SECTION 1: SINUSOIDAL
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Sinusoidal Signals
e

Sinusoidal signals are of particular interest in the field of
electrical engineering
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v(t) =V, cos(wt + ¢) =V, cos(2m- f -t + ¢p)

Sinusoidal signals defined by three parameters:
o Amplitude: V,,

o Frequency: w or f

O Phase: ¢
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Amplitude

Amplitude of a
sinusoid is its peak v(t) = Vp - sin(wt + @) =V, - sin@nft + §)
voltage, 1, 200
Peak-to-peak voltage, 180
Vop, is twice the 100 -
amplitude =%
8 Vpp =2V, :
s Vpp = Vinax = Vimin hl
-100 |-
-150
-200

0 5 10 15 20 25 30
time [msec]

K. Webb ENGR 202



Frequency

-
Period (T)
o Duration of one cycle

200

Frequency (f) bl
o Number of periods per second 100l
— 1 -

=7 )

=
Ordinary frequency, f s’

o Units: hertz (Hz), sec?, cycles/sec sl

Angular frequency, w 100l
o Units: rad/sec

.

-150 - 7

w = 2nf, f=% T = 16 msec

-200
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Phase

Phase
o Angular constant in signal expression, ¢

v(t) =V, sin(wt + ¢)

200
Requires a time reference -
o Interested in relative, not 100
absolute, phase ol
Here, Z 0
o v4(t) leads v, (t) "ol
o v,(t) lags v, (t) 100 |
Units: radians |
o Not technically correct, but OK ~ ~° = © tim{j [msej“ I

to express in degrees, e.g.:

v(t) =170V sin(2w - 60Hz - t + 34°)
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Sinusoidal Steady-State Analysis
e

Often interested in the response of linear systems to sinusoidal
inputs

o Voltages and currents in electrical systems

o Forces, torques, velocities, etc. in mechanical systems

For linear systems excited by a sinusoidal input

o Output is sinusoidal
Same frequency
In general, different amplitude
In general, different phase

X(t) = X-cos(wt) L ingar y(t) = Y-cos(wt + ¢)

System

N
I

We can simplify the analysis of linear systems by using phasor
representation of sinusoids
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Phasors
I

Phasor

o A complex number representing the amplitude and
phase of a sinusoidal signal
o Frequency is not included
Remains constant and is accounted for separately

System characteristics (frequency-dependent) evaluated at
the frequency of interest as first step in the analysis

Phasors are complex numbers

o Before applying phasors to the analysis of electrical
circuits, we'll first review the properties of complex
numbers
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- Complex Numbers
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Complex Numbers
e

A complex number can be represented as
Z=x+]y

O x: real part (a real number)
O y: imaginary part (a real number)

oj =+ —1istheimaginary unit

Complex numbers can be represented three ways:
O Cartesian form: z = x + jy
O Polar form: z = r4¢

o Exponential form: z = rel®
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Complex Numbers as Vectors

A complex number can be represented as a vector in the
complex plane

Complex plane

O Real axis — horizontal

o Imaginary axis — vertical
A vector from the origin to z y
o Real part, x

O Imaginary part, y 2]

Z=X+jy

zZ=x+]jy

o Vector has a magnitude, r { >
o And an angle, 0 X

Z =140
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Cartesian Form < Polar Form
X

Cartesian form — Polar form

z=x+jy =10

r=|z| =x% + y2

0 = arg(z) = £z

0 = tan™! (%)

Polar form — Cartesian form
x =1 cos(0)

y = rsin(6)

K. Webb
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Complex Numbers — Addition/Subtraction

Addition and subtraction of complex numbers
0 Best done in Cartesian form

O Real parts add/subtract

o Imaginary parts add/subtract

For example:
Zy = X1+ JY1
Zy = Xz t]Y2
z1+ 7, = (01 +x2) + j(y1 +y2)
21— 7y = (X1 —x2) + j(y1 — y2)
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Complex Numbers — Multiplication/Division

Multiplication and division of complex numbers
o Best done in polar form

o Magnitudes multiply/divide

o Angles add/subtract

For example:
Z1 = 7"1491
Zoy = 7"2492

Z1 2y = 7"17"24(91 + 92)
Z1

—r14(9 0,)
ZZ_TZ 1 2
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Complex Conjugate
e

Conjugate of a complex
number

Im
™

z=x+jy
o Number that results from
negating the imaginary part

Z=x+]y

Vv O
®

Zm=x—Jy

o Or, equivalently, from
negating the angle r

Z =140

ZF=X-Jy

z¥=rs4—0
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Complex Fractions

Multiplying a number by its complex conjugate yields the
squared magnitude of that number

o A real number
z-z"=(x+jy)(x—jy) =x*+y?
z-2¥=1r20 14 —0 =1%20 — 0 = 1r?

Rationalizing the denominator of a complex fraction:

o Multiply numerator and denominator by the complex conjugate
of the denominator

, = X1ty X2 —JY2
Xy +]Y2 X2 —JYo

_ %1%z + Y1Y2 4 (x2y1 — x1Y2)

z J
x5+ y3 x5+ y3
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Complex Fractions
e

Fractions or ratios are, of course, simply division
o Very common form, so worth emphasizing

Magnitude of a ratio of complex numbers

Z |z4 |
z=— - |z|=——
Z3 |z,
Angle of a ratio of complex numbers
Z
Z=— o LZ=LZ1—1LZ
Z3

Calculators and complex numbers
o Manipulation of complex numbers by hand is tedious and error-prone
o Your calculators can perform complex arithmetic

o They will operate in both Cartesian and polar form, and will convert between
the two

O Learn to use them — correctly
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Euler’s Identity

-
Fundamental to phasor notation is Euler’s identity:.

e/®t = cos(wt) + j sin(wt)

where j is the imaginary unit, and w is angular frequency
It follows that

cos(wt) = Re{e/®t}

sin(wt) = Im{e/*t}

and
ejwt 4+ e—jwt
cos(wt) =
2
ejwt _ e—jwt
sin(wt) = ,
2]
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Phasors

-
Consider a sinusoidal voltage

v(t) =V, cos(wt + ¢)
Using Euler’s identity, we can represent this as

v(t) = Re{V,e/@+®)} = Re{l,e/Peiwt}
where

V, represents magnitude
e/? represents phase
e/ @t represents a sinusoid of frequency w

Grouping the first two terms together, we have
v(t) = Re{Ve/“t}
where V is the phasor representation of v(t)
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Phasors
-
v(t) = Re{Ve/®t}
The phasor representation of v(t)

o A representation of magnitude and phase only
o Time-harmonic portion (e/“t) has been dropped

Time-domain Phasor-domain
representation: representation:
v(t) =V, sin(wt + ¢) V= Vpej‘l’ =V,4¢

Phasors greatly simplify sinusoidal steady-state analysis
0o Messy trigonometric functions are eliminated
o Differentiation and integration transformed to algebraic operations
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Voltage & Current in the Phasor Domain
e

We will use phasors to simplify analysis of electrical circuits
o Need an understanding of electrical component behavior in the phasor domain
o Relationships between voltage phasors and current phasors for Rs, Ls, and Cs

Resistor it)
O Voltage across a resistor given by N —
v(t) =i(t)R
i(t) = I, cos(wt + ¢) v(t) @ 2 R
o Converting to phasor form ~
. A4 e
V= (I,e/?)R
V=1IR I = v
B "R

0o Ohm’s law in phasor form
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V-l Relationships in the Phasor Domain
e

Capacitor 0
o Current through the capacitor given by >

Al

i(t) = C@

dt o) @

i(t) = C% [Vp cos(wt + qb)]

| |
§
O

Q

i(t) = —wCV, sin(wt + ¢) Y
o Applying a trig identity:

—sin(A) = cos(4 + 90°)
gives
i(t) = wCV, cos(wt + ¢ + 90°)

o Converting to phasor form

I = a)CVpef(‘p’Lgm) = a)C'I/pej‘l’ejgoo
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V-I Relationships - Capacitor
-
Current phasor

I = a)CI/pej((l)'l'goo) — a)CI/;)ej(pengo
o Voltage phasor is it
V="Ve?

SO v (V)

I = wCVel?

o

| |
§
O

Q

o Recognizing that e/°%° = j, we have

1
[ =jwCV V=—-I
@ jwC
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V-I Relationships - Inductor
-

Inductor o
o Voltage across an inductor given by *
di i(t) T v(t) L
t) =L—
v(t) =L
d & o
v(t) =L I [Ip cos(wt + qb)]

v(t) = —wLl, sin(wt + ¢) = wLl, cos(wt + ¢ + 90°)
o Converting to phasor form
V = wLl,e/(®+90) = gL],e/Pe/o

o Again, recognizing that e/%%° = j, gives

1
V = jwll [=—V
J@ jol
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- Impedance
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Impedance

For resistors, Ohm’s law gives the ratio of the voltage
phasor to the current phasor as

v R
T =
o R is, of course, resistance
A special case of impedance
Impedance, Z
p vV
R

o The ratio of the voltage phasor to the current phasor for a
component or network

o Units: ohms (()
o In general, complex-valued
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Impedance
-

Resistor impedance:
A v =R
=1 =
Capacitor impedance:
,_V_1
1 joC
Inductor impedance:
v
/= T =] wL

In general, Ohm’s law can be applied to any component or network in the
phasor domain

<

I

N

I
N| <
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- Capacitor Impedance
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Capacitor Impedance

L _ L oo 10

7 =—
jowC wC o—

|
V=1Z=—e %
oC°©

I = wCVe/°”

©
| |
§
O

Q

In the time domain, this translates to
v(t) =V, cos(wt + ¢)
i(t) = VywC cos(wt + ¢ +90°)
Current through a capacitor leads the voltage across a

capacitor by 90°
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Capacitor Impedance — Phasor Diagram

Phasor diagram for a —
capacitor

©
|
I
O

o Voltage and current
phasors drawn as
vectors in the Im
complex plane I

o

o Current always leads
voltage by 90° v
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Capacitor Impedance — Time Domain
e

Cu rre nt Iea ds Capacitar Current and Voltage, @ =1 radfsec, C=1F
i(t) S ;-
o—= 5 ; |
vt () L ¢ 5
° M ! E
v | I l i
a 1 2 3 4 5 5 7 g g 10
time (sec)
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Capacitor Impedance — Frequency Domain

ancews. Freguency -- C = 1uF

K. Webb

12, {Ohms)

Magnitude of Capacitor Imped

5-<;§ééf;@shortckcuh:atverytﬂgh

EE§_§§£§Capacitorapproachesa

.1 frequencies
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- Inductor Impedance
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Inductor Impedance

-
7 = joL = wL el it

. o CH
V=I1Z=1wL el
[ — ie—j90° vt (V) L
wl

In the time domain, this translates to

v(t) =V, cos(wt + ¢)

(t) = ‘b (wt + 90°)
L —chosa) )

Current through an inductor lags the voltage across an
inductor by 90°
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Inductor Impedance — Phasor Diagram

Phasor diagram for N

an inductor

v(t) @ L

o Voltage and current
phasors drawn as
vectors in the Im
complex plane

o)

o Current always lags
voltage by 90° ¢

Ny O
(0
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Inductor Impedance — Time Domain

Current lags
voltage by 90°

Inductor Current and “altage, @0 = 1 radfsec, L=1H

—
N~
VL anL i or A

Q

AV
time (sec)
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Inductor Impedance — Frequency Domain
e

MWagnitude of Inductor Impedance ws. Frequency -- L = TpuH
10 L AL B ) B R S B AL R LA B B R A1) B N B B B R AR B B B B B S S B AL

Inductor approaches an sl o
open circuit at very high | #2470 0
frequencies

|, | (Ohms)

¢ | Inductor approaches a
| short circuit at DC

R R R A B A R R T AT
10" 10" 10° 10° 10t 10° 10 10° 10° 10° 10
Fregquency (Hz)
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Summary
e

Capacitor Inductor
o Impedance: o Impedance:
ZC = 1 ZL =]Cl)L
jwC

o V-l phase relationship:

0 V- phase relationship: Current lags voltage by 90°

Current leads voltage by 90°

v(t) =V, cos(wt)

v(t) =V, cos(wt)

/A
: p
1(t) = —cos(wt —90°
i(t) = V,wC cos(wt + 90°) ) wL ( )
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ELI the ICE Man

Mnemonic for phase relation between current (l)
and voltage (E) in inductors (L) and capacitors (C)

N
ELI the ICE man
/ [ 1
Voltage Current
leads /current leads | voltage
in an inductor in @ capacitor
J

K. Webb
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Impedance of Arbitrary Networks
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Impedance

So far, we’ve looked at impedance of individual
components

O Resistors

Purely real

o Capacitors

7 =
jwC

Purely imaginary, purely reactive

o Inductors
Z = jwL

Purely imaginary, purely reactive
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Impedance

Also want to be able to characterize the impedance of
electrical networks

o Multiple components
o Some resistive, some reactive

In general, impedance is a complex value

Z =R+ jX

where

R is resistance
X is reactance

So, in ENGR 201 we dealt with impedance all along

O Resistance is an impedance whose reactance (imaginary part) is
Zero

A purely real impedance
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Reactance

-
For capacitor and inductors, impedance is purely reactive
O Resistive part is zero
ZC :_]XC and ZL :_]XL

where X, is capacitive reactance

X, = ——

wC

and X; is inductive reactance
XL = wlL

o Note that reactance is a real quantity
It is the imaginary part of impedance

o Units of reactance: ohms (())
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Admittance
e

Admittance, Y, is the inverse of impedance

1
Y==-=G+jB
7 J

where
G is conductance — the real part
B is susceptance — the imaginary part

r= w5 = (et (re)
“R+jx \RZ+x2) ) \Rerx2

Conductance
= R
~ R% + X2
o NotethatG # 1/R unlessX =0
Susceptance
B — —X
~ R%+ X2

Units of Y, G, and B: Siemens (S)
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Impedance of Arbitrary Networks

In general, the impedance of arbitrary networks may be
both resistive and reactive

Z — Rl +]X1
R, Z =1Z|46
where
— 2 2
and

X
_ -1 (21
Zo = Ry + iXs 6 = tan <R1>
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Impedances in Series
-

Impedances in series add

o——— o—

]Z1=R1+jX1

[
T > | za=zi42

o— o—

Zeq — Zl +Z2

Zeq = (R; + R;) +j(X1 + X3)
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Impedances in Parallel

Admittances in parallel add

%Ye -V, +Y
Y,=1/Z, =1z, - Z“ 1;Y ?
eq — eq

qu=Y1+Y2

, 1 _(1. 1 -

“UC Y,y \Z1 Z
Z17,

/ —
“a 7,4+
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-State Analysis



Sinusoidal Steady-State Analysis — Ex. 1

Determine the current, i(t) ©

vs(t) =1V cos(2mr -1 MHz - t) °
R % 10 Q
First, convert the circuit to the vs(® ()
phasor domain C == 10nF
o Express the source voltage as a phasor
V, = 1V20°
|
o Evaluate impedances at 1 MHz —=
R =100 R 2 10 Q
1 j . Q)
L =7——=— C = -1590Q
jwC 2w -1 MHz-10 nF

Z.=—j1590Q
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Sinusoidal Steady-State Analysis — Ex. 1

[
The load impedance is :

—
Z=R+jX,=(10—-15.9) O '
7 =18.82—57.8°0 RS o
Vs @
Apply Ohm’s law to calculate the C = 1590
current phasor

[ vV 1V20°
7 1882 —-57.8°0

I =53.2457.8°mA

Finally, convert to the time domain

i(t) =53.2mAcos(2m-1MHz - t + 57.8°)
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Sinusoidal Steady-State Analysis — Ex. 2

Consider the following circuit, modeling a source driving
a load through a transmission line

Rl |_1 IL(t)
O \/\/\ rYW\ O
050 5 mH + R
22230
vs(t) @ v (t) C== 10 pF
N L2315 mH

v(t) = 170 V sin(2r - 60Hz - t)

Determine:

o The impedance, Z;,,, at 60 Hz

o Voltage across the load, v; (t)

o Current delivered to the load, i; (t)
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Sinusoidal Steady-State Analysis — Ex. 2
-

First, convert to the phasor domain and evaluate impedances at 60 Hz

Rl Ll IL
N AN Y5
050 j1.880 +

R:>30
\4 .
* () 170L0°V Vi C——-j2650Q

_F L23j5.650

Zin

The line impedance is
Zyine = Ry + jwL; = 0.5 +j1.88 Q)

The load impedance is

1
Zioaa = (R; +ijz)||jw—C = (3 +5.65Q)|| —j265Q

-1

1 1

Zioad = =313 +/5.74 0
load <3 15650 —j265 Q) )
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Sinusoidal Steady-State Analysis — Ex. 2

e
The impedance seen by the source is

Zin = ZLiine * Zioaa
Lin = (0.5 +j1.88 Q)+ (3.13 + j5.74 9))
Zin =3.63+j7.62 0

In polar form:
Z:, = 8.44,64.5° ()

The impedance driven by the source looks resistive and
inductive

O Resistive: non-zero resistance, £Z;,, # 190°
o Inductive: positive reactance, positive angle
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Sinusoidal Steady-State Analysis — Ex. 2

Apply voltage division to R e
determine the voltage across 05 jussa * ol
the load ¥ () 17020° v v, C =265 Q
VL _ VS Zload : L. 3 j5.65 0
Zline + Zload _C )
3.13 + j5.74 Q
V=00 s 7620
6.54,261.4° ()
V, = 170£0°V —-—— === 1322 = 3.1°V

Converting to time-domain form
v, (t) = 132 Vsin(2m - 60Hz - t — 3.1°)
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Sinusoidal Steady-State Analysis — Ex. 2
R

Finally, calculate the R, L
current delivered to the o—/M— "N —o
050 j1.88Q +
load 230
Vv Vs @1704@’\/ V, C—=-j265Q
I, = ~ L _ L2 j5.65 O
load © ©

_— 1322 — 3.1°V
L™ 6.54,61.4° QO

I, =20.12—-64.5°4

In time-domain form:
i;(t) =20.1 Asin(27 - 60Hz - t — 64.5°)
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