SECTION 3: PUMPED-HYDRO ENERGY STORAGE

ESE 471 – Energy Storage Systems

Potential Energy Storage

3

- Energy can be stored as *potential energy*
- Consider a mass, m, elevated to a height, h
- Its potential energy increase is

$$E = mgh$$

- where $g = 9.81 m/s^2$ is gravitational acceleration
- Lifting the mass requires an input of work equal to (at least) the energy increase of the mass
 - We put energy in to lift the mass
 - That energy is stored in the mass as potential energy

Potential Energy Storage

- 4
- If we allow the mass to fall back to its original height, we can capture the stored potential energy
 - Potential energy converted to kinetic energy as the mass falls
 - Kinetic energy can be captured to perform work
 - Perhaps converted to rotational energy, and then to electrical energy

Pumped-Hydro Energy Storage

- 5
- Potential energy storage in elevated mass is the basis for *pumped-hydro energy storage* (PHES)
 - Energy used to pump water from

a lower reservoir to an upper reservoir

- Electrical energy input to motors converted to rotational mechanical energy
- **Pumps** transfer energy to the water as *kinetic*, then *potential energy*

Pumped-Hydro Energy Storage

Energy stored in the water of the upper reservoir is released as water flows to the lower reservoir

> Potential energy converted to kinetic energy

- Kinetic energy of falling water turns a turbine
- Turbine turns a generator
- Generator converts mechanical energy to electrical energy

History of PHES

- PHES first introduced in Italy and Switzerland in the 1890's
 - Favorable topography in the Alps
 - Four-unit (quaternary) systems
 - Turbine
 - Generator
 - Motor
 - Pump

History of PHES

□ First PHES plant in the US:

- Rocky River hydro plant, New Milford, CT
- Water from the Housatonic River pumped up into Candlewood Lake
- 230 feet of head
- 6 billion ft³ of water
- Two-unit (binary) system
 - Reversible pump/turbine one of the first
- 29 MW of generating power

Pumped-Hydro Storage Today

- PHES accounts for 99% of worldwide energy storage
 - Total power: ~127 GW
 - Total energy: ~740 TWh
 - Power of individual plants: 10s of MW 3 GW

□ In the US:

- ~40 operational PHES plants
- 75% are > 500 MW strong economies of scale
- Total power: ~23 GW
 - Current plans for an additional ~6 GW
- Total energy: ~220 TWh

¹⁰ PHES Fundamentals

PHES Fundamentals

- Two storage reservoirs
 - Upper and lower
 - Lower reservoir may be a river or even the sea

- Separated by a height, h
 - The hydraulic head
 - \blacksquare Assume $h \gg \operatorname{depth}$ of the upper reservoir
 - h remains constant throughout charge/discharge cycle
- \Box Upper reservoir can store a volume of water, V_u

PHES Fundamentals - Energy

12

Total stored energy (assuming it is all at a height, h)

 $E_t = mgh = V_u \rho gh$

where $ho=1000~kg/m^3$ is the density of water

• Verifying that we do, in fact, have units of energy

$$[E_t] = m^3 \frac{kg}{m^3} \frac{m}{s^2} m = \frac{kg \cdot m}{s^2} m = N \cdot m = J$$

 The *energy density* – energy per unit volume – of the stored water is therefore

$$\begin{bmatrix} e_v = \frac{E_t}{V_u} = \rho gh \\ e_v \end{bmatrix} = \frac{kg}{m^3} \frac{m}{s^2} m = \frac{kg \cdot m^2}{s^2} \frac{1}{m^3} = \frac{J}{m^3}$$

PHES Fundamentals – Hydrostatic Pressure

13

The energy density of the stored water is also the hydrostatic pressure at the level of the lower reservoir

$$p = \rho g h$$

$$[p] = \frac{kg}{m^3} \frac{m}{s^2} m = \frac{kg \cdot m}{s^2} \frac{1}{m^2} = \frac{N}{m^2} = Pa$$

This is the energy density of the water at the turbine

PHES Fundamentals - Power

- 14
- The rate at which energy is transferred to the turbine (from the pump) is the power extracted from (delivered to) the water

$$P = e_{v}Q = pQ = \rho ghQ$$

where Q is the **volumetric flow rate** of the water

$$[P] = \frac{J}{m^3} \frac{m^3}{s} = \frac{J}{s} = W$$

This is the total power available at the turbine

Greater than (less than) the power actually delivered to the turbine (from the pump), due to inefficiencies

A Generalized Power Relation

15

Note that *power* is given by the product of a driving potential, or *effort*, p, and a *flow*, Q

P = pQ

Similar to power for a *translational mechanical* system

P = Fv

where the effort is force, F, and the flow is velocity, v

□ Or, a *rotational mechanical* system

 $P = \tau \omega$

where the effort is torque, τ , and the flow is angular velocity, v

A Generalized Power Relation

Also similar to an *electrical* system

$$P = VI$$

where the effort is voltage, V, and the flow is current, I

In general, for systems in any energy domain, power is given by the product of effort and flow

$$P = e \cdot f$$

Energy & Power vs. Head

The total stored energy and available power are

$$E_t = V_u \rho g h$$
$$P = \rho g h Q$$

- \Box Both are proportional to head, h
 - Large vertical separation between lower and upper reservoirs is desirable
 - Limited by topography
 - Limited by equipment pump and turbine
- Specific energy is also proportional to head:

$$e_m = \frac{E_t}{m_u} = \frac{E_t}{V_u \rho} = \frac{V_u \rho g h}{V_u \rho} = g h$$

□ As is **energy density**:

$$e_{v} = \frac{E_{t}}{V_{u}} = \rho g h$$

Specific Energy & Energy Density vs. Head

- 18
- □ Most PHES plants have head in the range of 100 1000 m
- Using 300 m as a representative head, gives:
 - **D** Energy density for h = 300 m:

$$e_{v} = \rho g h = 1000 \frac{kg}{m^{3}} \cdot 9.81 \frac{m}{s^{2}} \cdot 300 m$$
$$e_{v} = 2.9 \frac{MJ}{m^{3}} \cdot \frac{1}{3600} \frac{Wh}{J} = 818 \frac{Wh}{m^{3}}$$
$$e_{v} = 818 \frac{Wh}{m^{3}} \cdot 1 \frac{m^{3}}{1000 L} = 0.818 \frac{Wh}{L}$$

• Specific energy for h = 300 m:

$$e_m = gh = 9.81 \frac{m}{s^2} \cdot 300 \ m = 4905 \frac{m^2}{s^2} = 2.9 \frac{kJ}{kg}$$
$$e_m = 2.9 \frac{kJ}{kg} \cdot \frac{1}{3600} \frac{Wh}{J} = \mathbf{0.818} \frac{Wh}{kg}$$

Specific Energy & Energy Density

 Comparison of PHES energy density and specific energy with other energy storage/sources

	PHES h = 100 m	PHES h = 500 m	PHES h = 1000m	Li-ion Battery	Natural Gas	Gasoline	Units
Energy Density	0.273	1.36	2.73	400	10.1	9,500	Wh/L
Specific Energy	0.273	1.36	2.73	150	15,400	13,000	Wh/kg

Even at high heads, PHES has very low energy density
 Large reservoirs are required

19

PHES Applications

- Pumped hydro plants can supply large amounts of both *power* and *energy*
- Can quickly respond to large load variations
- Uses for PHES:

Peak shaving/load leveling

- Help meet loads during peak hours
 - Generating while releasing water from upper reservoir
 - Supplying expensive energy
- Store energy during off-peak hours
 - Pumping water to the upper reservoir
 - Consuming inexpensive energy

PHES Applications

Frequency regulation

Power variation to track short-term load variations

Helps maintain grid frequency at 60 Hz (50 Hz)

Voltage support

- Reactive power flow control to help maintain desired grid voltage
 - Varying the field excitation voltage of the generator/motor
- Even at zero real power not pumping or generating unloaded motor/generator can serve as synchronous condenser
 - Pump/turbine spinning in air

PHES Applications

Black start capability

- Ability to start generating without an external power supply
- Bring the grid back online after a blackout

Spinning reserve

- Spare online generating capacity
- Capable of responding quickly within seconds to minutes – to the need for additional generation

Components of a PHES Plant

PHES Components – Reservoirs

- Upper and lower reservoirs separated by an elevation difference
- □ Two configurations:
 - Open-loop:
 - At least one of the reservoirs connected to a source of natural inflow

Natural lake, river, river-fed reservoir, the sea

Closed-loop:

- Neither reservoir has a natural source of inflow
- Initial filling and compensation of leakage and evaporation provided by ground water wells
- Less common than open-loop

PHES Components – Penstock

Penstock

- Conduit for water flowing between reservoirs and to the pump/generator
- Above-ground pipes or below ground shafts/tunnels
 - 5 -10 m diameter is common
 - One plant may have several penstocks
 - Typically steel- or concrete-lined, though may be unlined
- Flow velocity range of 1 5 m/s is common
- Tradeoff between cost and efficiency for a given flow rate, Q
 - Larger cross-sectional area:
 - Slower flow
 - Lower loss
 - Higher cost

PHES Components

Tailrace tunnel

- Typically, larger diameter than penstocks
- Lower pressure
- Lower flow rate
- Downward slope from lower reservoir to pump/turbine
 - Inlet head helps prevent cavitation in pumping mode

Surge tanks

- Accumulator tanks to absorb high pressure transients during startup and mode changeover
- May be located on penstock or tailrace
- Especially important for longer tunnels
- Hydraulic bypass capacitors

PHES Components – Power House

Power house

- Contains pump/turbines and motor/generators
- Often underground
- Typically below the level of the lower reservoir to provide required pump inlet head

- Three possible configurations
 - Binary set: one pump/turbine and one motor/generator
 - Ternary set: one pump, one turbine, and one motor/generator
 - Quaternary set: separate pump, turbine, motor, and generator

Power Plant Configurations – Quaternary Set

Quaternary set

- Pump driven by a motor
- Generator driven by a turbine
- Pump and turbine are completely decoupled
- Possibly separate penstocks/tailrace tunnels
- Most common configuration prior to 1920
- High equipment/infrastructure costs
- High efficiency
 - Pump and turbine designed to optimize individual performance

Pump

Power Plant Configurations – Ternary Set

Ternary set

- Pump, turbine, and motor/generator all on a single shaft
 - Pump and turbine rotate in the same direction
- Turbine rigidly coupled to the motor/generator
- Pump coupled to shaft with a clutch
- Popular design 1920 1960s
- Motor/ Generator Turbine \longrightarrow \longleftrightarrow Clutch Clutch Pump \leftarrow
- Nowadays, used when head exceeds the usable range of a singlestage pump/turbine
 - High-head turbines (e.g., Pelton) can be used
- Pump and turbine designs can be individually optimized

Power Plant Configurations – Ternary Set

Ternary set

- Generating mode:
 - Turbine spins generator
 - Pump decoupled from the shaft and isolated with valves
- Pumping mode:
 - Motor turns the pump
 - Turbine spins in air, isolated with valves
- Both turbine and pump can operate simultaneously
- Turbine can be used for pump startup
 - Both spin in the same direction
 - Turbine brings pump up to speed and synchronized with grid, then shuts down
 - Changeover time reduced

Power Plant Configurations – Binary Set

Binary set

- Single reversible pump/turbine coupled to a single motor/generator
- Most popular configuration for modern PHES
- Lowest cost configuration
 - Less equipment
 - Simplified hydraulic pathways
 - Fewer valves, gates, controls, etc.
- Lower efficiency than for ternary or quaternary sets
 - Pump/turbine runner design is a compromise between pump and turbine performance

Power Plant Configurations – Binary Set

Binary set

- Rotation is in opposite directions for pumping and generating
- Shaft and motor/generator must change directions when changing modes

Slower changeover than for ternary or quaternary units

Pump startup:

- Pump/turbine runner dewatered and spinning in air
- Motor brings pump up to speed and in synchronism with the grid before pumping of water begins

35 Turbines

Turbines

- Hydro turbine design selection based on
 Head
 - Flow rate
- PHES plants are typically sited to have large head
 - Energy density is proportional to head
 - Typically 100s of meters
- Reversible *Francis* pump/turbine
 - Most common turbine for PHES applications
 - Single-stage pump/turbines operate with heads up to 700 m
- □ For higher head:
 - Multi-stage pump/turbines
 - Ternary units with *Pelton* turbines
Turbine Selection

Francis Turbine – Components

Volute casing (scroll casing)

- Spiral casing that feeds water from the penstock to the turbine runner
- Cross-sectional area decreases along the length of the casing
 - Constant flow rate maintained along the length

Francis turbine casing – Grand Coulee:

Francis Turbine – Components

Guide vanes and **stay vanes**

- Direct water flow from the casing into the runner
- Stay vanes are fixed
- Guide vanes, or *wicket gates*, are adjustable
 - Open and close to control flow rate
 - Power output modulated by controlling flow rate
 - Set fully open for pumping mode

Francis Turbine – Components

Turbine runner

- Reaction turbine
 - Pressure energy is extracted from the flow
 - Pressure drops as flow passes through the runner
- Flow enters radially
- Flow exits axially
- Typically oriented with a vertical shaft

Draft tube

 Diffuser that guides exiting flow to the tailrace

八 局 \$
順利吊入厂房

Source: Voith Siemens Hydro

High-Head PHES

- Options for heads in excess of 700 m:
 - Two-stage Francis pump/turbines
 - Typically no wicket gates in two-stage configuration
 - No mechanism for varying generating power
 - Ternary unit with *Pelton turbine*

Two-stage pump/turbine:

Pelton Turbines

Pelton Turbine

Suitable for heads up to 1000 m

Impulse turbine

- Nozzles convert pressure energy to kinetic energy
- High-velocity jets impinge on the runner at atmospheric pressure
- Kinetic energy transferred to the runner
- Water exits the turbine at low velocity
- Cannot be used for pumping
 - Used as part of a ternary set

Motor/Generator – Fixed-Speed

- 44
- Pump/turbine shaft connects to a motor/generator unit
 Above the turbine runner in typical vertical configuration
- Motor/generator type depends PHES category:
 - Fixed-speed pump/turbine
 - Variable-speed pump/turbine

Fixed-speed pump/turbine

- Motor/generator operates at a fixed speed in both pumping and generating modes
- Synchronous motor/generator
 - Rotation is synchronous with the AC grid frequency
 - Stator windings connect to three-phase AC at grid frequency
 - Rotor windings fed with DC excitation current via slip rings
 - DC excitation current generated with thyristor AC/DC converters

Motor/Generator

- Variable-speed (adjustable-speed) pump/turbine
 - Rotational speed of motor/generator is adjustable
 - Two options:
 - Variable speed using a synchronous motor/generator (singly-fed)
 - Doubly-fed asynchronous machine (DFAM)

Variable-speed operation with synchronous motor/generator:

- Motor driven with variable frequency
- Decoupled from grid frequency by back-to-back converters
- Converters must be rated for full motor/generator power
 - Large, expensive

Motor/Generator – Variable-Speed

- Variable speed using doubly-fed asynchronous machines
 - Field excitation fed with variable, low-frequency AC, not DC as in synchronous machines
 - Static frequency converter generates variable AC
 - Cycloconverter
 - Back-to-back voltage-source converters
 - Typically small speed range (e.g., ±10%)
- With *cycloconverter* generating variable-frequency excitation for rotor:

Converters need not be sized for rated motor/generator power
 Only supply lower-power excitation to the rotor

Motor/Generator – Variable-Speed

- 47
- DFAM with variable-frequency field excitation generated by back-to-back VSCs:

- The preferred configuration for large (>100 MW) PHES plants nowadays
- Advantages of variable-speed plants
 - Pump and turbine speeds can be independently varied to optimize efficiency over range of flow rate and head
 - Pumping power can be varied in addition to generating power

PHES for Frequency Regulation

Frequency regulation

- Tracking short-term load variations to maintain grid frequency at 60 Hz (or 50 Hz)
- PHES plants can provide frequency regulation

Different for fixed- or variable-speed plants

Fixed-speed plants

- Generating mode
 - Frequency regulation provided by rapidly varying power output
 - Power varied by using wicket gates to modulate flow rate
 - Same as in conventional hydro plants
- Pumping mode
 - Pump operates at rated power only power input cannot be varied
 - No frequency regulation in pumping mode

Frequency Regulation – Variable-Speed

Variable-speed plants

- Pump speed can be varied over some range, e.g. ±10%
- Pump power is proportional to pump speed *cubed*

- For $\pm 10\%$ speed variation, power is adjustable over $\pm 30\%$
- Power variation in pumping mode can track rapid load variations
- Frequency regulation can be provided in both modes of operation

Frequency Regulation – Ternary Sets

Fixed-speed ternary sets

- Generating mode
 - Wicket gates in turbine control flow rate to vary power output
 - Pump disconnected from shaft
- Pumping mode
 - Hydraulic short circuit provides power modulation
 - Pump and generator both turn on the shaft
 - Pump operates at full load
 - Generator operates at variable partial load

Hydraulic Short Circuit

Kops II PHES plant in Austrian Alps:

52 PHES Efficiency

PHES System Efficiency

53

Round-trip efficiency:

$$\eta_{rt} = \frac{E_{out}}{E_{in}} \cdot 100\%$$

where

- *E_{in}* is the electrical energy that flows in from the grid to the plant in pumping mode
- *E_{out}* is the electrical energy that flows from the plant to the grid in generating mode
- Typical round-trip efficiency for PHES plants in the range of 70% 80%
- PHES loss mechanisms
 - Transformer
 - Motor/generator
 - Pump/turbine
 - Water conduit

Transformers

Pumped hydro plants connect to the AC electrical grid

Transformers step voltage between high voltage on the grid side to lower voltage at the motor/generator

Transformer *loss mechanisms*:

- Winding resistance
- Leakage flux
- Hysteresis and eddy currents in the core
- Magnetizing current finite core permeability
- Power flows through transformers on the way into the storage plant and again on the way out
- Typical loss: ~0.5%

Motor/generator losses

- Electrical resistance
- Mechanical friction
- Typical loss: ~2%

Pump/turbine

- Single runner in binary sets
 - Typically lower efficiency, particularly for fixed-speed operation design of both compromised
- Separate runners in ternary, quaternary sets
 - Higher efficiency
- Typical loss: ~7% 10%

Penstock

Frictional loss of water flowing through the conduit

- Major losses along penstock
- Minor losses from bends, penstock inlet, turbine inlet, etc.

Dependent on

- Flow velocity
- Penstock diameter
- Penstock length
- Penstock lining steel, concrete, etc.
- High head is desirable, but long penstocks are not
 - Steeper penstocks reduce frictional losses for a given head
 - Typical length-to-head ratio: 4:1 12:1
- Typical loss: ~1%

Typical losses for PHES:

Pumping-Mode Efficiency

58

Efficiency of the pumping operation is given by

$$\eta_p = \frac{E_s}{E_{in}} \cdot 100\%$$

where

• E_s is the energy stored

• Potential energy of the volume of water, V_u , pumped to the upper reservoir

$$E_s = V_u \rho g h$$

E_{in} is the energy input from the grid during the pumping operation
 The mechanical energy input to the pump is

$$E_{in,pump} = E_{in} \cdot \eta_{trans} \cdot \eta_{motor}$$

where

 $\hfill \eta_{trans}$ and η_{motor} are the efficiencies of the transformer and motor, respectively

Pumping-Mode Efficiency

59

□ The volume of water pumped to the upper reservoir is

$$V_u = \frac{E_{in,pump}}{\rho g h} \cdot \eta_{pump} \cdot \eta_{pipe,p}$$

where

- **D** η_{pump} is the pump efficiency
- $\eta_{pipe,p}$ is the penstock efficiency in pumping mode
- □ So, the total pumped volume of water is

$$V_{u} = \frac{E_{in}}{\rho g h} \cdot \eta_{trans} \cdot \eta_{motor} \cdot \eta_{pump} \cdot \eta_{pipe,p}$$

The *pumping-mode efficiency* is therefore:

$$\eta_p = \frac{E_s}{E_{in}} = \eta_{trans} \cdot \eta_{motor} \cdot \eta_{pump} \cdot \eta_{pipe,p}$$

Generating-Mode Efficiency

60

Efficiency of the generating operation is given by

$$\eta_g = \frac{E_{out}}{E_s} \cdot 100\%$$

 Due to frictional losses in the penstock, the hydraulic energy that reaches the turbine is

$$E_{in,t} = E_s \cdot \eta_{pipe,g}$$

The amount of rotational energy at the turbine output/generator input is

$$E_{in,g} = E_{in,t} \cdot \eta_t = E_s \cdot \eta_{pipe,g} \cdot \eta_t$$

 After generator and step-up transformer losses, the energy output to the grid is

$$E_{out} = E_{in,g} \cdot \eta_{gen} \cdot \eta_{trans}$$
$$E_{out} = E_s \cdot \eta_{pipe,g} \cdot \eta_t \cdot \eta_{gen} \cdot \eta_{trans}$$

Generating-Mode Efficiency

Generating mode efficiency is

$$\eta_g = \frac{E_{out}}{E_s} = \eta_{pipe,g} \cdot \eta_t \cdot \eta_{gen} \cdot \eta_{trans}$$

The overall round-trip efficiency is therefore

$$\eta_{rt} = \frac{E_{out}}{E_{in}} = \eta_p \cdot \eta_g$$

 $\eta_{rt} = \eta_{trans} \cdot \eta_{motor} \cdot \eta_{pump} \cdot \eta_{pipe,p} \cdot \eta_{pipe,g} \cdot \eta_t \cdot \eta_{gen} \cdot \eta_{trans}$

Pumping and Generating Times

- Due to losses, charging/discharging times differ, even for equal grid-side power input/output
 - Energy flows in from the grid faster than it is stored in the upper reservoir
 - Energy flows out of storage faster than it is delivered to the grid
- **Charging (pumping) time**:

$$t_p = \frac{E_{in}}{P_{in}} = \frac{E_s}{\eta_p P_{in}}$$
$$t_p = \frac{V_u \rho g h}{\eta_p P_{in}}$$

Discharging (generating) time:

$$t_g = \frac{E_{out}}{P_{out}} = \frac{E_s \eta_g}{P_{out}}$$
$$t_g = \frac{V_u \rho g h \eta_g}{P_{out}}$$

Pumping and Generating Times

63

Ratio of generation to pumping time:

$$\frac{t_g}{t_p} = \frac{V_u \rho g h \eta_g}{P_{out}} \frac{\eta_p P_{in}}{V_u \rho g h} = \frac{P_{in}}{P_{out}} \eta_g \eta_p$$
$$\frac{t_g}{t_p} = \frac{P_{in}}{P_{out}} \eta_{rt}$$

For equal input and output power, this becomes

$$\frac{t_g}{t_p} = \eta_{rt}$$

That is, the ratio of discharging to charging time is equal to the round-trip efficiency

Raccoon Mountain

- Marion County, TN
- Open-loop PHES
 - Mountaintop upper reservoir
 - 46x10⁶ m³ of water
 - Tennessee River is lower reservoir
- **Power**: 1652 MW
 - 4 x 413 MW pump/turbine units
- *Energy*: 36.3 GWh
- Pump/turbines: single-stage reversible Francis
- **RT efficiency**: 79%
- Commissioned: 1978
- Penstock diameter: 10.7 m
- Head: 273 317 m

- □ *Generating time*: 22 hours
- Pumping time: 28 hours
- Usage: peaking generation, grid balancing

Bath County

- Open-loop PHES
- World's largest PHES facility
- Bath County, VA
 - Upper reservoir: 44×10⁶ m³
 - Lower reservoir: 34×10⁶ m³
- *Generating power*: 3 GW
 6 x 500 MW
- *Pumping power*: 2.88 GW
 6 x 480 MW
- Energy: 30.9 GWh
- □ Generating time: 10.3 hrs
- **RT efficiency**: 78%
- *Head*: 350 400 m
- Commissioned: 1985

- *Pump/turbines*: single-stage reversible Francis
- Penstocks:
 - **3** x 8.7 m x 1000 m tunnels to
 - **3** x 8.7 m 300 m vertical shafts to
 - **6** x 5.5 m x 300 m tunnels
- Generating flow rate: 850 m³/s
- □ **Pumping flow rate**: 800 m³/s
- Usage: daily load following and peaking
 - Pumping at night, generating during the day

Goldisthal

- Open-loop PHES
- Goldisthal, Germany
 - Upper reservoir: 12×10⁶ m³
 - Lower reservoir: $18.3 \times 10^6 \text{ m}^3$
- *Power*: 1060 MW
 4 x 265 MW
- Energy: 8.48 GWh
- Generating time: 8 hrs
- □ *RT efficiency*: >80%
- *Head*: 280 325 m

Commissioned: 2004

Pump/turbines:

- single-stage reversible Francis
- Two fixed-speed, two *adjustable-speed*
- Penstocks: 2 x 6.2 m x 820 m tunnels
- Tailrace tunnels: 2 x 8.2 m x 277 m
- □ *Max flow rate*:
 - Generating: 400 m³/s
 - Pumping: 320 m³/s
- Usage: load-following, peak generation, regulation, black start

Disadvantages of PHES

Disadvantages of PHES

- Environmental issues
 - Water usage
 - River/habitat disruption
- Head variation
 - Pressure drops as upper reservoir drains
 - Efficiency may vary throughout charge/discharge cycle
 - Particularly an issue for lower-head plants with steep, narrow upper reservoirs
- Siting options are limited
 - Available water
 - Favorable topography
 - Large land area
- Possible alternative potential energy storage:
 - Rail energy storage

70

Rail energy storage

- Electric-motor-driven railcars
- Weights are shuttled up and down an incline between upper and lower storage yards
- Power input drives motors to move weights up the track
- Regenerative braking on the way down supplies power to the grid
- Weights are loaded and unloaded at storage yards
 - Large quantities of energy can be stored with few trains

Advantages of Rail Energy Storage

- More siting options than for PHES
 - Open space
 - Elevation change
 - No need for water or topography conducive to reservoirs
- Lower capital cost than PHES
- Easily scalable
- Efficient
 - **R**T efficiency: 78% 86%
 - Constant efficiency, independent of SoC
- No standby losses
 No evaporation/leakage

ARES North America

- Scale prototype project constructed in Tehachapi, CA
- 50 MW frequency regulation project planned for southern Nevada

ARES Nevada

- Location: BLM land, Pahrump, NV
- Power: 50 MW
- Energy: 12.5 MWh
- Generating time at rated power: 15 min
- Track length: 9 km (5.5 mi)
- **D** Elevation difference: 610 m (2000 ft)
- Total mass: 8.7 x 10⁶ kg (9600 US tons)
- **D** Footprint: 46 acres
- **D** Status: licensing, permitting, and environmental review phase

Three categories of rail energy storage plants proposed by ARES:

- Small
 - 20 50 MW
 - Ancillary services only
- Intermediate
 - 50 200 MW
 - Ancillary services, integration of renewables
- Grid-scale
 - 200 MW 3 GW
 - 4 16 hours of storage at full power

- Conceptual grid-scale storage facility (as proposed by ARES)
 - Power: 670 MW
 - Energy: 5360 MWh
 - Discharge time: 8 hr
 - Elevation differential: 915 m (3000 ft)
 - Five tracks
 - Length: 13 km (8 mi)
 - Grade: 7.5%
 - 140 4-car shuttle trains
 - 11,400 concrete weights
 - Mass of each: 212 x 10³ kg (234 US tons)
 - Total mass: 2.42 x 10⁹ kg (2.67 x 10⁶ tons)
 - Capital costs:
 - \$1350/kW
 - \$168/kWh