SECTION 3: SECOND-ORDER FILTERS

ENGR 202 – Electrical Fundamentals II

Second-Order Circuits

- 3
- Order of a circuit (or system of any kind)
 Number of independent energy-storage elements
 Order of the differential equation describing the system

Second-order circuits

Two energy-storage elements
 Described by second-order differential equations

We will primarily be concerned with secondorder RLC circuits

Circuits with a resistor, an inductor, and a capacitor

Second-Order Circuits

- In this and the following section of notes, we will look at second-order RLC circuits from two distinct perspectives:
 - Section 3
 - Second-order *filters*
 - Frequency-domain behavior
 - <u>Section 4</u>
 - Second-order transient response
 - Time-domain behavior

Second-Order Filters

- First-order filters
 Roll-off rate: 20 dB/decade
- □ This roll-off rate determines *selectivity*
 - Spacing of pass band and stop band
 - Spacing of *passed* frequencies and *stopped* or *filtered* frequencies
- Second-order filters
 - Roll-off rate: 40 dB/decade
- \Box In general:
 - **\square** Roll-off = $N \cdot 20 \ dB/dec$, where N is the filter order

Resonance

Resonance

- Tendency of a system to oscillate at certain frequencies resonant frequencies – often with larger amplitude than any input
- Phenomenon that occurs in all types of dynamic systems (mechanical, electrical, fluid, etc.)
- Examples of resonant mechanical systems:
 - Mass on a spring
 - Pendulum, playground swing
 - Tacoma Narrows Bridge

Electrical Resonance

Electrical resonance

- Cancellation of *reactances* (or *susceptances*), resulting in purely resistive network impedance
- Occurs at resonant frequencies
- Second- and higher-order circuits
- □ *Reactances* (*susceptances*) *cancel* sum to zero ohms (siemens)
 - Inductive reactance is positive (susceptance is negative)
 - Capacitive reactance is negative (susceptance is positive)
- Voltages/currents in the circuit may be much larger than source voltages/currents
- We'll take a look at resonance in two classes of circuits:
 - Series resonant circuits
 - Parallel resonant circuits

Series Resonant RLC Circuit

- Series RLC circuit
 - Second-order one capacitor, one inductor

а

Circuit will exhibit resonance

Impedance of the network:

$$Z_{in}(\omega) = R + \frac{1}{j\omega C} + j\omega L = R + j\left(\omega L - \frac{1}{\omega C}\right)$$

At the resonant frequency,
$$\omega_0$$
 or f_0 :
 $X_L + X_C = 0 \rightarrow X_L = -X_C$
 $\omega_0 L = \frac{1}{\omega_0 C} \rightarrow \omega_0^2 = \frac{1}{LC}$
so
 $\omega_0 = \frac{1}{\sqrt{LC}}$ and $f_0 = \frac{1}{2\pi\sqrt{LC}}$
and
 $Z_{in}(\omega_0) = R$

Series RLC Circuit – Quality Factor

Quality factor, Q_s

 Ratio of inductive reactance at the resonant frequency to resistance

$$Q_s = \frac{\omega_0 L}{R} = \frac{2\pi f_0 L}{R}$$

 At resonance, inductive and capacitive reactances (magnitudes) are equal, so

$$Q_s = \frac{1}{\omega_0 RC} = \frac{1}{2\pi f_0 RC}$$

- The ratio of voltage magnitude across the inductor or capacitor to the voltage across the whole RLC network *at resonance*
- A measure of the *sharpness* of the resonance

Series RLC Circuit – Z_{in} vs. Q_s

12

 $\square \text{ At } f = f_0 \\ \square |Z_{in}| = R$

$$\Box \ \angle Z_{in} = 0^{\circ}$$

- Q determines sharpness of the resonance
 - Higher Q yields faster transition from capacitive, through resistive, to inductive regions
- To increase Q:
 - Increase L
 - Reduce R and/or C

Series RLC Circuit – Z_{in}

13

Understanding the impedance of a series resonant circuit

Recalling the expression for quality factor of a series resonant circuit, we have

$$\mathbf{V}_{\mathbf{C}} = Q_s \cdot V_s \angle -90^{\circ}$$

■ The voltage across the capacitor is the source voltage multiplied by the quality factor and phase shifted by -90°

The *inductor voltage* at resonance:

$$\mathbf{V}_{\mathbf{L}} = \mathbf{I} \cdot j\omega_0 L = \frac{V_s \angle 0^\circ \cdot \omega_0 L \angle 90^\circ}{R}$$
$$\mathbf{V}_{\mathbf{L}} = \frac{V_s \cdot \omega_0 L \angle 90^\circ}{R}$$

 Again, substituting in the expression for quality factor gives

$$\mathbf{V}_{\mathbf{L}} = Q_s \cdot V_s \angle + 90^{\circ}$$

- The voltage across the inductor is the source voltage multiplied by the quality factor and phase shifted by +90°
- □ Capacitor and inductor voltage at resonance:
 - Equal magnitude
 - 180° out of phase opposite sign they cancel

16

Now assign component values

The resonant frequency is
$$\omega_0 = \frac{1}{\sqrt{LC}} = 100 \frac{krad}{sec}$$
The quality factor is
$$Q_s = \frac{\omega_0 L}{R} = \frac{100 \frac{krad}{sec} \cdot 1 \, mH}{10 \, \Omega} = 100 \, \frac{krad}{sec} \cdot 1 \, mH$$

The current phasor at the resonant frequency is

$$\mathbf{I} = \frac{\mathbf{V}_{\mathbf{s}}}{R} = \frac{1 \ V \angle 0^{\circ}}{10 \ \Omega} = 100 \angle 0^{\circ} \ mA$$

The capacitor voltage at the resonant frequency is

$$\mathbf{V}_{\mathbf{C}} = \frac{\mathbf{I}}{j\omega_0 C} = \frac{V_s}{\omega_0 RC} \angle -90^\circ = Q_s \cdot V_s \angle -90^\circ$$
$$\mathbf{V}_{\mathbf{C}} = 10 \cdot 1 \, V \angle -90^\circ$$

 $\mathbf{V}_{\mathbf{C}} = 10 \ V \angle -90^{\circ}$

□ The inductor voltage at the resonant frequency:

$$\mathbf{V_L} = \mathbf{I} \cdot j\omega_0 L = \frac{V_s \cdot \omega_0 L \angle 90^\circ}{R} = Q_s \cdot V_s \angle + 90^\circ$$
$$\mathbf{V_L} = 10 \cdot 1 \, V \angle + 90^\circ$$
$$\mathbf{V_L} = 10 \, V \angle + 90^\circ$$

- $\Box |\mathbf{V_S}| = 1 V$
- $\Box \ \angle \mathbf{I} = 0^{\circ}$
- $\Box |\mathbf{V_C}| = |\mathbf{V_L}| = Q_s |\mathbf{V_S}| = 10 V$
- |V_C| and |V_L| are 180° out of phase
 They cancel
 - KVL is satisfied

Parallel Resonant RLC Circuit

- Parallel RLC circuit
 - Second-order one capacitor, one inductor
 - Circuit will exhibit resonance

Impedance of the network:

$$Z_{in}(\omega) = \left[\frac{1}{R} + j\omega C + \frac{1}{j\omega L}\right]^{-1} = \left[\frac{1}{R} + j\left(\omega C - \frac{1}{\omega L}\right)\right]^{-1}$$

At the resonant frequency, ω_0 or f_0 :
$$B_C + B_L = 0 \quad \Rightarrow \quad B_C = -B_L$$
$$\omega_0 C = \frac{1}{\omega_0 L} \quad \Rightarrow \quad \omega_0^2 = \frac{1}{LC}$$
so

and

SO

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 and $f_0 = \frac{1}{2\pi\sqrt{LC}}$
 $Z_{in}(\omega_0) = R$

K. Webb

Zin

Parallel RLC Circuit – Quality Factor

Quality factor, Q_p

Ratio of inductive susceptance at the resonant frequency to conductance

$$Q_p = \frac{1/\omega_0 L}{1/R} = \frac{R}{\omega_0 L} = \frac{R}{2\pi f_0 L}$$

 At resonance, inductive and capacitive susceptances (magnitudes) are equal, so

$$Q_p = \omega_0 RC = 2\pi f_0 RC$$

The ratio of current magnitude through the inductor or capacitor to the current through the whole RLC network at resonance

• A measure of the *sharpness* of the resonance

Parallel RLC Circuit – Z_{in} vs. Q_p

22

 $\Box \operatorname{At} f = f_0$

$$\square |Z_{in}| = R$$

$$\Box \ \angle Z_{in} = 0^{\circ}$$

- Q determines sharpness of the resonance
 - Higher Q yields faster transition from inductive, through resistive, to capacitive regions
- To increase Q:
 - Reduce L
 - Increase R and/or C

Parallel RLC Circuit – Z_{in}

23

Understanding the impedance of a parallel resonant circuit

K. Webb

Sinusoidal current source, \mathbf{I}_{s} $\downarrow \qquad \square$ At resonance, $Z_{in} = R$, so the voltage across the network is:

$$\mathbf{V_o} = \mathbf{I_s}R = I_s \angle 0^\circ \cdot R$$

□ Current through the *capacitor* at resonance:

$$\mathbf{I}_{\mathbf{C}} = \mathbf{V}_{\mathbf{o}} \cdot j\omega_0 C = I_s R \cdot \omega_0 C \angle 90^\circ$$

 Recalling the expression for quality factor of the parallel resonant circuit, we have

$$\mathbf{I}_{\mathbf{C}} = Q_p \cdot I_s \angle 90^{\circ}$$

The current through the capacitor is the source current multiplied by the quality factor and phase shifted by 90°

The *inductor current* at resonance:

$$\mathbf{I_L} = \frac{\mathbf{V_o}}{j\omega_0 L} = \frac{I_s R}{\omega_0 L} \angle -90^\circ$$

Again, substituting in the expression for quality factor gives

$$\mathbf{I_L} = Q_p \cdot I_s \angle -90^\circ$$

- The current through the inductor is the source current multiplied by the quality factor and phase shifted by -90°
- Capacitor and inductor current at resonance:
 - Equal magnitude
 - 180° out of phase opposite sign they cancel

Now, assign component values

The resonant frequency is

$$\omega_0 = \frac{1}{\sqrt{LC}} = 1 \frac{Mrad}{sec}$$

The quality factor is

$$Q_p = \frac{R}{\omega_0 L} = \frac{100 \ \Omega}{1 \frac{Mrad}{sec} \cdot 1 \ \mu H} = 100$$

The phasor for the voltage across the network at the resonant frequency is

$$\mathbf{V_o} = \mathbf{I_s}R = 100 \ mA \angle 0^\circ \cdot 100 \ \Omega = 10 \angle 0^\circ V$$

26

$$\mathbf{I_C} = \mathbf{V_o} \cdot j\omega_0 C = I_s \cdot \omega_0 RC \angle 90^\circ$$
$$\mathbf{I_C} = Q_p \cdot I_s \angle 90^\circ = 100 \cdot 100 \ mA \angle 90^\circ$$
$$\mathbf{I_C} = 10 \ A \angle 90^\circ$$

□ The inductor current at the resonant frequency:

$$\mathbf{I_L} = \frac{\mathbf{V_0}}{j\omega_0 L} = \frac{I_s R}{\omega_0 L} \angle -90^\circ = Q_p \cdot I_s \angle -90^\circ$$
$$\mathbf{I_L} = 100 \cdot 100 \ mA \angle -90^\circ$$
$$\mathbf{I_L} = 10 \ A \angle -90^\circ$$

27

28

$$|\mathbf{I}_{\mathbf{S}}| = 1 V$$

$$\angle \mathbf{V}_{\mathbf{0}} = 0^{\circ}$$

$$|\mathbf{I}_{\mathbf{C}}| = |\mathbf{I}_{\mathbf{L}}| = Q_p |\mathbf{I}_{\mathbf{S}}| = 10 A$$

- |I_C| and |I_L| are 180° out of phase
 They cancel
 - KCL is satisfied

Determine the voltage across the capacitor, V_o , at the resonant frequency.

Determine R, such that $|V_o| = 100|V_s|$ at the resonant frequency.

Second-Order Filters as Voltage Dividers

- 36
- Derive the frequency response functions of second-order filters by treating the circuits as voltage dividers

Now, Z₁ and Z₂ can be either a single R, L, or C, or a series or parallel combination of any two

- 38
- One option for a second-order band pass filter:
 The frequency response function:

$$H(\omega) = \frac{Z_2}{Z_1 + Z_2}$$

where

$$Z_1 = R$$
 and $Z_2 = \left[j\omega C + \frac{1}{j\omega L}\right]^{-1} = \frac{j\omega L}{1 + (j\omega)^2 LC}$

SO

$$H(\omega) = \frac{\frac{j\omega L}{1 + (j\omega)^2 LC}}{R + \frac{j\omega L}{1 + (j\omega)^2 LC}} = \frac{j\omega L}{(j\omega)^2 RLC + j\omega L + R}$$

$$H(\omega) = \frac{j\omega/RC}{(j\omega)^2 + j\omega/RC + 1/LC}$$

- 39
- Consider the filter's behavior at three limiting cases for frequency

- **D** $C \rightarrow \text{open}$
- $\square L \rightarrow \text{short}$
- *v_o* shorted to ground
- Gain $\rightarrow 0$

□
$$f = f_0$$
:
□ B_C, B_L cancel
□ $L || C \rightarrow \text{open}$

$$\bullet v_o = v_i$$

Gain $\rightarrow 1$

- *v_o* shorted to ground
- **G**ain $\rightarrow 0$

- 40
- A second option for a second-order band pass filter:
 Now, the impedances are:

$$Z_{1} = j\omega L + \frac{1}{j\omega C} = \frac{(j\omega)^{2}LC + 1}{j\omega C}$$
$$Z_{2} = R$$

D The frequency response function:

$$H(\omega) = \frac{R}{R + \frac{(j\omega)^2 LC + 1}{j\omega C}} = \frac{j\omega RC}{(j\omega)^2 LC + j\omega RC + 1}$$

$$H(\omega) = \frac{j\omega R/L}{(j\omega)^2 + j\omega R/L + 1/LC}$$

- 41
- Consider the filter's behavior at three limiting cases for frequency

$$f = f_0:$$

$$X_C, X_L \text{ cancel}$$

$$U_C \to \text{ short}$$

$$U_C \to V_0$$

2nd-Order BPF – General-Form Frequency Response

42

□ Each of the two BPF variations has the same resonant frequency:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

□ They have different frequency response functions and quality factors:

Each frequency response function can be expressed in terms of ω_0 and Q:

$$H(\omega) = \frac{\frac{\omega_0}{Q}j\omega}{(j\omega)^2 + \frac{\omega_0}{Q}j\omega + \omega_0^2}$$

Same frequency response for each band pass filter

 Q determines the sharpness of the resonance

- Higher Q provides higher selectivity
 - Narrower pass band
 - Steeper transition to the stop bands

2nd-Order BP Filter – Bandwidth

- Bandwidth of a low pass filter is the 3 dB frequency
- A band pass filter has two 3 dB frequencies
 - Bandwidth is the difference between the two 3 dB frequencies

$$BW = f_U - f_L$$

Bandwidth is inversely proportional to Q

$$BW = \frac{f_0}{Q}$$

2nd-Order BP Filter – Example

- 45
- Need a band pass filter to isolate a broadcast TV channel
 - **Carrier frequency: 180MHz**
 - Bandwidth of the filter: 6MHz
 - **□** Thévenin equivalent resistance of signal source: 75Ω
- Use a parallel LC network
 - A tank circuit

2nd-Order BP Filter – Example

 $\begin{array}{c|c}
R_{s} & V_{o} \\
\hline
75\Omega & \\
\hline
\end{array} & L
\end{array}$

Center frequency of the filter is:

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = 180 \ MHz$$

Specified bandwidth dictates the required Q value

$$Q = \frac{f_0}{BW} = \frac{180 MHz}{6 MHz} = 30$$

□ Calculate the required inductance (and/or capacitance) using the values of R_s , Q, and f_0 :

$$L = \frac{R_s}{\omega_0 Q} = \frac{75 \ \Omega}{2\pi \cdot 180 \ MHz \cdot 30} = 2.2 \ nH$$

□ Use the center frequency to determine the required capacitance

$$C = \frac{1}{L\omega_0^2} = \frac{1}{2.2 \ nH(2\pi \cdot 180 \ MHz)^2} = 355 \ pF$$

46

Vs

2nd-Order BP Filter – Example

47

Second-Order Band Stop Filter

- 49
- One option for a second-order *band stop*, or *notch*, filter:
 - **D** The frequency response function:

$$H(\omega) = \frac{Z_2}{Z_1 + Z_2}$$

where

$$Z_1 = R$$
 and $Z_2 = j\omega L + \frac{1}{j\omega C} = \frac{(j\omega)^2 LC + 1}{j\omega C}$

SO

$$H(\omega) = \frac{\frac{(j\omega)^2 LC + 1}{j\omega C}}{R + \frac{(j\omega)^2 LC + 1}{j\omega C}} = \frac{(j\omega)^2 LC + 1}{(j\omega)^2 LC + j\omega RC + 1}$$

$$H(\omega) = \frac{(j\omega)^2 + 1/LC}{(j\omega)^2 + j\omega R/L + 1/LC}$$

Second-Order Band Stop Filter

 Consider the filter's behavior at three limiting cases for frequency

$$f = f_0:$$

$$f = f_0:$$

$$X_C, X_L \text{ cancel}$$

$$L, C \rightarrow \text{ short}$$

$$v_o \text{ shorted to ground}$$

$$Gain \rightarrow 0$$

D

50

2nd-Order BSF – General-Form Frequency Response

- Second-order band stop filter
 - Resonant (center) frequency:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Quality factor:

$$Q = \frac{1}{\omega_0 RC} = \frac{\omega_0 L}{R}$$

Frequency response function:

$$H(\omega) = \frac{(j\omega)^2 + 1/LC}{(j\omega)^2 + j\omega R/L + 1/LC}$$

\square General form, in terms of ω_0 and Q:

$$H(\omega) = \frac{(j\omega)^2 + \omega_0^2}{(j\omega)^2 + \frac{\omega_0}{Q}j\omega + \omega_0^2}$$

Second-Order Band Stop Filter

- All second-order notch filters provide same response as a function of Q and ω_0
- Q determines the sharpness of the response
 - Higher Q provides higher selectivity
 - Narrower stop band
 - Steeper transition to the pass bands

2nd-Order Notch Filter – Bandwidth

- Like the band pass filter, the band stop
 filter has two 3 dB frequencies
 - Bandwidth is the difference between the two 3 dB frequencies

$$BW = f_U - f_L$$

 Bandwidth is inversely proportional to Q

$$BW = \frac{f_0}{Q}$$

53

2nd-Order Notch Filter – Example

- 54
- Consider the following scenario:
 - Measuring transient pressure fluctuations inside an enclosed chamber
 - Pressure transducer monitored by a data acquisition system
 - Measured signal is small all frequency content lies in the 1KHz – 15KHz range
 - Also interested in the average (DC) pressure value
 - AC coupling (HP filter) is not an option
 - Need to keep DC as well as 1KHz 15KHz
 - Measurements are extremely noisy
 - Signal is completely buried in 60Hz power line noise
 - Design a notch filter to reject any 60Hz power line noise

2nd-Order Notch Filter – Example

Filter design considerations

- Center frequency: 60 Hz
- Attenuate signal of interest as little as possible
 - Set upper 3 dB frequency one decade below the lower end of the signal range (1 kHz)
- **\square** Sensor output resistance: 100 Ω
- **DAQ** system input resistance: 1 M Ω

55

2nd-Order Notch Filter – Example

- 56
- Upper 3 dB frequency is one decade below 1 kHz

$$f_U = 100 \ Hz$$

 Simplify by assuming that the 3 dB frequencies are evenly spaced about f₀

$$BW = 2(f_U - f_0) = 80 Hz$$

Required Q is then

$$Q = \frac{f_0}{BW} = \frac{60 \ Hz}{80 \ Hz} = 0.75$$

- Sensor output resistance can serve as the filter resistor
- DAQ input resistance of 1 MΩ is large enough to be neglected

2nd-Order Notch Filter – Example

- 57
- Determine L and C values to satisfy f_0 and Q requirements

■ The required inductance:

$$L = \frac{Q \cdot R}{\omega_0} = \frac{0.75 \cdot 100 \ \Omega}{2\pi \cdot 60 \ Hz} = 198 \ mH$$

■ Calculate *C* to place the center frequency at 60 Hz

$$C = \frac{1}{\omega_0^2 L} = \frac{1}{(2\pi \cdot 60 \ Hz)^2 \cdot 198 \ mH} = 35.5 \ \mu F$$

A couple things worth noting:

- Some iteration selecting standardvalue components would be required
- Accuracy and stability of sensor output resistance would need to be verified

2nd-Order Notch Filter – Example

Second-Order Low Pass Filter

- 60
- Second-order low pass filter:
 The frequency response function:

$$H(\omega) = \frac{Z_2}{Z_1 + Z_2}$$

where

$$Z_1 = R + j\omega L$$
 and $Z_2 = \frac{1}{j\omega C}$

SO

$$H(\omega) = \frac{\frac{1}{j\omega C}}{R + j\omega L + \frac{1}{j\omega C}} = \frac{1}{(j\omega)^2 LC + j\omega RC + 1}$$

$$H(\omega) = \frac{1/LC}{(j\omega)^2 + j\omega R/L + 1/LC}$$

2nd-Order LPF – General-Form Frequency Response

- Second-order low pass filter
 - **•** Resonant frequency:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

1

Quality factor:

$$Q = \frac{1}{\omega_0 RC} = \frac{\omega_0 L}{R}$$

Frequency response function:

$$H(\omega) = \frac{1/LC}{(j\omega)^2 + j\omega R/L + 1/LC}$$

\square General form, in terms of ω_0 and Q:

$$H(\omega) = \frac{\omega_0^2}{(j\omega)^2 + \frac{\omega_0}{Q}j\omega + \omega_0^2}$$

Second-Order Low Pass Filter

- 62
- Consider the filter's behavior at three limiting cases for frequency

 $f \rightarrow 0:$ $f \rightarrow 0:$ $L \rightarrow \text{ short}$ $C \rightarrow \text{ open}$ $Current \rightarrow 0$ $v_o \rightarrow v_i$ $Gain \rightarrow 1$

L

R

$$\Box f = f_0:$$

 Behavior at resonance is a bit trickier here

- $\square C \rightarrow \text{short}$
- *v_o* shorted to ground
- **G**ain $\rightarrow 0$

Second-Order LPF at Resonance

- 63
- Input impedance at resonance: $Z_{in}(\omega_0) = R$
- The series LC section is essentially a short
 - But, neither the inductor nor the capacitor, individually, are shorts
 - And, output is taken across the capacitor
 - Recall that at resonance, capacitor and inductor voltages can exceed the input voltage

Second-Order Low Pass Filter

Second-order roll-off rate:

- \Box *Q* determines:
 - Amount of peaking
 - Rate of phase transition
- □ No peaking at all for

$$Q \le \frac{1}{\sqrt{2}} = 0.707$$

□ Phase at ω_0 : -90°

2nd-Order Low Pass Filter – 3dB Bandwidth

- 3 dB bandwidth is a function of Q
 - Increases with Q
- □ Peaking occurs for Q > 0.707

• For
$$Q = 0.707$$

- Maximally-flat response
- Butterworth response
- The 3 dB frequency is equal to the resonant frequency

$$f_c = f_0$$

Second-Order High Pass Filter

67

Second-order high pass filter:
 The frequency response function:

$$H(\omega) = \frac{Z_2}{Z_1 + Z_2}$$

where

$$Z_1 = R + \frac{1}{j\omega C}$$
 and $Z_2 = j\omega L$

SO

$$H(\omega) = \frac{j\omega L}{R + \frac{1}{j\omega C} + j\omega L} = \frac{(j\omega)^2 LC}{(j\omega)^2 LC + j\omega RC + 1}$$

$$H(\omega) = \frac{(j\omega)^2}{(j\omega)^2 + j\omega R/L + 1/LC}$$

2nd-Order HPF – General-Form Frequency Response

Second-order high pass filter
 Resonant frequency:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Quality factor:

$$Q = \frac{1}{\omega_0 RC} = \frac{\omega_0 L}{R}$$

Frequency response function:

$$H(\omega) = \frac{(j\omega)^2}{(j\omega)^2 + j\omega R/L + 1/LC}$$

General form, in terms of ω_0 and Q:

$$H(\omega) = \frac{(j\omega)^2}{(j\omega)^2 + \frac{\omega_0}{Q}j\omega + \omega_0^2}$$

Second-Order High Pass Filter

 Consider the filter's behavior at three limiting cases for frequency

V.

+ Vi L

С

R

- $\Box f \to 0:$ $\Box L \to \text{ short}$
 - $\square L \rightarrow \text{SHOL}$
 - $\square C \rightarrow \text{open}$
 - *v_o* shorted to ground

• Gain
$$\rightarrow 0$$

$$\Box f = f_0:$$

 Behavior at resonance is, once again, a bit more complicated

69

Second-Order HPF at Resonance

- 70
- Input impedance at resonance: $Z_{in}(\omega_0) = R$
- The series LC section is essentially a short
 - But, neither the inductor nor the capacitor, individually, are shorts
 - And, output is taken across the inductor
 - Recall that at resonance, capacitor and inductor voltages can exceed the input voltage

Second-Order High Pass Filter

Second-order roll-off rate:

 $40 \frac{dB}{dec}$

- \Box *Q* determines:
 - Amount of peaking
 - Rate of phase transition
- No peaking at all for
 - $Q \le \frac{1}{\sqrt{2}} = 0.707$

□ Phase at ω_0 : +90°

100

 (f/f_{2})

Normalized Frequency

10⁻¹

Q = 0.5

= 2

ב ב

0 = 5

10

2nd-Order High Pass Filter – 3dB Bandwidth

- Corner frequency is a function of Q
 - Decreases with increasing Q
- Peaking occurs for Q > 0.707
- For Q = 0.707
 - Maximally-flat response
 - **Butterworth response**
 - The 3 dB frequency is equal to the resonant frequency

$$f_c = f_0$$

Damping Ratio - ζ

- We've been using *quality factor* to describe second-order filter response
 - A measure of the sharpness of the resonance
 - For band pass/stop filters, Q tells us about bandwidth
 - For low/high pass filters, Q tells us about *peaking*
- Another way to describe the same characteristic: *damping ratio*, ζ
 Damping ratio is inversely proportional to Q:

$$\zeta = \frac{1}{2Q}$$

- A measure of the amount of *damping* in a circuit/system
- Higher ζ implies a less resonant system
 - Less peaking
 - Wider bandwidth for band pass/stop filters

2^{nd} -Order Low Pass Response vs. ζ

74

- \Box As ζ goes down,
 - Less damping
 - More peaking
- □ No peaking at all for $\zeta \ge 0.707$

For
$$\zeta = 0.707$$

- Maximally-flat response
- Butterworth response
- The 3 dB frequency is equal to the resonant frequency

 $f_c = f_0$

General-Form Freq. Response Functions in Terms of ζ

Low pass in terms of Q:	<u>Low pass in terms of </u> ζ:
$H(\omega) = \frac{\omega_0^2}{(j\omega)^2 + \frac{\omega_0}{Q}j\omega + \omega_0^2}$	$H(\omega) = \frac{\omega_0^2}{(j\omega)^2 + 2\zeta\omega_0 j\omega + \omega_0^2}$
High pass in terms of Q:	<u>High pass in terms of ζ</u> :
$H(\omega) = \frac{(j\omega)^2}{(j\omega)^2 + \frac{\omega_0}{Q}j\omega + \omega_0^2}$	$H(\omega) = \frac{(j\omega)^2}{(j\omega)^2 + 2\zeta\omega_0 j\omega + \omega_0^2}$

76 Audio Filter Demo

Analog Discovery Instrument

- □ 2-chan. Scope
 - **1**4-bit, 100MSa/s
 - 5MHz bandwidth
- 2-chan. function generator
 - □ 14-bit, 100MSa/s
 - 5MHz bandwidth
- 2-chan. spectrum analyzer
- Network analyzer
- Voltmeter
- □ ±5V power supplies
- 16-chan. logic analyzer
- 16-chan. digital pattern generator
- USB connectivity

Analog Discovery – Audio Demo

- Demo board plugs in to Analog
 Discovery module
- Summation of multiple tones
- Optional filtering of audio signal
- 3.5 mm audio
 output jack

78

Analog Discovery – Audio Demo

79

The higher-frequency signal is unwanted noise. Design a second-order Butterworth LPF to attenuate the higherfrequency component by 40 dB.

What is the SNR at the output of the filter?

