy - Batteries

- Batteries store electrochemical energy
 - Amount of energy stored is *capacity*
 - Typically specified in units of *ampere-hours* (Ah)
- For example, a 90 Ah battery could supply the equivalent of 90 A for 1 hour

90
$$Ah = 90 A \cdot 1 h = 90 \frac{C}{s} \cdot 1 h \cdot \frac{3600 s}{1 h} = 324 \times 10^3 C$$

Or, 1 A for 90 hours (or any other equivalent combination)

90
$$Ah = 1 A \cdot 90 h = 1 \frac{C}{s} \cdot 90 h \cdot \frac{3600 s}{1 h} = 324 \times 10^3 C$$

Clearly, this is a quantity of *charge*, *not energy*

Electrical Energy - Batteries

- 41
- To relate capacity in Ah to energy storage, we must know the battery's voltage
- For example, consider a 90 Ah, 12 V battery
 If discharging at 1 A, for example, the power supplied is

 $P = V \cdot I = 12 V \cdot 1 A = 12 W$

At this rate the battery can discharge for 90 h, so the total stored energy is

 $E = P \cdot t = 12 W \cdot 90 h = 1080 Wh = 1.08 kWh$

Energy capacity in Wh is given by the product of capacity in Ah and the battery voltage

 $E = (capacity in Ah) \cdot (battery voltage)$

How much charge is stored in an 80 Ah battery?

$$Q = 80Ah \cdot \frac{10}{18} \cdot \frac{3600s}{1h} = 288 kC$$

A 24 V battery pack will be used to power a 100 W load for 3 hours. What is the required battery capacity in Ah? In Wh? In J?

$$P = VI \longrightarrow I = \frac{P}{V}$$

$$I = \frac{100 W}{24V} = 4.167 A$$

$$Capacity = 3hr \cdot 4.167 A = \frac{12.5 Ah}{2.5 Ah}$$

$$Capacity = 3hr \cdot 100W = 300 Wh$$

$$Capacity = 300 Wh \cdot \frac{3600 s}{1 hr} = \frac{17/s}{1 W} = \frac{1.08 MJ}{1 W}$$

A daily load profile for a building is shown. How much energy is consumed each day?

If the cost of electricity is \$0.11/kWh, what is the daily cost of electricity? What is the yearly cost?

$$E = (100 \text{ W} \cdot 6\text{hr}) + (900 \text{ W} \cdot 6\text{hr}) + (1800 \text{ W} \cdot 6\text{hr}) + (400 \text{ W} \cdot 3\text{hr}) + (100 \text{ W} \cdot 3\text{hr})$$

$$E = 600 \text{ Wh} + 5400 \text{ Wh} + 10,800 \text{ Wh} + 1200 \text{ Wh} + 300 \text{ Wh}$$

$$E = 18,300 \text{ Wh} = -18.3 \text{ Wh}$$

Cost/ = E/ . #/ kWh = 18.3 kWh . \$0.11/kWh

Cost/day = \$2.013

A typical 9 V battery has a capacity of 170 mAh. How many batteries would have to be connected in parallel to drive an 80 W load for 2 hours?

Total energy required is

$$E = 80W. 2h = 160Wh$$
Capacity of each 9V cell in Wh:

$$E_{cell} = 170 \text{ mAh} \cdot 9V = 1.53Wh$$
Required # of cells:

$$\# cells = \frac{E}{E_{cell}} = \frac{160Wh}{1.53Wh} = 104.6 cells$$

$$\# cells = 105$$

Determine the power for the source and for each branch element in the following circuit. Show that power is conserved.

$$P_{3} = 10V(-10A) = -100W \quad (supplied)$$

$$P_{i} = 10V(2A) = 20W$$

$$P_{2} = 4V(8A) = 32W$$

$$P_{3} = 6V(8A) = -48W$$

$$P_{3} = 6V(8A) = -48W$$

$$P_{3} = -100W + 20W + 32W + 48W$$

$$P_{3} = -100W + 100W = 0W : power is concerned$$

How much energy is delivered by a 20 hp motor in 15 minutes?

If the motor is 92% efficient, how much energy is consumed by the motor during that time? (1 hp = 746 W)

$$E_{ont} = P_{out} \cdot t = 20 \text{ hp } \frac{746W}{1 \text{ hp}} \cdot 15 \text{ min} \cdot \frac{60 \text{ s}}{1 \text{ min}} \cdot \frac{1 \text{ J/s}}{1 \text{ W}}$$

$$E_{ont} = \frac{14.92 \text{ kW} \cdot 900 \text{ s}}{1 \text{ W}}$$

$$E_{ont} = \frac{13.43 \text{ MJ}}{1 \text{ W}}$$

$$E_{in} = \frac{E_{out}}{7} = \frac{13.43 \text{ MJ}}{0.92}$$

E: = 14.96 MJ

50 Electrical Circuit Components

- Independent voltage source
 - **Schematic symbol:**

- **Description:**
 - Generates a fixed voltage between its terminals
 - DC or AC
- Units: volts (V)
- Independent current source
 - Schematic symbol:

- **Description:**
 - Generates a fixed current
 - DC or AC
 - Current flows in one terminal and out the other
- Units: amperes (A)

- Dependent voltage source
 - **Schematic symbol:**

- **Description:**
 - Generates a voltage that is a function of another voltage or current in the circuit
 - Voltage-controlled voltage source (VCVS) or current-controlled voltage source (CCVS)
- **Units**: volts (V)

Dependent current source

Schematic symbol:

- Generates a current that is a function of another current or voltage in the circuit
- Current-controlled current source (CCCS) or voltage-controlled current source (VCCS)
- Units: amperes (A)

Resistor

Schematic symbol:

Description:

- Circuit element that resists the flow of electrical current
- Intentional or parasitic resistance (even wires are resistive)
- **Ο** Units: ohms (Ω)

□ Ground

Schematic symbol:

\uparrow \mp

- Voltage reference for a circuit
- Ground node
- Potential of 0 V

Capacitor

Schematic symbol:

Description:

- Stores energy in an electric field
- Two electrodes separated by a dielectric
- Stores a charge differential between the two electrodes
- **Units**: farads (F)

Inductor

G Schematic symbol:

\mathcal{M}

— — (-

- Stores energy in a magnetic field
- A coil of wire
- **Units**: henries (H)

Switch

Schematic symbol:

- Controls connections between multiple nodes in a circuit
- Single-pole single-throw (SPST) switch makes/breaks connection between two nodes
- Single-pole double-throw (SPDT) switch connects one node to one of two other nodes
- Many other configurations, e.g. DPDT, 3PDT, 6P3T, etc.

Diode

Schematic symbol:

Description:

- Two-terminal semiconductor device
- Junction of p-type and n-type semiconductor a p-n junction
- Allows current to flow in one direction only (anode to cathode)
- Analogous to a check valve
- Light-emitting diode (LED)
 Schematic symbol:

Description:

Diode that emits photons in response to current flowing through it

Transistor
 Schematic symbol:

- Three-terminal semiconductor device
- Small voltage on/current into one terminal controls current flow between the other two terminals
- Primary building block of integrated circuits
- Can be used as *switches* or *amplifiers*
- Analogous to valves:

Short Circuits & Open Circuits

Short circuit

- Direct connection between multiple nodes in a circuit
- A direct path for current to flow
- Often refers to an unintentional connection

Open circuit

- Lack of any electrical connection between two nodes in a circuit
- No path for current to flow
- Again, often used to refer to an unintended condition

Complete Circuits

- Electrical current always flows in a complete circuit
 - A return current path must always exist for current to flow
 - **Consider** a simple lamp:
 - Two-conductor cord line and neutral
 - Current flows from socket, down one conductor line
 - Current flows through the bulb
 - Current returns back along the neutral conductor to the wall, and, ultimately, to the power plant
 - Ladder on a power line vs. bird on power line

Problem Solving

- □ Engineering is all about solving problems, e.g.:
 - Designing complex systems to solve problems
 - Troubleshooting malfunctioning prototypes
 - Solving homework/exam problems as a student
- All engineering problems are different, but we can apply a similar general process to all problem solving:
 - 1. Carefully define the problem
 - 2. Present everything you know about the problem
 - 3. Establish a list of alternative approaches to solving the problem and select the *"best"* approach
 - 4. Attempt to solve the problem
 - 5. Evaluate the solution and check for accuracy
 - 6. If the problem is solved, you're done, if not, go to step 3

Problem Solving

In *flowchart* form:

- 1. Carefully define the problem
- 2. Present everything you know about the problem
- 3. Establish a list of alternative approaches to solving the problem and select the *"best"* approach
- 4. Attempt to solve the problem
- 5. Evaluate the solution and check for accuracy
- 6. If the problem is solved, you're done, if not, go to step 3

SI Prefixes

- □ Use *SI prefixes* for unit scaling whenever possible
 - Simplifies notation
 - Makes quantities easier to read and prevents errors
 - For example: 18 psec vs. 0.0000000018 sec

Multiplier	Prefix	Symbol
10 ¹⁸	еха	E
10 ¹⁵	peta	Р
10 ¹²	tera	Т
10 ⁹	giga	G
10 ⁶	mega	Μ
10 ³	kilo	К
10 ⁻³	milli	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10 ⁻¹²	pico	р
10 ⁻¹⁵	femto	f
10 ⁻¹⁸	atto	а