SECTION 8: FREQUENCY-RESPONSE DESIGN

ESE 430 – Feedback Control Systems
Introduction
Introduction

- In a previous section of notes, we saw how we can use root-locus techniques to design compensators.

- Two primary objectives of compensation:
 - Improve steady-state error
 - Proportional-integral (PI) compensation
 - Lag compensation
 - Improve dynamic response
 - Proportional-derivative (PD) compensation
 - Lead compensation

- In this section of notes, we’ll learn to design compensators using a system’s open-loop frequency response.
 - We’ll focus on lag and lead compensation.
Improving Steady-State Error
Consider the system above with a desired phase margin of $PM \approx 50^\circ$

According to the Bode plot:

- $\phi = -130^\circ$ at $\omega_{PM} = 3.46$ rad/sec
- Gain is $K_{PM} = -12.1$ dB at ω_{PM}
- Set $K = -K_{PM} = 12.1$ dB = 4 for desired phase margin
Improving Steady-State Error

- Can read the position constant directly from the Bode plot: $K_p = 14.8 \text{ dB} \rightarrow 5.5$

- Note that $PM \approx 50^\circ$, as desired

- Gain margin is $GM = 17.9 \text{ dB}$
Improving Steady-State Error

- Steady-state error to a constant reference is

\[e_{ss} = \frac{1}{1 + K_p} = 0.154 \rightarrow 15.4\% \]
Let’s say we want to reduce steady-state error to $e_{ss} < 5\%$

Required position constant

$$K_p > \frac{1}{0.05} - 1 = 19$$

Increase gain by 4x

- Bode plot shows desired position constant
- But, phase margin has been degraded significantly
Improving Steady-State Error

- Step response shows that error goal has been met
 - But, reduced phase margin results in significant overshoot and ringing
- Error improvement came at the cost of degraded phase margin
- Would like to be able to improve steady-state error without affecting phase margin
 - Integral compensation
 - Lag compensation

Closed-Loop Step Response

\(e_{ss} = 4.3\% \)
Integral Compensation
PI Compensation

- Proportional-integral (PI) compensator:
 \[D(s) = \frac{1}{T_I} \frac{(T_I s + 1)}{s} \]

- Low-frequency gain increase
 - Infinite at DC
 - System type increase

- For \(\omega \gg 1/T_I \)
 - Gain unaffected
 - Phase affected little
 - PM unaffected

- Susceptible to integrator overflow
 - Lag compensation is often preferable
Lag Compensation
Lag Compensation

- Lag compensator
 \[D(s) = \alpha \frac{(Ts + 1)}{(\alpha Ts + 1)} , \quad \alpha > 1 \]

- Objective: add a gain of \(\alpha \) at low frequencies without affecting phase margin

- Lower-frequency pole: \(s = -1/\alpha T \)

- Higher-frequency zero: \(s = -1/T \)

- Pole/zero spacing determined by \(\alpha \)

- For \(\omega \ll 1/\alpha T \)
 - Gain: \(\sim 20 \log(\alpha) \) dB
 - Phase: \(\sim 0^\circ \)

- For \(\omega \gg 1/T \)
 - Gain: \(\sim 0 \) dB
 - Phase: \(\sim 0^\circ \)
Lag Compensation vs. α

- Gain increased at low frequency only
 - Dependent on α
 - DC gain: $20\log(\alpha)$ dB
- Phase lag added between compensator pole and zero
 - $0^\circ \leq \phi_{\text{max}} \leq 90^\circ$
 - Dependent on α
- Lag pole/zero well below crossover frequency
 - Phase margin unaffected

$$D(s) = \frac{\alpha (Ts + 1)}{(\alpha Ts + 1)}$$
Lag Compensator Design Procedure

- Lag compensator adds gain at low frequencies without affecting phase margin

- **Basic design procedure:**
 - Adjust gain to achieve the desired phase margin
 - Add compensation, increasing low-frequency gain to achieve desired error performance

- Same as adjusting gain to place poles at the desired damping on the root locus, then adding compensation
 - *Root locus is not changed*
 - Here, the *frequency response near the crossover frequency is not changed*
Lag Compensator Design Procedure

1. **Adjust gain**, K, of the *uncompensated* system to provide the *desired phase margin* plus 5° ... 10° (to account for small phase lag added by compensator)

2. Use the open-loop Bode plot for the uncompensated system with the value of gain set in the previous step to **determine the static error constant**

3. **Calculate** α as the low-frequency gain increase required to provide the desired error performance

4. **Set the upper corner frequency** (the zero) to be one decade below the crossover frequency: $1/T = \omega_{PM}/10$
 - Minimizes the added phase lag at the crossover frequency

5. **Calculate the lag pole**: $1/\alpha T$

6. **Simulate** and **iterate**, if necessary
Lag Example – Step 1

- Design a lag compensator for the above system to satisfy the following requirements
 - $e_{ss} < 2\%$ for a step input
 - $%OS \approx 12\%$

- First, determine the required phase margin to satisfy the overshoot requirement
 \[
 \zeta = - \frac{\ln(OS)}{\sqrt{\pi^2 + \ln^2(OS)}} = 0.559
 \]
 \[
 PM \approx 100\zeta = 55.9^\circ
 \]

- Add $\sim 10^\circ$ to account for compensator phase at ω_{PM}
 \[
 PM = 65.9^\circ
 \]
Lag Example – Step 1

- Plot the open-loop Bode plot of the uncompensated system for $K = 1$
- Locate frequency where phase is $-180^\circ + PM = -114.1^\circ$
 - This is ω_{PM}, the desired crossover frequency
 - $\omega_{PM} = 2.5 \text{ rad/sec}$
- Gain at ω_{PM} is K_{PM}
 - $K_{PM} = -8.4 \text{ dB} \rightarrow 0.38$
- Increase the gain by $1/K_{PM}$
 - $K = 8.4 \text{ dB} \rightarrow 2.63$
Gain has now been set to yield the desired phase margin of $PM = 65.9^\circ$.

Use the new open-loop bode plot to determine the static error constant.

Position constant of the uncompensated system given by the DC gain:

$$K_{pu} = 11.14 \text{ dB} \rightarrow 3.6$$
Lag Example – Step 3

- Calculate α to yield desired steady-state error improvement

- Steady-state error:

 \[e_{ss} = \frac{1}{1 + K_p} < 0.02 \]

- The required position constant:

 \[K_p > \frac{1}{e_{ss}} - 1 = 49 \rightarrow K_p = 50 \]

- Calculate α as the required position constant improvement

 \[\alpha = \frac{K_p}{K_{pu}} = 13.9 \rightarrow \alpha = 14 \]
Lag Example – Steps 4 & 5

- Place the compensator zero one decade below the crossover frequency, $\omega_{PM} = 2.5 \text{ rad/sec}$

 \[\frac{1}{T} = 0.25 \text{ rad/sec} \]
 \[T = 4 \text{ sec} \]

- The compensator pole:

 \[\frac{1}{\alpha T} = \frac{0.25}{14} \]
 \[\frac{1}{\alpha T} = 0.018 \text{ rad/sec} \]

- Lag compensator transfer function

 \[D(s) = \alpha \frac{(Ts + 1)}{(\alpha Ts + 1)} \]
 \[D(s) = 14 \frac{(4s + 1)}{(56s + 1)} \]
Bode plot of compensated system shows:

- $PM = 60.5^\circ$
- $K_p = 50.5$
Lag Example – Step 6

- Lag compensator adds gain at low frequencies only
- Phase near the crossover frequency is nearly unchanged
Lag Example – Step 6

- Steady-state error requirement has been satisfied

- Overshoot spec has been met
 - Though slow tail makes overshoot assessment unclear
Lag Compensator – Summary

\[D(s) = \alpha \frac{(Ts + 1)}{(\alpha Ts + 1)} \]

- **Higher-frequency zero:** \(s = -1/T \)
 - Place one decade below crossover frequency, \(\omega_{PM} \)

- **Lower-frequency pole:** \(s = -1/\alpha T \)
 - \(\alpha \) sets pole/zero spacing

- **DC gain:** \(\alpha \rightarrow 20 \log_{10}(\alpha) \) dB

- **Compensator adds low-frequency gain**
 - Static error constant improvement
 - Phase margin unchanged
Improving Dynamic Response
We’ve already seen two types of compensators to improve dynamic response:
- Proportional derivative (PD) compensation
- Lead compensation

Unlike with the lag compensator we just looked at, here, the objective is to alter the open-loop phase.

We’ll look briefly at PD compensation, but will focus on lead compensation.
Derivative Compensation
PD Compensation

- Proportional-Derivative (PD) compensator:
 \[D(s) = (T_D s + 1) \]

- Phase added near (and above) the crossover frequency
 - Increased phase margin
 - Stabilizing effect

- Gain continues to rise at high frequencies
 - Sensor noise is amplified
 - Lead compensation is usually preferable
Lead Compensation
Lead Compensation

- With lead compensation, we have three design parameters:
 - **Crossover frequency**, ω_{PM}
 - Determines closed-loop bandwidth, ω_{BW}; risetime, t_r; peak time, t_p; and settling time, t_s
 - **Phase margin**, PM
 - Determines damping, ζ, and overshoot
 - **Low-frequency gain**
 - Determines steady-state error performance

- We’ll look at the design of lead compensators for two common scenarios, either
 - Designing for **steady-state error** and **phase margin**, or
 - Designing for **bandwidth** and **phase margin**
Lead Compensation

- Lead compensator
 \[D(s) = \frac{(Ts + 1)}{(\beta Ts + 1)} , \quad \beta < 1 \]

- Objectives: add phase lead near the crossover frequency and/or alter the crossover frequency

- Lower-frequency zero: \(s = -\frac{1}{T} \)

- Higher-frequency pole: \(s = -\frac{1}{\beta T} \)

- Zero/pole spacing determined by \(\beta \)

- For \(\omega \ll \frac{1}{T} \)
 - Gain: \(\sim 0 \) dB
 - Phase: \(\sim 0^\circ \)

- For \(\omega \gg \frac{1}{\beta T} \)
 - Gain: \(\sim 20 \log(1/\beta) \) dB
 - Phase: \(\sim 0^\circ \)
Lead Compensation vs. β

$$D(s) = \frac{(Ts + 1)}{(\beta Ts + 1)}$$, \quad \beta < 1

- β determines:
 - Zero/pole spacing
 - Maximum compensator phase lead, ϕ_{max}
 - High-frequency compensator gain
Lead Compensation – ϕ_{max}

- β, zero/pole spacing, determines maximum phase lead

$$\phi_{max} = \sin^{-1} \left(\frac{1 - \beta}{1 + \beta} \right)$$

- Can use a desired ϕ_{max} to determine β

$$\beta = \frac{1 - \sin(\phi_{max})}{1 + \sin(\phi_{max})}$$

- ϕ_{max} occurs at ω_{max}

$$\omega_{max} = \frac{1}{T \sqrt{\beta}}$$

$$T = \frac{1}{\omega_{max} \sqrt{\beta}}$$
Lead Compensation – Design Procedure

1. Determine loop gain, K, to satisfy either steady-state error requirements or bandwidth requirements:
 a) Set K to provide the required static error constant, or
 b) Set K to place the crossover frequency an octave below the desired closed-loop bandwidth

2. Evaluate the phase margin of the uncompensated system, using the value of K just determined

3. If necessary, determine the required PM from ζ or overshoot specifications. Evaluate the PM of the uncompensated system and determine the required phase lead at the crossover frequency to achieve this PM. Add $\sim 10^\circ$ additional phase – this is ϕ_{max}

4. Calculate β from ϕ_{max}

5. Set $\omega_{max} = \omega_{PM}$. Calculate T from ω_{max} and β

6. Simulate and iterate, if necessary
Double-Lead Compensation

- A lead compensator can add, at most, 90° of phase lead.
- If more phase is required, use a double-lead compensator.

\[D(s) = \left[\frac{(Ts + 1)}{(\beta Ts + 1)} \right]^2 \]

- For phase lead over \(\sim 60^\circ \) ... \(70^\circ \), \(1/\beta \) must be very large, so typically use double-lead compensation.
Consider the following system

Design a compensator to satisfy the following
- $e_{ss} < 0.1$ for a ramp input
- $\%OS < 15\%$

Here, we’ll design a lead compensator to simultaneously adjust **low-frequency gain** and **phase margin**
Lead Example 1 – Steps 1 & 2

- The velocity constant for the uncompensated system is
 \[K_v = \lim_{s \to 0} sK_G(s) \]
 \[K_v = \lim_{s \to 0} \frac{K}{s + 1} = K \]
- Steady-state error is
 \[e_{ss} = \frac{1}{K_v} < 0.1 \]
 \[K_v = K > 10 \]
- Adding a bit of margin
 \[K = 12 \]
- Bode plot shows the resulting phase margin is \(PM = 16.4^\circ \)
Lead Example 1 – Step 3

- Approximate required phase margin for $\%OS < 15$
 - Design for 13

- First calculate the required damping ratio

$$\zeta = -\frac{\ln(OS)}{\sqrt{\pi^2 + \ln^2(OS)}} = 0.545$$

- Approximate corresponding PM, and add 10° correction factor

$$PM \approx 100\zeta + 10^\circ = 64.5^\circ$$

- Calculate the required phase lead

$$\phi_{max} = 64.5^\circ - 16.4^\circ = 48^\circ$$
Lead Example 1 – Steps 4 & 5

- Calculate β from ϕ_{max}

$$\beta = \frac{1 - \sin(\phi_{max})}{1 + \sin(\phi_{max})} = 0.147$$

- Set $\omega_{max} = \omega_{PM}$, as determined from Bode plot, and calculate T

$$\omega_{max} = \omega_{PM} = 3.4\text{ rad/sec}$$

$$T = \frac{1}{\omega_{max}\sqrt{\beta}} = \frac{1}{3.4\sqrt{0.169}} = 0.7687$$

- The resulting lead compensator transfer function is

$$KD(s) = K \frac{(Ts + 1)}{(\beta Ts + 1)} = 12 \frac{(0.7687s + 1)}{(0.1130s + 1)}$$
Lead Example 1 – Step 6

\[
D(s) = 12 \frac{(0.7687s + 1)}{(0.1130s + 1)}
\]

- The lead compensator Bode plot

![Lead Compensator Bode Plot](image)
Lead Example 1 – Step 6

- **Lead-compensated system:**
 - \(PM = 48.5^\circ \)
 - \(\omega_{PM} = 7.2 \text{ rad/sec} \)

- **High-frequency compensator gain increased the crossover frequency**
 - Phase was added at the *previous* crossover frequency
 - PM is below target

- **Move lead zero/pole to higher frequencies**
 - Reduce the crossover frequency increase
 - Improve phase margin
Lead Example 1 – Step 6

- As predicted by the insufficient phase margin, overshoot exceeds the target
 - \(\% OS = 20.9\% > 15\%\)

- Redesign compensator for higher \(\omega_{max}\)
 - Improve phase margin
 - Reduce overshoot
The steady-state error requirement has been satisfied

\[e_{ss} = 0.08 < 0.1 \]

Will not change with compensator redesign

Low-frequency gain will not be changed
Lead Example 1 – Step 6

- Iteration yields acceptable value for ω_{max}
 - $\omega_{max} = 5.5 \text{ rad/sec}$
 - Maintain same zero/pole spacing, β, and, therefore, same ϕ_{max}

- Recalculate zero/pole time constants:

 $$T = \frac{1}{\omega_{max} \sqrt{\beta}} = \frac{1}{5.5 \sqrt{0.147}} = 0.4742$$

 $$\beta T = 0.147 \cdot 0.4742 = 0.0697$$

- The updated lead compensator transfer function:

 $$D(s) = 12 \frac{(0.4742s + 1)}{(0.0697s + 1)}$$
Crossover frequency has been reduced
\[\omega_{PM} = 5.58 \text{ rad/sec} \]

Phase margin is close to the target
\[PM = 58.2^\circ \]

Dip in phase is apparent, because \(\omega_{max} \) is now placed at point of lower open-loop phase
Lead Example 1 – Step 6

- Overshoot requirement now satisfied
 - $\%OS = 14.7\% < 15\%$

- Low-frequency gain has not been changed, so error requirement is still satisfied

- Design is complete
Lead Compensation – Example 2

- Again, consider the same system

- Design a compensator to satisfy the following
 - \(t_s \approx 1.2 \text{ sec} \ (\pm 1\%) \)
 - \(\%OS \approx 10\% \)

- Now, we’ll design a lead compensator to simultaneously adjust \textit{closed-loop bandwidth} and \textit{phase margin}
Lead Example 2 – Step 1

- The required damping ratio for 10% overshoot is
 \[\zeta = -\frac{\ln(OS)}{\sqrt{\pi^2 + \ln^2(OS)}} = 0.5912 \]

- Given the required damping ratio, calculate the required closed-loop bandwidth to yield the desired settling time
 \[\omega_{BW} = \frac{4.6}{t_s \zeta} \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}} \]
 \[\omega_{BW} = 7.52 \text{ rad/sec} \]

- We’ll initially set the gain, \(K \), to place the crossover frequency, \(\omega_{PM} \), one octave below the desired closed-loop bandwidth
 \[\omega_{PM} = \omega_{BW}/2 = 3.8 \text{ rad/sec} \]
Lead Example 2 – Step 1

- Plot the Bode plot for $K = 1$
 - Determine the loop gain at the desired crossover frequency
 $$K_{PM} = -23.3 \text{ dB}$$
 - Adjust K so that the loop gain at the desired crossover frequency is 0 dB
 $$K = \frac{1}{K_{PM}} = 23.3 \text{ dB} = 14.7$$
Lead Example 2 – Steps 2 & 3

- Generate a Bode plot using the gain value just determined
- Phase margin for the uncompensated system:
 \[PM_u = 14.9^\circ \]
- Required phase margin to satisfy overshoot requirement:
 \[PM \approx 100\zeta = 59.1^\circ \]
- Add 10° to account for crossover frequency increase
 \[PM = 69.1^\circ \]
- Required phase lead from the compensator
 \[\phi_{max} = PM - PM_u = 54.2^\circ \]
Lead Example 2 – Steps 4 & 5

- Calculate zero/pole spacing, β, from required phase lead, ϕ_{max}

 $$\beta = \frac{1 - \sin(\phi_{max})}{1 + \sin(\phi_{max})} = 0.1040$$

- Calculate zero and pole time constants

 $$T = \frac{1}{\omega_{max}\sqrt{\beta}} = 0.8228 \text{ sec}$$

 $$\beta T = 0.0855 \text{ sec}$$

- The resulting lead compensator transfer function:

 $$KD(s) = K \frac{(Ts + 1)}{(\beta Ts + 1)}$$

 $$KD(s) = 14.7 \frac{(0.8228s + 1)}{(0.0855s + 1)}$$
Lead Example 2 – Step 6

- Bode plot of the compensated system
 - $PM = 49.9^\circ$
 - Substantially below target

- Crossover frequency is well above the desired value
 - $\omega_{PM} = 9.44 \text{ rad/sec}$

- Iteration will likely be required
Lead Example 2 – Step 6

- Overshoot exceeds the specified limit
 - $\%OS = 19.1\% > 10\%$

- Settling time is faster than required
 - $t_s = 0.98\ sec < 1.2\ sec$

- Iteration is required
 - Start by reducing the target ω_{PM}
Lead Example 2 – Step 6

- Must redesign the compensator to meet specifications
 - Must increase PM to reduce overshoot
 - Can afford to reduce crossover, ω_{PM}, to improve PM

- Try various combinations of the following
 - Reduce crossover frequency, ω_{PM}
 - Increase compensator zero/pole frequencies, ω_{max}
 - Increase added phase lead, ϕ_{max}, by reducing β

- Iteration shows acceptable results for:
 - $\omega_{PM} = 2.4\, \text{rad/sec}$
 - $\omega_{max} = 3.4\, \text{rad/sec}$
 - $\phi_{max} = 52^\circ$
Lead Example 2 – Step 6

- Redesigned lead compensator:
 \[KD(s) = 6.27 \frac{(0.8542s + 1)}{(0.1013s + 1)} \]

- Phase margin:
 \[PM = 62^\circ \]

- Crossover frequency:
 \[\omega_{PM} = 4.84 \text{ rad/sec} \]
Lead Example 2 – Step 6

- Dynamic response requirements are now satisfied
- Overshoot:
 \[\%OS = 8\% \]
- Settling time:
 \[t_s = 1.09 \text{ sec} \]
Lead Compensation – Example 2

- Lead compensator adds gain at higher frequencies
 - Increased crossover frequency
 - Faster response time

- Phase added near the crossover frequency
 - Improved phase margin
 - Reduced overshoot
Lead Compensation – Example 2

- Step response improvements:
 - Faster settling time
 - Faster risetime
 - Significantly less overshoot and ringing
Lead-Lag Compensation

- If performance specifications require adjustment of:
 - Bandwidth
 - Phase margin
 - Steady-state error

- Lead-lag compensation may be used

\[KD(s) = \alpha \frac{(T_{lag}s + 1)}{(\alpha T_{lag}s + 1)} \frac{(T_{lead}s + 1)}{(\beta T_{lead}s + 1)} \]

- Many possible design procedures – one possibility:
 1. Design lag compensation to satisfy steady-state error and phase margin
 2. Add lead compensation to increase bandwidth, while maintaining phase margin