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SECTION 3:
SECOND-ORDER FILTERS
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Second-Order Circuits

 Order of a circuit (or system of any kind) 
 Number of independent energy-storage elements
 Order of the differential equation describing the 

system

 Second-order circuits
 Two energy-storage elements
 Described by second-order differential equations

 We will primarily be concerned with second-
order RLC circuits
Circuits with a resistor, an inductor, and a capacitor
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Second-Order Circuits

 In this and the following section of notes, we 
will look at second-order RLC circuits from two 
distinct perspectives:
 Section 3
 Second-order filters
 Frequency-domain behavior

 Section 4
 Second-order transient response
 Time-domain behavior
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Second-Order Filters

 First-order filters 
 Roll-off rate: 20 dB/decade

 This roll-off rate determines selectivity
 Spacing of pass band and stop band
 Spacing of passed frequencies and stopped or filtered 

frequencies

 Second-order filters
 Roll-off rate: 40 dB/decade

 In general: 
 Roll-off = 𝑁𝑁 ⋅ 20 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑑𝑑, where 𝑁𝑁 is the filter order
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Resonance

 Resonance
 Tendency of a system to oscillate at certain frequencies –

resonant frequencies – often with larger amplitude than 
any input

 Phenomenon that occurs in all types of dynamic systems 
(mechanical, electrical, fluid, etc.)

 Examples of resonant 
mechanical systems:
 Mass on a spring
 Pendulum, playground 

swing
 Tacoma Narrows Bridge

©Barney Elliot – The Camera Shop
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Electrical Resonance

 Electrical resonance
 Cancellation of reactances (or susceptances), resulting in purely resistive 

network impedance
 Occurs at resonant frequencies
 Second- and higher-order circuits 

 Reactances (susceptances) cancel – sum to zero ohms (siemens)
 Inductive reactance is positive – (susceptance is negative)
 Capacitive reactance is negative – (susceptance is positive)

 Voltages/currents in the circuit may be much larger than source 
voltages/currents

 We’ll take a look at resonance in two classes of circuits: 
 Series resonant circuits
 Parallel resonant circuits
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Series Resonant RLC Circuit

 Series RLC circuit
 Second-order – one capacitor, one inductor
 Circuit will exhibit resonance

Impedance of the network:
𝑍𝑍𝑖𝑖𝑖𝑖 𝜔𝜔 = 𝑅𝑅 +

1
𝑗𝑗𝜔𝜔𝑗𝑗

+ 𝑗𝑗𝜔𝜔𝑗𝑗 = 𝑅𝑅 + 𝑗𝑗 𝜔𝜔𝑗𝑗 −
1
𝜔𝜔𝑗𝑗

At the resonant frequency, 𝜔𝜔0 or 𝑓𝑓0:

𝑋𝑋𝐿𝐿 + 𝑋𝑋𝐶𝐶 = 0 → 𝑋𝑋𝐿𝐿 = −𝑋𝑋𝐶𝐶

𝜔𝜔0𝑗𝑗 =
1

𝜔𝜔0𝑗𝑗
→ 𝜔𝜔02 =

1
𝑗𝑗𝑗𝑗

so

𝜔𝜔0 = 1
𝐿𝐿𝐶𝐶

and  𝑓𝑓0 = 1
2𝜋𝜋 𝐿𝐿𝐶𝐶

and

𝑍𝑍𝑖𝑖𝑖𝑖 𝜔𝜔0 = 𝑅𝑅
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Series RLC Circuit – Quality Factor

 Quality factor, 𝑄𝑄𝑠𝑠
 Ratio of inductive reactance at the resonant frequency to 

resistance

𝑄𝑄𝑠𝑠 =
𝜔𝜔0𝑗𝑗
𝑅𝑅 =

2𝜋𝜋𝑓𝑓0𝑗𝑗
𝑅𝑅

 At resonance, inductive and capacitive reactances (magnitudes) 
are equal, so

𝑄𝑄𝑠𝑠 =
1

𝜔𝜔0𝑅𝑅𝑗𝑗
=

1
2𝜋𝜋𝑓𝑓0𝑅𝑅𝑗𝑗

 The ratio of voltage magnitude across the inductor or capacitor to 
the voltage across the whole RLC network at resonance

 A measure of the sharpness of the resonance
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Series RLC Circuit – Zin vs. Qs

 At 𝑓𝑓 = 𝑓𝑓0
 𝑍𝑍𝑖𝑖𝑖𝑖 = 𝑅𝑅
 ∠𝑍𝑍𝑖𝑖𝑖𝑖 = 0°

 Q determines 
sharpness of the 
resonance
 Higher Q yields 

faster transition 
from capacitive, 
through resistive, to 
inductive regions

 To increase Q:
 Increase L
 Reduce R and/or C
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Series RLC Circuit – Zin

Understanding the impedance of a series resonant circuit

𝑓𝑓 = 𝑓𝑓0:
𝑍𝑍𝑖𝑖𝑖𝑖 = 𝑅𝑅
𝑍𝑍𝑖𝑖𝑖𝑖 is real
∠𝑍𝑍𝑖𝑖𝑖𝑖 = 0°

𝑓𝑓 ≫ 𝑓𝑓0:
∠𝑍𝑍𝑖𝑖𝑖𝑖 = +90°
𝑍𝑍𝑖𝑖𝑖𝑖 looks 
inductive

Inductor 
impedance 
goes up as f 
goes up.

Capacitor 
impedance 
goes up as f 
goes down.

𝑓𝑓 ≪ 𝑓𝑓0:
∠𝑍𝑍𝑖𝑖𝑖𝑖 = −90°
𝑍𝑍𝑖𝑖𝑖𝑖 looks 
capacitive



K. Webb ENGR 202

14

Series RLC Circuit – Voltages and Currents

 At 𝜔𝜔0, 𝑍𝑍𝑖𝑖𝑖𝑖 = 𝑅𝑅, so the current phasor is

𝐈𝐈 =
𝐕𝐕𝐒𝐒
𝑅𝑅 =

𝑉𝑉𝑠𝑠
𝑅𝑅 ∠0°

 Capacitor voltage at resonance:

𝐕𝐕𝐂𝐂 =
𝐈𝐈

𝑗𝑗𝜔𝜔0𝑗𝑗
=

𝑉𝑉𝑠𝑠∠0°
𝜔𝜔0𝑅𝑅𝑗𝑗∠90°

=
𝑉𝑉𝑠𝑠

𝜔𝜔0𝑅𝑅𝑗𝑗
∠ − 90°

 Recalling the expression for quality factor of a series 
resonant circuit, we have

𝐕𝐕𝐂𝐂 = 𝑄𝑄𝑠𝑠 ⋅ 𝑉𝑉𝑠𝑠∠ − 90°

 The voltage across the capacitor is the source voltage multiplied 
by the quality factor and phase shifted by −90°
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Series RLC Circuit – Voltages and Currents

 The inductor voltage at resonance:

𝐕𝐕𝐋𝐋 = 𝐈𝐈 ⋅ 𝑗𝑗𝜔𝜔0𝑗𝑗 =
𝑉𝑉𝑠𝑠∠0° ⋅ 𝜔𝜔0𝑗𝑗∠90°

𝑅𝑅

𝐕𝐕𝐋𝐋 =
𝑉𝑉𝑠𝑠 ⋅ 𝜔𝜔0𝑗𝑗∠90°

𝑅𝑅

 Again, substituting in the expression for 
quality factor gives

𝐕𝐕𝐋𝐋 = 𝑄𝑄𝑠𝑠 ⋅ 𝑉𝑉𝑠𝑠∠ + 90°

 The voltage across the inductor is the source voltage multiplied by the 
quality factor and phase shifted by +90°

 Capacitor and inductor voltage at resonance:
 Equal magnitude
 180° out of phase – opposite sign – they cancel
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Series RLC Circuit – Voltages and Currents

 Now assign component values

 The resonant frequency is 

𝜔𝜔0 =
1
𝑗𝑗𝑗𝑗

= 100
𝑘𝑘𝑘𝑘𝑘𝑘𝑑𝑑
𝑠𝑠𝑑𝑑𝑑𝑑

 The quality factor is

𝑄𝑄𝑠𝑠 =
𝜔𝜔0𝑗𝑗
𝑅𝑅

=
100 𝑘𝑘𝑘𝑘𝑘𝑘𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑 ⋅ 1 𝑚𝑚𝑚𝑚

10 Ω
= 10

 The current phasor at the resonant frequency is

𝐈𝐈 =
𝐕𝐕𝐬𝐬
𝑅𝑅

=
1 𝑉𝑉∠0°

10 Ω
= 100∠0° 𝑚𝑚𝑚𝑚
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Series RLC Circuit – Voltages and Currents

 The capacitor voltage at the  resonant 
frequency is 

𝐕𝐕𝐂𝐂 =
𝐈𝐈

𝑗𝑗𝜔𝜔0𝑗𝑗
=

𝑉𝑉𝑠𝑠
𝜔𝜔0𝑅𝑅𝑗𝑗

∠ − 90° = 𝑄𝑄𝑠𝑠 ⋅ 𝑉𝑉𝑠𝑠∠ − 90°

𝐕𝐕𝐂𝐂 = 10 ⋅ 1 𝑉𝑉∠ − 90°

𝐕𝐕𝐂𝐂 = 10 𝑉𝑉∠ − 90°

 The inductor voltage at the resonant frequency: 

𝐕𝐕𝐋𝐋 = 𝐈𝐈 ⋅ 𝑗𝑗𝜔𝜔0𝑗𝑗 =
𝑉𝑉𝑠𝑠 ⋅ 𝜔𝜔0𝑗𝑗∠90°

𝑅𝑅
= 𝑄𝑄𝑠𝑠 ⋅ 𝑉𝑉𝑠𝑠∠ + 90°

𝐕𝐕𝐋𝐋 = 10 ⋅ 1 𝑉𝑉∠ + 90°

𝐕𝐕𝐋𝐋 = 10 𝑉𝑉∠ + 90°
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Series RLC Circuit – Voltages and Currents

 𝐕𝐕𝐒𝐒 = 1 𝑉𝑉

 ∠𝐈𝐈 = 0°

 𝐕𝐕𝐂𝐂 = 𝐕𝐕𝐋𝐋 = 𝑄𝑄𝑠𝑠 𝐕𝐕𝐒𝐒 = 10 𝑉𝑉
 𝐕𝐕𝐂𝐂 and 𝐕𝐕𝐋𝐋 are 180° out of phase

 They cancel
 KVL is satisfied
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Parallel Resonant RLC Circuit

 Parallel RLC circuit
 Second-order – one capacitor, one inductor
 Circuit will exhibit resonance

Impedance of the network:
𝑍𝑍𝑖𝑖𝑖𝑖 𝜔𝜔 =

1
𝑅𝑅

+ 𝑗𝑗𝜔𝜔𝑗𝑗 +
1
𝑗𝑗𝜔𝜔𝑗𝑗

−1

=
1
𝑅𝑅

+ 𝑗𝑗 𝜔𝜔𝑗𝑗 −
1
𝜔𝜔𝑗𝑗

−1

At the resonant frequency, 𝜔𝜔0 or 𝑓𝑓0:

𝑑𝑑𝐶𝐶 + 𝑑𝑑𝐿𝐿 = 0 → 𝑑𝑑𝐶𝐶 = −𝑑𝑑𝐿𝐿

𝜔𝜔0𝑗𝑗 =
1
𝜔𝜔0𝑗𝑗

→ 𝜔𝜔0
2 =

1
𝑗𝑗𝑗𝑗

so

𝜔𝜔0 = 1
𝐿𝐿𝐶𝐶

and 𝑓𝑓0 = 1
2𝜋𝜋 𝐿𝐿𝐶𝐶

and

𝑍𝑍𝑖𝑖𝑖𝑖 𝜔𝜔0 = 𝑅𝑅
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Parallel RLC Circuit – Quality Factor

 Quality factor, 𝑄𝑄𝑝𝑝
 Ratio of inductive susceptance at the resonant frequency to 

conductance

𝑄𝑄𝑝𝑝 =
1/𝜔𝜔0𝑗𝑗

1/𝑅𝑅 =
𝑅𝑅
𝜔𝜔0𝑗𝑗

=
𝑅𝑅

2𝜋𝜋𝑓𝑓0𝑗𝑗

 At resonance, inductive and capacitive susceptances (magnitudes) 
are equal, so

𝑄𝑄𝑝𝑝 = 𝜔𝜔0𝑅𝑅𝑗𝑗 = 2𝜋𝜋𝑓𝑓0𝑅𝑅𝑗𝑗

 The ratio of current magnitude through the inductor or capacitor 
to the current through the whole RLC network at resonance

 A measure of the sharpness of the resonance
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Parallel RLC Circuit – 𝑍𝑍𝑖𝑖𝑖𝑖 vs. 𝑄𝑄𝑝𝑝
 At 𝑓𝑓 = 𝑓𝑓0

 𝑍𝑍𝑖𝑖𝑖𝑖 = 𝑅𝑅
 ∠𝑍𝑍𝑖𝑖𝑖𝑖 = 0°

 Q determines 
sharpness of the 
resonance
 Higher Q yields 

faster transition 
from inductive, 
through resistive, to 
capacitive regions

 To increase Q:
 Reduce L
 Increase R and/or C
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Parallel RLC Circuit – 𝑍𝑍𝑖𝑖𝑖𝑖
Understanding the impedance of a parallel resonant circuit

𝑓𝑓 = 𝑓𝑓0:
𝑍𝑍𝑖𝑖𝑖𝑖 = 𝑅𝑅
𝑍𝑍𝑖𝑖𝑖𝑖 is real

𝑓𝑓 ≫ 𝑓𝑓0:
∠𝑍𝑍𝑖𝑖𝑖𝑖 = −90°
𝑍𝑍𝑖𝑖𝑖𝑖 looks 
capacitive

Capacitor 
tends 
toward a 
short as 
𝑓𝑓 → ∞

Inductor tends 
toward a short 
as 𝑓𝑓 → 0

𝑓𝑓 ≪ 𝑓𝑓0:
∠𝑍𝑍𝑖𝑖𝑖𝑖 = +90°
𝑍𝑍𝑖𝑖𝑖𝑖 looks 
inductive

𝑓𝑓 = 𝑓𝑓0:
𝑍𝑍𝑖𝑖𝑖𝑖 is real
∠𝑍𝑍𝑖𝑖𝑖𝑖 = 0°
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Parallel RLC Circuit – Voltages and Currents

 Sinusoidal current source, 𝐈𝐈𝐬𝐬
 At resonance, 𝑍𝑍𝑖𝑖𝑖𝑖 = 𝑅𝑅, so the 

voltage across the network is:

𝐕𝐕𝐨𝐨 = 𝐈𝐈𝐬𝐬𝑅𝑅 = 𝐼𝐼𝑠𝑠∠0° ⋅ 𝑅𝑅

 Current through the capacitor at resonance:

𝐈𝐈𝐂𝐂 = 𝐕𝐕𝐨𝐨 ⋅ 𝑗𝑗𝜔𝜔0𝑗𝑗 = 𝐼𝐼𝑠𝑠𝑅𝑅 ⋅ 𝜔𝜔0𝑗𝑗∠90°

 Recalling the expression for quality factor of the parallel 
resonant circuit, we have

𝐈𝐈𝐂𝐂 = 𝑄𝑄𝑝𝑝 ⋅ 𝐼𝐼𝑠𝑠∠90°

 The current through the capacitor is the source current multiplied 
by the quality factor and phase shifted by 90°
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Parallel RLC Circuit – Voltages and Currents

 The inductor current at resonance:

𝐈𝐈𝐋𝐋 =
𝐕𝐕𝐨𝐨
𝑗𝑗𝜔𝜔0𝑗𝑗

=
𝐼𝐼𝑠𝑠𝑅𝑅
𝜔𝜔0𝑗𝑗

∠ − 90°

 Again, substituting in the 
expression for quality factor gives

𝐈𝐈𝐋𝐋 = 𝑄𝑄𝑝𝑝 ⋅ 𝐼𝐼𝑠𝑠∠ − 90°

 The current through the inductor is the source current multiplied 
by the quality factor and phase shifted by −90°

 Capacitor and inductor current at resonance:
 Equal magnitude
 180° out of phase – opposite sign – they cancel
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Parallel RLC Circuit – Voltages and Currents

 Now, assign component 
values
 The resonant frequency is 

𝜔𝜔0 =
1
𝑗𝑗𝑗𝑗

= 1
𝑀𝑀𝑘𝑘𝑘𝑘𝑑𝑑
𝑠𝑠𝑑𝑑𝑑𝑑

 The quality factor is

𝑄𝑄𝑝𝑝 =
𝑅𝑅
𝜔𝜔0𝑗𝑗

=
100 Ω

1𝑀𝑀𝑘𝑘𝑘𝑘𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑 ⋅ 1 𝜇𝜇𝑚𝑚
= 100

 The phasor for the voltage across the network at the 
resonant frequency is

𝐕𝐕𝐨𝐨 = 𝐈𝐈𝐬𝐬𝑅𝑅 = 100 𝑚𝑚𝑚𝑚∠0° ⋅ 100 Ω = 10∠0° 𝑉𝑉
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Parallel RLC Circuit – Voltages and Currents

 The capacitor current at the  resonant 
frequency is 

𝐈𝐈𝐂𝐂 = 𝐕𝐕𝐨𝐨 ⋅ 𝑗𝑗𝜔𝜔0𝑗𝑗 = 𝐼𝐼𝑠𝑠 ⋅ 𝜔𝜔0𝑅𝑅𝑗𝑗∠90°

𝐈𝐈𝐂𝐂 = 𝑄𝑄𝑝𝑝 ⋅ 𝐼𝐼𝑠𝑠∠90° = 100 ⋅ 100 𝑚𝑚𝑚𝑚∠90°

𝐈𝐈𝐂𝐂 = 10 𝑚𝑚∠90°

 The inductor current at the resonant frequency: 

𝐈𝐈𝐋𝐋 =
𝐕𝐕𝐨𝐨
𝑗𝑗𝜔𝜔0𝑗𝑗

=
𝐼𝐼𝑠𝑠𝑅𝑅
𝜔𝜔0𝑗𝑗

∠ − 90° = 𝑄𝑄𝑝𝑝 ⋅ 𝐼𝐼𝑠𝑠∠ − 90°

𝐈𝐈𝐋𝐋 = 100 ⋅ 100 𝑚𝑚𝑚𝑚∠ − 90°

𝐈𝐈𝐋𝐋 = 10 𝑚𝑚∠ − 90°
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Parallel RLC Circuit – Voltages and Currents

 𝐈𝐈𝐒𝐒 = 1 𝑉𝑉

 ∠𝐕𝐕𝐨𝐨 = 0°

 𝐈𝐈𝐂𝐂 = 𝐈𝐈𝐋𝐋 = 𝑄𝑄𝑝𝑝 𝐈𝐈𝐒𝐒 = 10 𝑚𝑚
 𝐈𝐈𝐂𝐂 and 𝐈𝐈𝐋𝐋 are 180° out of phase

 They cancel
 KCL is satisfied
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Determine the voltage 
across the capacitor, 𝐕𝐕𝐨𝐨, at 
the resonant frequency.
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Determine 𝐕𝐕𝐨𝐨, 𝐈𝐈, 𝐈𝐈𝐂𝐂, and 𝐈𝐈𝐋𝐋
at the resonant frequency.
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Determine R, such that 
𝐕𝐕𝐨𝐨 = 100 𝐕𝐕𝐬𝐬 at the 

resonant frequency.
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Second-Order Filters35
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Second-Order Filters as Voltage Dividers

 Derive the frequency response functions of second-order 
filters by treating the circuits as voltage dividers  

𝑚𝑚 𝜔𝜔 =
𝑍𝑍2 𝜔𝜔

𝑍𝑍1 𝜔𝜔 + 𝑍𝑍2 𝜔𝜔

 Now, 𝑍𝑍1 and 𝑍𝑍2 can be either a single R, L, or C, or a series 
or parallel combination of any two 

Possible combinations of 
components for 𝑍𝑍1 or 𝑍𝑍2: 
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Second-Order Band Pass Filter37
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Second-Order Band Pass Filter

 One option for a second-order band pass filter:
 The frequency response function:

𝑚𝑚 𝜔𝜔 =
𝑍𝑍2

𝑍𝑍1 + 𝑍𝑍2
where

𝑍𝑍1 = 𝑅𝑅 and      𝑍𝑍2 = 𝑗𝑗𝜔𝜔𝑗𝑗 + 1
𝑗𝑗𝑗𝑗𝐿𝐿

−1
= 𝑗𝑗𝑗𝑗𝐿𝐿

1+ 𝑗𝑗𝑗𝑗 2𝐿𝐿𝐶𝐶
so

𝑚𝑚 𝜔𝜔 =

𝑗𝑗𝜔𝜔𝑗𝑗
1 + 𝑗𝑗𝜔𝜔 2𝑗𝑗𝑗𝑗

𝑅𝑅 + 𝑗𝑗𝜔𝜔𝑗𝑗
1 + 𝑗𝑗𝜔𝜔 2𝑗𝑗𝑗𝑗

=
𝑗𝑗𝜔𝜔𝑗𝑗

𝑗𝑗𝜔𝜔 2𝑅𝑅𝑗𝑗𝑗𝑗 + 𝑗𝑗𝜔𝜔𝑗𝑗 + 𝑅𝑅

𝑚𝑚 𝜔𝜔 =
𝑗𝑗𝜔𝜔/𝑅𝑅𝑗𝑗

𝑗𝑗𝜔𝜔 2 + 𝑗𝑗𝜔𝜔/𝑅𝑅𝑗𝑗 + 1/𝑗𝑗𝑗𝑗
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Second-Order Band Pass Filter

 Consider the filter’s behavior at 
three limiting cases for frequency

 𝑓𝑓 → 0:
 𝑗𝑗 → open
 𝑗𝑗 → short
 𝑣𝑣𝑜𝑜 shorted to 

ground
 Gain → 0

 𝑓𝑓 = 𝑓𝑓0:
 𝑑𝑑𝐶𝐶, 𝑑𝑑𝐿𝐿 cancel
 𝑗𝑗||𝑗𝑗 → open
 𝑣𝑣𝑜𝑜 = 𝑣𝑣𝑖𝑖
 Gain → 1

 𝑓𝑓 → ∞:
 𝑗𝑗 → short
 𝑗𝑗 → open
 𝑣𝑣𝑜𝑜 shorted to 

ground
 Gain → 0
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Second-Order Band Pass Filter

 A second option for a second-order band pass filter:
 Now, the impedances are:

𝑍𝑍1 = 𝑗𝑗𝜔𝜔𝑗𝑗 +
1
𝑗𝑗𝜔𝜔𝑗𝑗

=
𝑗𝑗𝜔𝜔 2𝑗𝑗𝑗𝑗 + 1

𝑗𝑗𝜔𝜔𝑗𝑗

𝑍𝑍2 = 𝑅𝑅

 The frequency response function:

𝑚𝑚 𝜔𝜔 =
𝑅𝑅

𝑅𝑅 + 𝑗𝑗𝜔𝜔 2𝑗𝑗𝑗𝑗 + 1
𝑗𝑗𝜔𝜔𝑗𝑗

=
𝑗𝑗𝜔𝜔𝑅𝑅𝑗𝑗

𝑗𝑗𝜔𝜔 2𝑗𝑗𝑗𝑗 + 𝑗𝑗𝜔𝜔𝑅𝑅𝑗𝑗 + 1

𝑚𝑚 𝜔𝜔 =
𝑗𝑗𝜔𝜔𝑅𝑅/𝑗𝑗

𝑗𝑗𝜔𝜔 2 + 𝑗𝑗𝜔𝜔𝑅𝑅/𝑗𝑗 + 1/𝑗𝑗𝑗𝑗
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Second-Order Band Pass Filter

 Consider the filter’s behavior at 
three limiting cases for frequency

 𝑓𝑓 → 0:
 𝑗𝑗 → open
 𝑗𝑗 → short
 Current → 0
 𝑣𝑣𝑜𝑜 → 0
 Gain → 0

 𝑓𝑓 = 𝑓𝑓0:
 𝑋𝑋𝐶𝐶, 𝑋𝑋𝐿𝐿 cancel
 𝑗𝑗, 𝑗𝑗 → short
 𝑣𝑣𝑜𝑜 = 𝑣𝑣𝑖𝑖
 Gain → 1

 𝑓𝑓 → ∞:
 𝑗𝑗 → open
 𝑗𝑗 → short
 Current → 0
 𝑣𝑣𝑜𝑜 → 0
 Gain → 0
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2nd-Order BPF – General-Form Frequency Response

 Each of the two BPF variations has the same resonant frequency:

𝑓𝑓0 =
1

2𝜋𝜋 𝑗𝑗𝑗𝑗

 They have different frequency response functions and quality factors:

𝑄𝑄 = 𝜔𝜔0𝑅𝑅𝑗𝑗 =
𝑅𝑅
𝜔𝜔0𝑗𝑗

𝑚𝑚 𝜔𝜔 =
𝑗𝑗𝜔𝜔/𝑅𝑅𝑗𝑗

𝑗𝑗𝜔𝜔 2 + 𝑗𝑗𝜔𝜔/𝑅𝑅𝑗𝑗 + 1/𝑗𝑗𝑗𝑗
𝑚𝑚 𝜔𝜔 =

𝑗𝑗𝜔𝜔𝑅𝑅/𝑗𝑗
𝑗𝑗𝜔𝜔 2 + 𝑗𝑗𝜔𝜔𝑅𝑅/𝑗𝑗 + 1/𝑗𝑗𝑗𝑗

𝑄𝑄 =
1

𝜔𝜔0𝑅𝑅𝑗𝑗
=
𝜔𝜔0𝑗𝑗
𝑅𝑅

 Each frequency response function can be expressed in terms of 𝜔𝜔0 and 𝑄𝑄:

𝑚𝑚 𝜔𝜔 =

𝜔𝜔0
𝑄𝑄 𝑗𝑗𝜔𝜔

𝑗𝑗𝜔𝜔 2 + 𝜔𝜔0
𝑄𝑄 𝑗𝑗𝜔𝜔 + 𝜔𝜔02
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Second-Order Band Pass Filter

 Same frequency response for each band pass filter

 Q determines 
the sharpness of 
the resonance

 Higher Q
provides higher 
selectivity 
 Narrower pass 

band
 Steeper 

transition to 
the stop bands
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2nd-Order BP Filter – Bandwidth

 Bandwidth of a low 
pass filter is the 3 dB 
frequency

 A band pass filter has 
two 3 dB frequencies
 Bandwidth is the 

difference between the 
two 3 dB frequencies

𝑑𝑑𝐵𝐵 = 𝑓𝑓𝑈𝑈 − 𝑓𝑓𝐿𝐿
 Bandwidth is inversely 

proportional to Q

𝑑𝑑𝐵𝐵 =
𝑓𝑓0
𝑄𝑄

f o
= 

1M
Hz

f L
= 

91
0K

Hz

f U
= 

1.
11

M
Hz

BW = 200KHz

𝑑𝑑𝐵𝐵 = 𝑓𝑓𝑈𝑈 − 𝑓𝑓𝐿𝐿 =
𝑓𝑓0
𝑄𝑄 = 200 𝑘𝑘𝑚𝑚𝑘𝑘
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2nd-Order BP Filter – Example

 Need a band pass filter to isolate a broadcast TV 
channel 
 Carrier frequency: 180MHz
 Bandwidth of the filter: 6MHz
 Thévenin equivalent resistance of signal source: 75Ω

 Use a parallel LC network 
 A tank circuit
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2nd-Order BP Filter – Example

 Center frequency of the filter is:

𝑓𝑓0 =
1

2𝜋𝜋 𝑗𝑗𝑗𝑗
= 180 𝑀𝑀𝑚𝑚𝑘𝑘

 Specified bandwidth dictates the required Q 
value

𝑄𝑄 =
𝑓𝑓0
𝑑𝑑𝐵𝐵 =

180 𝑀𝑀𝑚𝑚𝑘𝑘
6 𝑀𝑀𝑚𝑚𝑘𝑘 = 30

 Calculate the required inductance (and/or capacitance) using the values of 
𝑅𝑅𝑠𝑠, 𝑄𝑄, and 𝑓𝑓0:

𝑗𝑗 =
𝑅𝑅𝑠𝑠
𝜔𝜔0𝑄𝑄

=
75 Ω

2𝜋𝜋 ⋅ 180 𝑀𝑀𝑚𝑚𝑘𝑘 ⋅ 30 = 2.2 𝑛𝑛𝑚𝑚

 Use the center frequency to determine the required capacitance

𝑗𝑗 =
1
𝑗𝑗𝜔𝜔02

=
1

2.2 𝑛𝑛𝑚𝑚 2𝜋𝜋 ⋅ 180 𝑀𝑀𝑚𝑚𝑘𝑘 2 = 355 𝑝𝑝𝑝𝑝
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2nd-Order BP Filter – Example
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Second-Order Band Stop Filter48
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Second-Order Band Stop Filter

𝑚𝑚 𝜔𝜔 =
𝑍𝑍2

𝑍𝑍1 + 𝑍𝑍2
where

𝑍𝑍1 = 𝑅𝑅 and      𝑍𝑍2 = 𝑗𝑗𝜔𝜔𝑗𝑗 + 1
𝑗𝑗𝑗𝑗𝐶𝐶

= 𝑗𝑗𝑗𝑗 2𝐿𝐿𝐶𝐶+1
𝑗𝑗𝑗𝑗𝐶𝐶

so

𝑚𝑚 𝜔𝜔 =

𝑗𝑗𝜔𝜔 2𝑗𝑗𝑗𝑗 + 1
𝑗𝑗𝜔𝜔𝑗𝑗

𝑅𝑅 + 𝑗𝑗𝜔𝜔 2𝑗𝑗𝑗𝑗 + 1
𝑗𝑗𝜔𝜔𝑗𝑗

=
𝑗𝑗𝜔𝜔 2𝑗𝑗𝑗𝑗 + 1

𝑗𝑗𝜔𝜔 2𝑗𝑗𝑗𝑗 + 𝑗𝑗𝜔𝜔𝑅𝑅𝑗𝑗 + 1

𝑚𝑚 𝜔𝜔 =
𝑗𝑗𝜔𝜔 2 + 1/𝑗𝑗𝑗𝑗

𝑗𝑗𝜔𝜔 2 + 𝑗𝑗𝜔𝜔𝑅𝑅/𝑗𝑗 + 1/𝑗𝑗𝑗𝑗

 One option for a second-order band stop, 
or notch, filter:
 The frequency response function:
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Second-Order Band Stop Filter

 Consider the filter’s behavior at 
three limiting cases for frequency

 𝑓𝑓 → 0:
 𝑗𝑗 → open
 𝑗𝑗 → short
 Current → 0
 𝑣𝑣𝑜𝑜 → 𝑣𝑣𝑖𝑖
 Gain → 1

 𝑓𝑓 = 𝑓𝑓0:
 𝑋𝑋𝐶𝐶, 𝑋𝑋𝐿𝐿 cancel
 𝑗𝑗, 𝑗𝑗 → short
 𝑣𝑣𝑜𝑜 shorted to 

ground
 Gain → 0

 𝑓𝑓 → ∞:
 𝑗𝑗 → short
 𝑗𝑗 → open
 Current → 0
 𝑣𝑣𝑜𝑜 → 𝑣𝑣𝑖𝑖
 Gain → 1
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2nd-Order BSF – General-Form Frequency Response

 Second-order band stop filter
 Resonant (center) frequency:

𝑓𝑓0 =
1

2𝜋𝜋 𝑗𝑗𝑗𝑗
 Quality factor:

𝑄𝑄 =
1

𝜔𝜔0𝑅𝑅𝑗𝑗
=
𝜔𝜔0𝑗𝑗
𝑅𝑅

 Frequency response function:

𝑚𝑚 𝜔𝜔 =
𝑗𝑗𝜔𝜔 2 + 1/𝑗𝑗𝑗𝑗

𝑗𝑗𝜔𝜔 2 + 𝑗𝑗𝜔𝜔𝑅𝑅/𝑗𝑗 + 1/𝑗𝑗𝑗𝑗

 General form, in terms of 𝜔𝜔0 and 𝑄𝑄:

𝑚𝑚 𝜔𝜔 =
𝑗𝑗𝜔𝜔 2 + 𝜔𝜔0

2

𝑗𝑗𝜔𝜔 2 + 𝜔𝜔0
𝑄𝑄 𝑗𝑗𝜔𝜔 + 𝜔𝜔02
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Second-Order Band Stop Filter

 All second-order notch 
filters provide same 
response as a function 
of 𝑄𝑄 and 𝜔𝜔0

 𝑄𝑄 determines the 
sharpness of the 
response

 Higher Q provides 
higher selectivity 
 Narrower stop band
 Steeper transition to 

the pass bands
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2nd-Order Notch Filter – Bandwidth

f L
= 

78
0K

Hz

f U
= 

1.
28

M
Hz

BW = 500KHz

 Like the band pass 
filter, the band stop 
filter has two 3 dB 
frequencies
 Bandwidth is the 

difference between 
the two 3 dB 
frequencies

𝑑𝑑𝐵𝐵 = 𝑓𝑓𝑈𝑈 − 𝑓𝑓𝐿𝐿

 Bandwidth is inversely 
proportional to Q

𝑑𝑑𝐵𝐵 =
𝑓𝑓0
𝑄𝑄 𝑑𝑑𝐵𝐵 = 𝑓𝑓𝑈𝑈 − 𝑓𝑓𝐿𝐿 =

𝑓𝑓0
𝑄𝑄 = 500 𝑘𝑘𝑚𝑚𝑘𝑘
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2nd-Order Notch Filter – Example

 Consider the following scenario:
 Measuring transient pressure fluctuations inside an 

enclosed chamber
 Pressure transducer monitored by a data acquisition system
 Measured signal is small – all frequency content lies in the 

1KHz – 15KHz range
 Also interested in the average (DC) pressure value
 AC coupling (HP filter) is not an option 
 Need to keep DC as well as 1KHz – 15KHz

 Measurements are extremely noisy 
 Signal is completely buried in 60Hz power line noise

 Design a notch filter to reject any 60Hz power line noise
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2nd-Order Notch Filter – Example

 Filter design considerations
 Center frequency: 60 Hz
 Attenuate signal of interest as little as possible
 Set upper 3 dB frequency one decade below the lower end 

of the signal range (1 kHz)
 Sensor output resistance: 100 Ω
 DAQ system input resistance: 1 MΩ
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2nd-Order Notch Filter – Example

 Upper 3 dB frequency is one decade 
below 1 𝑘𝑘𝑚𝑚𝑘𝑘

𝑓𝑓𝑈𝑈 = 100 𝑚𝑚𝑘𝑘

 Simplify by assuming that the 3 dB 
frequencies are evenly spaced 
about 𝑓𝑓0

𝑑𝑑𝐵𝐵 = 2 𝑓𝑓𝑈𝑈 − 𝑓𝑓0 = 80 𝑚𝑚𝑘𝑘

 Required Q is then

𝑄𝑄 =
𝑓𝑓0
𝑑𝑑𝐵𝐵 =

60 𝑚𝑚𝑘𝑘
80 𝑚𝑚𝑘𝑘 = 0.75

 Sensor output resistance can serve 
as the filter resistor

 DAQ input resistance of 1 MΩ is 
large enough to be neglected
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2nd-Order Notch Filter – Example

 Determine 𝑗𝑗 and 𝑗𝑗 values to satisfy 𝑓𝑓0 and 𝑄𝑄 requirements

 The required inductance:

𝑗𝑗 =
𝑄𝑄 ⋅ 𝑅𝑅
𝜔𝜔0

=
0.75 ⋅ 100 Ω
2𝜋𝜋 ⋅ 60 𝑚𝑚𝑘𝑘

= 198 𝑚𝑚𝑚𝑚

 Calculate 𝑗𝑗 to place the center frequency at 60 Hz

𝑗𝑗 =
1
𝜔𝜔02𝑗𝑗

=
1

2𝜋𝜋 ⋅ 60 𝑚𝑚𝑘𝑘 2 ⋅ 198 𝑚𝑚𝑚𝑚
= 35.5 𝜇𝜇𝑝𝑝

 A couple things worth noting:

 Some iteration selecting standard-
value components would be required

 Accuracy and stability of sensor output 
resistance would need to be verified 
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2nd-Order Notch Filter – Example
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Second-Order Low Pass Filter59



K. Webb ENGR 202

60

Second-Order Low Pass Filter

 Second-order low pass filter:
 The frequency response function:

𝑚𝑚 𝜔𝜔 =
𝑍𝑍2

𝑍𝑍1 + 𝑍𝑍2
where

𝑍𝑍1 = 𝑅𝑅 + 𝑗𝑗𝜔𝜔𝑗𝑗 and      𝑍𝑍2 = 1
𝑗𝑗𝑗𝑗𝐶𝐶

so

𝑚𝑚 𝜔𝜔 =

1
𝑗𝑗𝜔𝜔𝑗𝑗

𝑅𝑅 + 𝑗𝑗𝜔𝜔𝑗𝑗 + 1
𝑗𝑗𝜔𝜔𝑗𝑗

=
1

𝑗𝑗𝜔𝜔 2𝑗𝑗𝑗𝑗 + 𝑗𝑗𝜔𝜔𝑅𝑅𝑗𝑗 + 1

𝑚𝑚 𝜔𝜔 =
1/𝑗𝑗𝑗𝑗

𝑗𝑗𝜔𝜔 2 + 𝑗𝑗𝜔𝜔𝑅𝑅/𝑗𝑗 + 1/𝑗𝑗𝑗𝑗
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2nd-Order LPF – General-Form Frequency Response

 Second-order low pass filter
 Resonant frequency:

𝑓𝑓0 =
1

2𝜋𝜋 𝑗𝑗𝑗𝑗
 Quality factor:

𝑄𝑄 =
1

𝜔𝜔0𝑅𝑅𝑗𝑗
=
𝜔𝜔0𝑗𝑗
𝑅𝑅

 Frequency response function:

𝑚𝑚 𝜔𝜔 =
1/𝑗𝑗𝑗𝑗

𝑗𝑗𝜔𝜔 2 + 𝑗𝑗𝜔𝜔𝑅𝑅/𝑗𝑗 + 1/𝑗𝑗𝑗𝑗

 General form, in terms of 𝜔𝜔0 and 𝑄𝑄:

𝑚𝑚 𝜔𝜔 =
𝜔𝜔02

𝑗𝑗𝜔𝜔 2 + 𝜔𝜔0
𝑄𝑄 𝑗𝑗𝜔𝜔 + 𝜔𝜔02
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Second-Order Low Pass Filter

 Consider the filter’s behavior at 
three limiting cases for frequency

 𝑓𝑓 → 0:
 𝑗𝑗 → short
 𝑗𝑗 → open
 Current → 0
 𝑣𝑣𝑜𝑜 → 𝑣𝑣𝑖𝑖
 Gain → 1

 𝑓𝑓 = 𝑓𝑓0:
 Behavior at 

resonance is a 
bit trickier 
here

 𝑓𝑓 → ∞:
 𝑗𝑗 → open
 𝑗𝑗 → short
 𝑣𝑣𝑜𝑜 shorted to 

ground
 Gain → 0

?
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Second-Order LPF at Resonance

 Input impedance at resonance:  𝑍𝑍𝑖𝑖𝑖𝑖 𝜔𝜔0 = 𝑅𝑅
 The series LC section is essentially a short

 But, neither the inductor nor the capacitor, individually, are 
shorts

 And, output is taken across the capacitor
 Recall that at resonance, capacitor and inductor voltages can 

exceed the input voltage

𝑍𝑍𝑖𝑖𝑖𝑖 = 𝑅𝑅, so

𝐈𝐈 =
𝐕𝐕𝐢𝐢
𝑅𝑅

𝐕𝐕 = 0 𝑉𝑉 here

Output voltage 
phasor is:

𝐕𝐕𝐨𝐨 =
𝐈𝐈

𝑗𝑗𝜔𝜔0𝑗𝑗

𝐕𝐕𝐨𝐨 =
𝐕𝐕𝐢𝐢

𝜔𝜔0𝑅𝑅𝑗𝑗
∠ − 90°

which may be larger 
than 𝐕𝐕𝐢𝐢
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Second-Order Low Pass Filter

 Second-order roll-off 
rate:

40
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑

 𝑄𝑄 determines:
 Amount of peaking
 Rate of phase 

transition

 No peaking at all for

𝑄𝑄 ≤ 1
2

= 0.707

 Phase at 𝜔𝜔0: −90°

−90° at 𝜔𝜔0
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2nd-Order Low Pass Filter – 3dB Bandwidth

 3 dB bandwidth is a 
function of Q
 Increases with Q

 Peaking occurs for 
𝑄𝑄 > 0.707

 For 𝑄𝑄 = 0.707
 Maximally-flat 

response
 Butterworth response
 The 3 dB frequency is 

equal to the resonant 
frequency

𝑓𝑓𝑐𝑐 = 𝑓𝑓0
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Second-Order High Pass Filter66
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Second-Order High Pass Filter

 Second-order high pass filter:
 The frequency response function:

𝑚𝑚 𝜔𝜔 =
𝑍𝑍2

𝑍𝑍1 + 𝑍𝑍2
where

𝑍𝑍1 = 𝑅𝑅 + 1
𝑗𝑗𝑗𝑗𝐶𝐶

and      𝑍𝑍2 = 𝑗𝑗𝜔𝜔𝑗𝑗

so

𝑚𝑚 𝜔𝜔 =
𝑗𝑗𝜔𝜔𝑗𝑗

𝑅𝑅 + 1
𝑗𝑗𝜔𝜔𝑗𝑗 + 𝑗𝑗𝜔𝜔𝑗𝑗

=
𝑗𝑗𝜔𝜔 2𝑗𝑗𝑗𝑗

𝑗𝑗𝜔𝜔 2𝑗𝑗𝑗𝑗 + 𝑗𝑗𝜔𝜔𝑅𝑅𝑗𝑗 + 1

𝑚𝑚 𝜔𝜔 =
𝑗𝑗𝜔𝜔 2

𝑗𝑗𝜔𝜔 2 + 𝑗𝑗𝜔𝜔𝑅𝑅/𝑗𝑗 + 1/𝑗𝑗𝑗𝑗
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2nd-Order HPF – General-Form Frequency Response

 Second-order high pass filter
 Resonant frequency:

𝑓𝑓0 =
1

2𝜋𝜋 𝑗𝑗𝑗𝑗
 Quality factor:

𝑄𝑄 =
1

𝜔𝜔0𝑅𝑅𝑗𝑗
=
𝜔𝜔0𝑗𝑗
𝑅𝑅

 Frequency response function:

𝑚𝑚 𝜔𝜔 =
𝑗𝑗𝜔𝜔 2

𝑗𝑗𝜔𝜔 2 + 𝑗𝑗𝜔𝜔𝑅𝑅/𝑗𝑗 + 1/𝑗𝑗𝑗𝑗

 General form, in terms of 𝜔𝜔0 and 𝑄𝑄:

𝑚𝑚 𝜔𝜔 =
𝑗𝑗𝜔𝜔 2

𝑗𝑗𝜔𝜔 2 + 𝜔𝜔0
𝑄𝑄 𝑗𝑗𝜔𝜔 + 𝜔𝜔02
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Second-Order High Pass Filter

 Consider the filter’s behavior at 
three limiting cases for frequency

 𝑓𝑓 → 0:
 𝑗𝑗 → short
 𝑗𝑗 → open
 𝑣𝑣𝑜𝑜 shorted to 

ground
 Gain → 0

 𝑓𝑓 = 𝑓𝑓0:
 Behavior at 

resonance is, 
once again, a 
bit more 
complicated

 𝑓𝑓 → ∞:
 𝑗𝑗 → open
 𝑗𝑗 → short
 Current → 0
 𝑣𝑣𝑜𝑜 → 𝑣𝑣𝑖𝑖
 Gain → 1

?
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Second-Order HPF at Resonance

 Input impedance at resonance:  𝑍𝑍𝑖𝑖𝑖𝑖 𝜔𝜔0 = 𝑅𝑅
 The series LC section is essentially a short

 But, neither the inductor nor the capacitor, individually, are 
shorts

 And, output is taken across the inductor
 Recall that at resonance, capacitor and inductor voltages can 

exceed the input voltage

𝑍𝑍𝑖𝑖𝑖𝑖 = 𝑅𝑅, so

𝐈𝐈 =
𝐕𝐕𝐢𝐢
𝑅𝑅

𝐕𝐕 = 0 𝑉𝑉 here

Output voltage 
phasor is:
𝐕𝐕𝐨𝐨 = 𝐈𝐈 ⋅ 𝑗𝑗𝜔𝜔0𝑗𝑗

𝐕𝐕𝐨𝐨 =
𝐕𝐕𝐢𝐢
𝑅𝑅 𝜔𝜔0𝑗𝑗∠90°

which may be larger 
than 𝐕𝐕𝐢𝐢
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Second-Order High Pass Filter

 Second-order roll-off 
rate:

40
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑

 𝑄𝑄 determines:
 Amount of peaking
 Rate of phase 

transition

 No peaking at all for  

𝑄𝑄 ≤ 1
2

= 0.707

 Phase at 𝜔𝜔0: +90°

+90° at 𝜔𝜔0
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2nd-Order High Pass Filter – 3dB Bandwidth

 Corner frequency is a 
function of Q
 Decreases with 

increasing Q

 Peaking occurs for 
𝑄𝑄 > 0.707

 For 𝑄𝑄 = 0.707
 Maximally-flat 

response
 Butterworth response
 The 3 dB frequency is 

equal to the resonant 
frequency

𝑓𝑓𝑐𝑐 = 𝑓𝑓0
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Damping Ratio - ζ

 We’ve been using quality factor to describe second-order filter 
response
 A measure of the sharpness of the resonance
 For band pass/stop filters, Q tells us about bandwidth
 For low/high pass filters, Q tells us about peaking

 Another way to describe the same characteristic: damping ratio, 𝜁𝜁
 Damping ratio is inversely proportional to Q:

𝜁𝜁 =
1
2𝑄𝑄

 A measure of the amount of damping in a circuit/system
 Higher 𝜁𝜁 implies a less resonant system

 Less peaking
 Wider bandwidth for band pass/stop filters
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2nd-Order Low Pass Response vs. ζ

 As  𝜁𝜁 goes down, 
 Less damping
 More peaking

 No peaking at all for 
𝜁𝜁 ≥ 0.707

 For 𝜁𝜁 = 0.707
 Maximally-flat 

response
 Butterworth response
 The 3 dB frequency is 

equal to the resonant 
frequency

𝑓𝑓𝑐𝑐 = 𝑓𝑓0
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General-Form Freq. Response Functions in Terms of ζ

Low pass in terms of Q: Low pass in terms of ζ:

High pass in terms of Q: High pass in terms of ζ:

𝑚𝑚 𝜔𝜔 =
𝜔𝜔02

𝑗𝑗𝜔𝜔 2 + 𝜔𝜔0
𝑄𝑄 𝑗𝑗𝜔𝜔 + 𝜔𝜔02

𝑚𝑚 𝜔𝜔 =
𝑗𝑗𝜔𝜔 2

𝑗𝑗𝜔𝜔 2 + 𝜔𝜔0
𝑄𝑄 𝑗𝑗𝜔𝜔 + 𝜔𝜔02

𝑚𝑚 𝜔𝜔 =
𝜔𝜔02

𝑗𝑗𝜔𝜔 2 + 2𝜁𝜁𝜔𝜔0𝑗𝑗𝜔𝜔 + 𝜔𝜔02

𝑚𝑚 𝜔𝜔 =
𝑗𝑗𝜔𝜔 2

𝑗𝑗𝜔𝜔 2 + 2𝜁𝜁𝜔𝜔0𝑗𝑗𝜔𝜔 + 𝜔𝜔02
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Analog Discovery Instrument

 2-chan. Scope
 14-bit, 100MSa/s
 5MHz bandwidth

 2-chan. function generator
 14-bit, 100MSa/s
 5MHz bandwidth

 2-chan. spectrum analyzer
 Network analyzer
 Voltmeter
 ±5V power supplies
 16-chan. logic analyzer 
 16-chan. digital pattern 

generator
 USB connectivity
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Analog Discovery – Audio Demo

 Demo board plugs 
in to Analog 
Discovery module 

 Summation of 
multiple tones

 Optional filtering 
of audio signal

 3.5 mm audio 
output jack
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Analog Discovery – Audio Demo
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The higher-frequency signal is 
unwanted noise. Design a 
second-order Butterworth 
LPF to attenuate the higher-
frequency component by 40 
dB.

What is the SNR at the output 
of the filter?
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