
ESE 471 – Energy Storage Systems

SECTION 3: PUMPED-HYDRO 
ENERGY STORAGE
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Potential Energy Storage

 Energy can be stored as potential energy 
 Consider a mass, 𝑚𝑚, elevated to a height, ℎ
 Its potential energy increase is

𝐸𝐸 = 𝑚𝑚𝑚𝑚ℎ

where 𝑚𝑚 = 9.81 𝑚𝑚/𝑠𝑠2 is gravitational 
acceleration

 Lifting the mass requires an input of work 
equal to (at least) the energy increase of 
the mass
 We put energy in to lift the mass
 That energy is stored in the mass as potential energy



K. Webb ESE 471

4

Potential Energy Storage

 If we allow the mass to fall back to its 
original height, we can capture the 
stored potential energy
 Potential energy converted to kinetic 

energy as the mass falls
 Kinetic energy can be captured to perform 

work
 Perhaps converted to rotational energy, 

and then to electrical energy
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Pumped-Hydro Energy Storage

 Potential energy 
storage in 
elevated mass is 
the basis for 
pumped-hydro 
energy storage 
(PHES)
 Energy used to 

pump water from
a lower reservoir to an upper reservoir

 Electrical energy input to motors converted to rotational 
mechanical energy

 Pumps transfer energy to the water as kinetic, then 
potential energy
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Pumped-Hydro Energy Storage

 Energy stored in 
the water of the 
upper reservoir is 
released as water 
flows to the lower 
reservoir
 Potential energy 

converted to 
kinetic energy

 Kinetic energy of falling water turns a turbine
 Turbine turns a generator
 Generator converts mechanical energy to electrical energy
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History of PHES

 PHES first introduced in Italy and Switzerland in the 
1890’s
 Favorable topography in the Alps
 Four-unit (quaternary) systems
 Turbine
 Generator
Motor 
 Pump
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History of PHES

 First PHES plant in the US:
 Rocky River hydro plant, 

New Milford, CT
 Water from the Housatonic 

River pumped up into 
Candlewood Lake

 230 feet of head
 6 billion ft3 of water
 Two-unit (binary) system
 Reversible pump/turbine –

one of the first
 29 MW of generating power
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Pumped-Hydro Storage Today

 PHES accounts for 99% of worldwide energy storage
 Total power: ~127 GW
 Total energy: ~740 TWh
 Power of individual plants: 10s of MW – 3 GW 

 In the US:
 ~40 operational PHES plants
 75% are > 500 MW – strong economies of scale
 Total power: ~23 GW
 Current plans for an additional ~6 GW

 Total energy: ~220 TWh
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PHES Fundamentals

 Two storage 
reservoirs 
 Upper and lower
 Lower reservoir may 

be a river or even 
the sea

 Separated by a height, ℎ
 The hydraulic head
 Assume ℎ ≫ depth of the upper reservoir
 ℎ remains constant throughout charge/discharge cycle

 Upper reservoir can store a volume of water, 𝑉𝑉𝑢𝑢
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PHES Fundamentals - Energy

 Total stored energy (assuming it is all at a height, h)

𝐸𝐸𝑡𝑡 = 𝑚𝑚𝑚𝑚ℎ = 𝑉𝑉𝑢𝑢𝜌𝜌𝑚𝑚ℎ

where 𝜌𝜌 = 1000 𝑘𝑘𝑚𝑚/𝑚𝑚3 is the density of water

 Verifying that we do, in fact, have units of energy

𝐸𝐸𝑡𝑡 = 𝑚𝑚3 𝑘𝑘𝑚𝑚
𝑚𝑚3

𝑚𝑚
𝑠𝑠2 𝑚𝑚 =

𝑘𝑘𝑚𝑚 ⋅ 𝑚𝑚
𝑠𝑠2 𝑚𝑚 = 𝑁𝑁 ⋅ 𝑚𝑚 = 𝐽𝐽

 The energy density – energy per unit volume – of the stored water is 
therefore

𝑒𝑒𝑣𝑣 =
𝐸𝐸𝑡𝑡
𝑉𝑉𝑢𝑢

= 𝜌𝜌𝑚𝑚ℎ

𝑒𝑒𝑣𝑣 =
𝑘𝑘𝑚𝑚
𝑚𝑚3

𝑚𝑚
𝑠𝑠2 𝑚𝑚 =

𝑘𝑘𝑚𝑚 ⋅ 𝑚𝑚2

𝑠𝑠2
1
𝑚𝑚3 =

𝐽𝐽
𝑚𝑚3
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PHES Fundamentals – Hydrostatic Pressure

 The energy density of the stored water is also the 
hydrostatic pressure at the level of the lower 
reservoir

𝑝𝑝 = 𝜌𝜌𝑚𝑚ℎ

𝑝𝑝 =
𝑘𝑘𝑚𝑚
𝑚𝑚3

𝑚𝑚
𝑠𝑠2
𝑚𝑚 =

𝑘𝑘𝑚𝑚 ⋅ 𝑚𝑚
𝑠𝑠2

1
𝑚𝑚2 =

𝑁𝑁
𝑚𝑚2 = 𝑃𝑃𝑃𝑃

 This is the energy density of the water at the turbine
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PHES Fundamentals - Power

 The rate at which energy is transferred to the 
turbine (from the pump) is the power extracted 
from (delivered to) the water

𝑃𝑃 = 𝑒𝑒𝑣𝑣𝑄𝑄 = 𝑝𝑝𝑄𝑄 = 𝜌𝜌𝑚𝑚ℎ𝑄𝑄

where 𝑄𝑄 is the volumetric flow rate of the water

𝑃𝑃 =
𝐽𝐽
𝑚𝑚3

𝑚𝑚3

𝑠𝑠
=
𝐽𝐽
𝑠𝑠

= 𝑊𝑊

 This is the total power available at the turbine
 Greater than (less than) the power actually delivered to 

the turbine (from the pump), due to inefficiencies
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A Generalized Power Relation

 Note that  power is given by the product of a driving 
potential, or effort, 𝑝𝑝, and a flow, 𝑄𝑄

𝑃𝑃 = 𝑝𝑝𝑄𝑄

 Similar to power for a translational mechanical system
𝑃𝑃 = 𝐹𝐹𝐹𝐹

where the effort is force, 𝐹𝐹, and the flow is velocity, 𝐹𝐹

 Or, a rotational mechanical system
𝑃𝑃 = 𝜏𝜏𝜏𝜏

where the effort is torque, 𝜏𝜏, and the flow is angular 
velocity, 𝐹𝐹
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A Generalized Power Relation

 Also similar to an electrical system

𝑃𝑃 = 𝑉𝑉𝑉𝑉

where the effort is voltage, 𝑉𝑉, and the flow is current, 𝑉𝑉

 In general, for systems in any energy domain, power 
is given by the product of effort and flow

𝑃𝑃 = 𝑒𝑒 ⋅ 𝑓𝑓
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Energy & Power vs. Head

 The total stored energy and available power are
𝐸𝐸𝑡𝑡 = 𝑉𝑉𝑢𝑢𝜌𝜌𝑚𝑚ℎ
𝑃𝑃 = 𝜌𝜌𝑚𝑚ℎ𝑄𝑄

 Both are proportional to head, ℎ
 Large vertical separation between lower and upper reservoirs is 

desirable
 Limited by topography
 Limited by equipment – pump and turbine

 Specific energy is also proportional to head:

𝑒𝑒𝑚𝑚 =
𝐸𝐸𝑡𝑡
𝑚𝑚𝑢𝑢

=
𝐸𝐸𝑡𝑡
𝑉𝑉𝑢𝑢𝜌𝜌

=
𝑉𝑉𝑢𝑢𝜌𝜌𝑚𝑚ℎ
𝑉𝑉𝑢𝑢𝜌𝜌

= 𝑚𝑚ℎ

 As is energy density:

𝑒𝑒𝑣𝑣 =
𝐸𝐸𝑡𝑡
𝑉𝑉𝑢𝑢

= 𝜌𝜌𝑚𝑚ℎ
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Specific Energy & Energy Density vs. Head

 Most PHES plants have head in the range of 100 – 1000 m
 Using 300 m as a representative head, gives:

 Energy density for 𝒉𝒉 = 𝟑𝟑𝟑𝟑𝟑𝟑𝒎𝒎:

𝑒𝑒𝑣𝑣 = 𝜌𝜌𝑚𝑚ℎ = 1000
𝑘𝑘𝑚𝑚
𝑚𝑚3 ⋅ 9.81

𝑚𝑚
𝑠𝑠2
⋅ 300 𝑚𝑚

𝑒𝑒𝑣𝑣 = 2.9
𝑀𝑀𝐽𝐽
𝑚𝑚3 ⋅

1
3600

𝑊𝑊ℎ
𝐽𝐽 = 𝟖𝟖𝟖𝟖𝟖𝟖

𝑾𝑾𝒉𝒉
𝒎𝒎𝟑𝟑

𝑒𝑒𝑣𝑣 = 818
𝑊𝑊ℎ
𝑚𝑚3 ⋅ 1

𝑚𝑚3

1000 𝐿𝐿 = 𝟑𝟑.𝟖𝟖𝟖𝟖𝟖𝟖
𝑾𝑾𝒉𝒉
𝑳𝑳

 Specific energy for 𝒉𝒉 = 𝟑𝟑𝟑𝟑𝟑𝟑𝒎𝒎:

𝑒𝑒𝑚𝑚 = 𝑚𝑚ℎ = 9.81
𝑚𝑚
𝑠𝑠2 ⋅ 300 𝑚𝑚 = 4905

𝑚𝑚2

𝑠𝑠2 = 2.9
𝑘𝑘𝐽𝐽
𝑘𝑘𝑚𝑚

𝑒𝑒𝑚𝑚 = 2.9
𝑘𝑘𝐽𝐽
𝑘𝑘𝑚𝑚 ⋅

1
3600

𝑊𝑊ℎ
𝐽𝐽 = 𝟑𝟑.𝟖𝟖𝟖𝟖𝟖𝟖

𝑾𝑾𝒉𝒉
𝒌𝒌𝒌𝒌
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Specific Energy & Energy Density

 Comparison of PHES energy density and specific energy 
with other energy storage/sources

PHES
h = 100 m

PHES
h = 500 m

PHES
h = 1000m

Li-ion 
Battery

Natural 
Gas Gasoline Units

Energy 
Density 0.273 1.36 2.73 400 10.1 9,500 Wh/L

Specific 
Energy 0.273 1.36 2.73 150 15,400 13,000 Wh/kg

 Even at high heads, PHES has very low energy density
 Large reservoirs are required
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PHES Applications

 Pumped hydro plants can supply large amounts of 
both power and energy

 Can quickly respond to large load variations 
 Uses for PHES:

 Peak shaving/load leveling
 Help meet loads during peak hours
 Generating while releasing water from upper reservoir
 Supplying expensive energy

 Store energy during off-peak hours
 Pumping water to the upper reservoir
 Consuming inexpensive energy
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PHES Applications

 Frequency regulation
 Power variation to track short-term load variations
 Helps maintain grid frequency at 60 Hz (50 Hz)

 Voltage support
 Reactive power flow control to help maintain desired 

grid voltage
 Varying the field excitation voltage of the generator/motor

 Even at zero real power – not pumping or generating –
unloaded motor/generator can serve as synchronous 
condenser
 Pump/turbine spinning in air
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PHES Applications

 Black start capability 
 Ability to start generating without an external power 

supply
 Bring the grid back online after a blackout

 Spinning reserve
 Spare online generating capacity
 Capable of responding quickly – within seconds to 

minutes – to the need for additional generation
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Components of a PHES Plant
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PHES Components – Reservoirs 

 Upper and lower 
reservoirs separated by 
an elevation difference

 Two configurations:
 Open-loop:
 At least one of the 

reservoirs connected to a 
source of natural inflow

 Natural lake, river, river-fed reservoir, the sea
 Closed-loop:
 Neither reservoir has a natural source of inflow
 Initial filling and compensation of leakage and evaporation 

provided by ground water wells
 Less common than open-loop



K. Webb ESE 471

26

PHES Components – Penstock 

 Penstock
 Conduit for water flowing 

between reservoirs and to 
the pump/generator

 Above-ground pipes or 
below ground shafts/tunnels
 5 -10 m diameter is common
 One plant may have several penstocks
 Typically steel- or concrete-lined, though may be unlined

 Flow velocity range of 1 – 5 m/s is common
 Tradeoff between cost and efficiency for a given flow rate, 𝑄𝑄
 Larger cross-sectional area:

 Slower flow
 Lower loss
 Higher cost
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PHES Components 

 Tailrace tunnel
 Typically, larger diameter 

than penstocks
 Lower pressure
 Lower flow rate
 Downward slope from lower 

reservoir to pump/turbine
 Inlet head helps prevent 

cavitation in pumping mode

 Surge tanks
 Accumulator tanks to absorb high pressure transients during 

startup and mode changeover
 May be located on penstock or tailrace
 Especially important for longer tunnels
 Hydraulic bypass capacitors



K. Webb ESE 471

28

PHES Components – Power House

 Power house
 Contains pump/turbines 

and motor/generators
 Often underground
 Typically below the level 

of the lower reservoir to 
provide required pump 
inlet head

 Three possible configurations
 Binary set:  one pump/turbine and one motor/generator
 Ternary set: one pump, one turbine, and one motor/generator
 Quaternary set: separate pump, turbine, motor, and generator
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Power Plant Configurations – Quaternary Set

 Quaternary set
 Pump driven by a motor
 Generator driven by a turbine
 Pump and turbine are 

completely decoupled
 Possibly separate 

penstocks/tailrace tunnels
 Most common configuration 

prior to 1920
 High equipment/infrastructure 

costs
 High efficiency
 Pump and turbine designed to 

optimize individual performance
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Power Plant Configurations – Ternary Set

 Ternary set
 Pump, turbine, and 

motor/generator all on a single 
shaft
 Pump and turbine rotate in the 

same direction
 Turbine rigidly coupled to the 

motor/generator
 Pump coupled to shaft with a 

clutch
 Popular design 1920 – 1960s

 Nowadays, used when head exceeds the usable range of a single-
stage pump/turbine
 High-head turbines (e.g., Pelton) can be used

 Pump and turbine designs can be individually optimized
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Power Plant Configurations – Ternary Set

 Ternary set
 Generating mode:
 Turbine spins generator
 Pump decoupled from the shaft 

and isolated with valves
 Pumping mode:
 Motor turns the pump
 Turbine spins in air, isolated with 

valves
 Both turbine and pump can 

operate simultaneously
 Turbine can be used for pump startup
 Both spin in the same direction
 Turbine brings pump up to speed and synchronized with grid, then 

shuts down
 Changeover time reduced
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Power Plant Configurations – Binary Set

 Binary set
 Single reversible 

pump/turbine coupled to a 
single motor/generator

 Most popular configuration 
for modern PHES

 Lowest cost configuration
 Less equipment
 Simplified hydraulic pathways
 Fewer valves, gates, controls, etc.

 Lower efficiency than for ternary or quaternary sets
 Pump/turbine runner design is a compromise between pump and 

turbine performance
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Power Plant Configurations – Binary Set

 Binary set
 Rotation is in opposite 

directions for pumping and 
generating

 Shaft and motor/generator 
must change directions 
when changing modes
 Slower changeover than for ternary or quaternary units

 Pump startup:
 Pump/turbine runner dewatered and spinning in air
Motor brings pump up to speed and in synchronism with the 

grid before pumping of water begins
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Turbines

 Hydro turbine design selection based on
 Head
 Flow rate

 PHES plants are typically sited to have large head
 Energy density is proportional to head
 Typically 100s of meters

 Reversible Francis pump/turbine
 Most common turbine for PHES applications
 Single-stage pump/turbines operate with heads up to 700 m

 For higher head:
 Multi-stage pump/turbines
 Ternary units with Pelton turbines



K. Webb ESE 471

37

Turbine Selection

Source: rivers.bee.oregonstate.edu/turbine-sizing
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Francis Turbine – Components 

 Spiral casing that feeds 
water from the penstock 
to the turbine runner

 Cross-sectional area 
decreases along the 
length of the casing
 Constant flow rate 

maintained along the 
length

 Volute casing (scroll casing)

Francis turbine casing – Grand Coulee:
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Francis Turbine – Components 

 Guide vanes and stay vanes
 Direct water flow from the casing into the runner
 Stay vanes are fixed
 Guide vanes, or wicket gates, are adjustable
 Open and close to control flow rate
 Power output modulated by controlling flow rate
 Set fully open for pumping mode

Source: Stahlkocher Source: Stahlkocher



K. Webb ESE 471

40

Francis Turbine – Components 

 Turbine runner
 Reaction turbine
 Pressure energy is extracted from 

the flow
 Pressure drops as flow passes 

through the runner
 Flow enters radially
 Flow exits axially
 Typically oriented with a 

vertical shaft

 Draft tube
 Diffuser that guides exiting flow 

to the tailrace
Source: Voith Siemens Hydro Power
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High-Head PHES

 Options for heads in 
excess of 700 m:
 Two-stage Francis 

pump/turbines
 Typically no wicket gates in 

two-stage configuration
 No mechanism for varying 

generating power

 Ternary unit with Pelton 
turbine

Two-stage pump/turbine:

Source: Alstom
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Pelton Turbines

 Pelton Turbine
 Suitable for heads up to 1000 m
 Impulse turbine
 Nozzles convert pressure energy to kinetic 

energy
 High-velocity jets impinge on the runner at 

atmospheric pressure

Source: Alstom

Source: BFL Hydro Power

 Kinetic energy 
transferred to the 
runner

 Water exits the turbine 
at low velocity

 Cannot be used for 
pumping
 Used as part of a 

ternary set
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Motor/Generator – Fixed-Speed

 Pump/turbine shaft connects to a motor/generator unit
 Above the turbine runner in typical vertical configuration

 Motor/generator type depends PHES category:
 Fixed-speed pump/turbine
 Variable-speed pump/turbine

 Fixed-speed pump/turbine
 Motor/generator operates at a fixed speed in both pumping 

and generating modes
 Synchronous motor/generator
 Rotation is synchronous with the AC grid frequency
 Stator windings connect to three-phase AC at grid frequency
 Rotor windings fed with DC excitation current via slip rings
 DC excitation current generated with thyristor AC/DC converters
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Motor/Generator

 Variable-speed (adjustable-speed) pump/turbine
 Rotational speed of motor/generator is adjustable
 Two options:

 Variable speed using a synchronous motor/generator (singly-fed)
 Doubly-fed asynchronous machine (DFAM)

 Variable-speed operation with synchronous motor/generator:

 Motor driven with variable frequency
 Decoupled from grid frequency by back-to-back converters
 Converters must be rated for full motor/generator power

 Large, expensive
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Motor/Generator – Variable-Speed

 Variable speed using doubly-fed asynchronous machines
 Field excitation fed with variable, low-frequency AC, not DC as in 

synchronous machines
 Static frequency converter generates variable AC

 Cycloconverter
 Back-to-back voltage-source converters

 Typically small speed range (e.g., ±10%)
 With cycloconverter generating variable-frequency excitation for 

rotor:

 Converters need not be sized for rated motor/generator power
 Only supply lower-power excitation to the rotor
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Motor/Generator – Variable-Speed

 DFAM with variable-frequency field excitation generated by 
back-to-back VSCs:

 The preferred configuration for large (>100 MW) PHES plants 
nowadays 

 Advantages of variable-speed plants
 Pump and turbine speeds can be independently varied to 

optimize efficiency over range of flow rate and head
 Pumping power can be varied in addition to generating power
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PHES for Frequency Regulation

 Frequency regulation
 Tracking short-term load variations 

to maintain grid frequency at 60 Hz 
(or 50 Hz)

 PHES plants can provide frequency 
regulation
 Different for fixed- or variable-speed plants

 Fixed-speed plants
 Generating mode
 Frequency regulation provided by rapidly varying power output 
 Power varied by using wicket gates to modulate flow rate
 Same as in conventional hydro plants

 Pumping mode
 Pump operates at rated power only – power input cannot be varied
 No frequency regulation in pumping mode
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Frequency Regulation – Variable-Speed

 Variable-speed plants
 Pump speed can be varied over 

some range, e.g. ±10%
 Pump power is proportional to 

pump speed cubed
 For ±10% speed variation, power is adjustable over ±30%

 Power variation in pumping mode can track rapid load 
variations

 Frequency regulation can be provided in both modes 
of operation
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Frequency Regulation – Ternary Sets

 Fixed-speed ternary sets
 Generating mode
Wicket gates in turbine control flow rate to vary power 

output 
 Pump disconnected from shaft

 Pumping mode
 Hydraulic short circuit provides power modulation
 Pump and generator both turn on the shaft
 Pump operates at full load
 Generator operates at variable partial load
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Hydraulic Short Circuit

 Kops II PHES plant in Austrian Alps:

Source: Vorarlberger Illvwerke AG
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PHES System Efficiency

 Round-trip efficiency:

𝜂𝜂𝑟𝑟𝑡𝑡 =
𝐸𝐸𝑜𝑜𝑢𝑢𝑡𝑡
𝐸𝐸𝑖𝑖𝑖𝑖

⋅ 100%

where 
 𝐸𝐸𝑖𝑖𝑖𝑖 is the electrical energy that flows in from the grid to the plant in pumping 

mode
 𝐸𝐸𝑜𝑜𝑢𝑢𝑡𝑡 is the electrical energy that flows from the plant to the grid in 

generating mode

 Typical round-trip efficiency for PHES plants in the range of 70% – 80%

 PHES loss mechanisms
 Transformer
 Motor/generator
 Pump/turbine
 Water conduit
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PHES Losses

 Transformers
 Pumped hydro plants connect to the AC electrical grid
 Transformers step voltage between high voltage on the grid side 

to lower voltage at the motor/generator

 Transformer loss mechanisms:
 Winding resistance 
 Leakage flux
 Hysteresis and eddy currents in the core
 Magnetizing current – finite core permeability

 Power flows through transformers on the way into the 
storage plant and again on the way out

 Typical loss: ~0.5%
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PHES Losses

 Motor/generator losses
 Electrical resistance
 Mechanical friction
 Typical loss: ~2%

 Pump/turbine
 Single runner in binary sets
 Typically lower efficiency, particularly for fixed-speed 

operation – design of both compromised
 Separate runners in ternary, quaternary sets
 Higher efficiency

 Typical loss: ~7% - 10%
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PHES Losses

 Penstock
 Frictional loss of water flowing through the conduit
 Major losses along penstock
 Minor losses from bends, penstock inlet, turbine inlet, etc.

 Dependent on 
 Flow velocity
 Penstock diameter
 Penstock length
 Penstock lining  – steel, concrete, etc.

 High head is desirable, but long penstocks are not
 Steeper penstocks reduce frictional losses for a given head
 Typical length-to-head ratio:  4:1 – 12:1

 Typical loss: ~1%
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PHES Losses

 Typical losses for PHES:
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Pumping-Mode Efficiency

 Efficiency of the pumping operation is given by

𝜂𝜂𝑝𝑝 =
𝐸𝐸𝑠𝑠
𝐸𝐸𝑖𝑖𝑖𝑖

⋅ 100%

where
 𝐸𝐸𝑠𝑠 is the energy stored

 Potential energy of the volume of water, 𝑉𝑉𝑢𝑢, pumped to the upper reservoir

𝐸𝐸𝑠𝑠 = 𝑉𝑉𝑢𝑢𝜌𝜌𝑚𝑚ℎ

 𝐸𝐸𝑖𝑖𝑖𝑖 is the energy input from the grid during the pumping operation
 The mechanical energy input to the pump is

𝐸𝐸𝑖𝑖𝑖𝑖,𝑝𝑝𝑢𝑢𝑚𝑚𝑝𝑝 = 𝐸𝐸𝑖𝑖𝑖𝑖 ⋅ 𝜂𝜂𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑠𝑠 ⋅ 𝜂𝜂𝑚𝑚𝑜𝑜𝑡𝑡𝑜𝑜𝑟𝑟
where
 𝜂𝜂𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑠𝑠 and 𝜂𝜂𝑚𝑚𝑜𝑜𝑡𝑡𝑜𝑜𝑟𝑟 are the efficiencies of the transformer and motor, 

respectively
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Pumping-Mode Efficiency

 The volume of water pumped to the upper reservoir is

𝑉𝑉𝑢𝑢 =
𝐸𝐸𝑖𝑖𝑖𝑖,𝑝𝑝𝑢𝑢𝑚𝑚𝑝𝑝

𝜌𝜌𝑚𝑚ℎ
⋅ 𝜂𝜂𝑝𝑝𝑢𝑢𝑚𝑚𝑝𝑝 ⋅ 𝜂𝜂𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝,𝑝𝑝

where
 𝜂𝜂𝑝𝑝𝑢𝑢𝑚𝑚𝑝𝑝 is the pump efficiency
 𝜂𝜂𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝,𝑝𝑝 is the penstock efficiency in pumping mode

 So, the total pumped volume of water is

𝑉𝑉𝑢𝑢 =
𝐸𝐸𝑖𝑖𝑖𝑖
𝜌𝜌𝑚𝑚ℎ

⋅ 𝜂𝜂𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑠𝑠 ⋅ 𝜂𝜂𝑚𝑚𝑜𝑜𝑡𝑡𝑜𝑜𝑟𝑟 ⋅ 𝜂𝜂𝑝𝑝𝑢𝑢𝑚𝑚𝑝𝑝 ⋅ 𝜂𝜂𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝,𝑝𝑝

 The pumping-mode efficiency is therefore:

𝜂𝜂𝑝𝑝 =
𝐸𝐸𝑠𝑠
𝐸𝐸𝑖𝑖𝑖𝑖

= 𝜂𝜂𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑠𝑠 ⋅ 𝜂𝜂𝑚𝑚𝑜𝑜𝑡𝑡𝑜𝑜𝑟𝑟 ⋅ 𝜂𝜂𝑝𝑝𝑢𝑢𝑚𝑚𝑝𝑝 ⋅ 𝜂𝜂𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝,𝑝𝑝
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Generating-Mode Efficiency

 Efficiency of the generating operation is given by

𝜂𝜂𝑔𝑔 =
𝐸𝐸𝑜𝑜𝑢𝑢𝑡𝑡
𝐸𝐸𝑠𝑠

⋅ 100%

 Due to frictional losses in the penstock, the hydraulic energy that reaches 
the turbine is

𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝐸𝐸𝑠𝑠 ⋅ 𝜂𝜂𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝,𝑔𝑔

 The amount of rotational energy at the turbine output/generator input is 

𝐸𝐸𝑖𝑖𝑖𝑖,𝑔𝑔 = 𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡 ⋅ 𝜂𝜂𝑡𝑡 = 𝐸𝐸𝑠𝑠 ⋅ 𝜂𝜂𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝,𝑔𝑔 ⋅ 𝜂𝜂𝑡𝑡

 After generator and step-up transformer losses, the energy output to the 
grid is

𝐸𝐸𝑜𝑜𝑢𝑢𝑡𝑡 = 𝐸𝐸𝑖𝑖𝑖𝑖,𝑔𝑔 ⋅ 𝜂𝜂𝑔𝑔𝑝𝑝𝑖𝑖 ⋅ 𝜂𝜂𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑠𝑠

𝐸𝐸𝑜𝑜𝑢𝑢𝑡𝑡 = 𝐸𝐸𝑠𝑠 ⋅ 𝜂𝜂𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝,𝑔𝑔 ⋅ 𝜂𝜂𝑡𝑡 ⋅ 𝜂𝜂𝑔𝑔𝑝𝑝𝑖𝑖 ⋅ 𝜂𝜂𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑠𝑠



K. Webb ESE 471

61

Generating-Mode Efficiency

 Generating mode efficiency is

𝜂𝜂𝑔𝑔 =
𝐸𝐸𝑜𝑜𝑢𝑢𝑡𝑡
𝐸𝐸𝑠𝑠

= 𝜂𝜂𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝,𝑔𝑔 ⋅ 𝜂𝜂𝑡𝑡 ⋅ 𝜂𝜂𝑔𝑔𝑝𝑝𝑖𝑖 ⋅ 𝜂𝜂𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑠𝑠

 The overall round-trip efficiency is therefore

𝜂𝜂𝑟𝑟𝑡𝑡 =
𝐸𝐸𝑜𝑜𝑢𝑢𝑡𝑡
𝐸𝐸𝑖𝑖𝑖𝑖

= 𝜂𝜂𝑝𝑝 ⋅ 𝜂𝜂𝑔𝑔

𝜂𝜂𝑟𝑟𝑡𝑡 = 𝜂𝜂𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑠𝑠 ⋅ 𝜂𝜂𝑚𝑚𝑜𝑜𝑡𝑡𝑜𝑜𝑟𝑟 ⋅ 𝜂𝜂𝑝𝑝𝑢𝑢𝑚𝑚𝑝𝑝 ⋅ 𝜂𝜂𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝,𝑝𝑝 ⋅ 𝜂𝜂𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝,𝑔𝑔 ⋅ 𝜂𝜂𝑡𝑡 ⋅ 𝜂𝜂𝑔𝑔𝑝𝑝𝑖𝑖 ⋅ 𝜂𝜂𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑠𝑠
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Pumping and Generating Times

 Due to losses, charging/discharging times differ, even for equal grid-side 
power input/output
 Energy flows in from the grid faster than it is stored in the upper reservoir
 Energy flows out of storage faster than it is delivered to the grid

 Charging (pumping) time:

𝑡𝑡𝑝𝑝 =
𝐸𝐸𝑖𝑖𝑖𝑖
𝑃𝑃𝑖𝑖𝑖𝑖

=
𝐸𝐸𝑠𝑠

𝜂𝜂𝑝𝑝𝑃𝑃𝑖𝑖𝑖𝑖

𝑡𝑡𝑝𝑝 =
𝑉𝑉𝑢𝑢𝜌𝜌𝑚𝑚ℎ
𝜂𝜂𝑝𝑝𝑃𝑃𝑖𝑖𝑖𝑖

 Discharging (generating) time:

𝑡𝑡𝑔𝑔 =
𝐸𝐸𝑜𝑜𝑢𝑢𝑡𝑡
𝑃𝑃𝑜𝑜𝑢𝑢𝑡𝑡

=
𝐸𝐸𝑠𝑠𝜂𝜂𝑔𝑔
𝑃𝑃𝑜𝑜𝑢𝑢𝑡𝑡

𝑡𝑡𝑔𝑔 =
𝑉𝑉𝑢𝑢𝜌𝜌𝑚𝑚ℎ𝜂𝜂𝑔𝑔
𝑃𝑃𝑜𝑜𝑢𝑢𝑡𝑡
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Pumping and Generating Times

 Ratio of generation to pumping time:

𝑡𝑡𝑔𝑔
𝑡𝑡𝑝𝑝

=
𝑉𝑉𝑢𝑢𝜌𝜌𝑚𝑚ℎ𝜂𝜂𝑔𝑔
𝑃𝑃𝑜𝑜𝑢𝑢𝑡𝑡

𝜂𝜂𝑝𝑝𝑃𝑃𝑖𝑖𝑖𝑖
𝑉𝑉𝑢𝑢𝜌𝜌𝑚𝑚ℎ

=
𝑃𝑃𝑖𝑖𝑖𝑖
𝑃𝑃𝑜𝑜𝑢𝑢𝑡𝑡

𝜂𝜂𝑔𝑔𝜂𝜂𝑝𝑝

𝑡𝑡𝑔𝑔
𝑡𝑡𝑝𝑝

=
𝑃𝑃𝑖𝑖𝑖𝑖
𝑃𝑃𝑜𝑜𝑢𝑢𝑡𝑡

𝜂𝜂𝑟𝑟𝑡𝑡

 For equal input and output power, this becomes

𝑡𝑡𝑔𝑔
𝑡𝑡𝑝𝑝

= 𝜂𝜂𝑟𝑟𝑡𝑡

 That is, the ratio of discharging to charging time is equal to the 
round-trip efficiency
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Raccoon Mountain

 Marion County, TN
 Open-loop PHES

 Mountaintop upper reservoir
 46x106 m3 of water

 Tennessee River is lower reservoir

 Generating time: 22 hours
 Pumping time: 28 hours
 Usage: peaking generation, grid 

balancing

 Power: 1652 MW
 4 x 413 MW 

pump/turbine units
 Energy: 36.3 GWh
 Pump/turbines: 

single-stage 
reversible Francis

 RT efficiency: 79%
 Commissioned: 1978
 Penstock diameter: 

10.7 m
 Head: 273 – 317 m
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Bath County

 Open-loop PHES
 World’s largest PHES facility
 Bath County, VA

 Upper reservoir: 44×106 m3

 Lower reservoir: 34×106 m3

 Generating power: 3 GW
 6 x 500 MW

 Pumping power: 2.88 GW
 6 x 480 MW

 Energy: 30.9 GWh
 Generating time: 10.3 hrs
 RT efficiency: 78%
 Head: 350 – 400 m
 Commissioned: 1985

 Pump/turbines: single-stage 
reversible Francis

 Penstocks: 
 3 x 8.7 m x 1000 m tunnels to 
 3 x 8.7 m 300 m vertical shafts to 
 6 x 5.5 m x 300 m tunnels

 Generating flow rate: 850 m3/s
 Pumping flow rate: 800 m3/s
 Usage: daily load following and 

peaking
 Pumping at night, generating 

during the day
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Goldisthal
 Open-loop PHES
 Goldisthal, Germany

 Upper reservoir: 12×106 m3

 Lower reservoir: 18.3×106 m3

 Power: 1060 MW
 4 x 265 MW

 Energy: 8.48 GWh
 Generating time: 8 hrs
 RT efficiency: >80%
 Head: 280 – 325 m

 Commissioned: 2004
 Pump/turbines: 

 single-stage reversible Francis
 Two fixed-speed, two adjustable-speed

 Penstocks: 2 x 6.2 m x 820 m tunnels
 Tailrace tunnels: 2 x 8.2 m x 277 m
 Max flow rate: 

 Generating: 400 m3/s
 Pumping: 320 m3/s

 Usage: load-following, peak 
generation, regulation, black start
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Disadvantages of PHES

 Disadvantages of PHES
 Environmental issues
 Water usage
 River/habitat disruption

 Head variation
 Pressure drops as upper reservoir drains
 Efficiency may vary throughout charge/discharge cycle
 Particularly an issue for lower-head plants with steep, narrow upper 

reservoirs
 Siting options are limited
 Available water
 Favorable topography
 Large land area

 Possible alternative potential energy storage:
 Rail energy storage
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Rail Energy Storage

 Rail energy storage
 Electric-motor-driven railcars 
 Weights are shuttled up and down an incline between upper and 

lower storage yards
 Power input drives motors to move weights up the track
 Regenerative 

braking on the way 
down supplies 
power to the grid

 Weights are loaded 
and unloaded at 
storage yards
 Large quantities of 

energy can be 
stored with few 
trains
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Advantages of Rail Energy Storage

 More siting options than for PHES
 Open space
 Elevation change
 No need for water or 

topography conducive to 
reservoirs

 Lower capital cost than PHES
 Easily scalable
 Efficient

 RT efficiency: 78% - 86%
 Constant efficiency, 

independent of SoC
 No standby losses

 No evaporation/leakage
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Rail Energy Storage

 ARES North America
 Scale prototype project constructed in Tehachapi, CA
 50 MW frequency regulation project planned for southern 

Nevada

 ARES Nevada
 Location: BLM land, Pahrump, NV
 Power: 50 MW
 Energy: 12.5 MWh
 Generating time at rated power: 15 min
 Track length: 9 km (5.5 mi)
 Elevation difference: 610 m (2000 ft)
 Total mass: 8.7 x 106 kg (9600 US tons)
 Footprint: 46 acres
 Status: licensing, permitting, and environmental review phase
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Rail Energy Storage

 Three categories of rail energy storage plants proposed 
by ARES:
 Small 
 20 – 50 MW
 Ancillary services only

 Intermediate
 50 – 200 MW
 Ancillary services, 

integration of 
renewables

 Grid-scale
 200 MW – 3 GW
 4 – 16 hours of storage at full power
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Rail Energy Storage

 Conceptual grid-scale storage facility (as proposed by ARES)
 Power: 670 MW
 Energy: 5360 MWh
 Discharge time: 8 hr
 Elevation differential: 915 m (3000 ft)
 Five tracks
 Length: 13 km (8 mi)
 Grade: 7.5%

 140 4-car shuttle trains
 11,400 concrete weights
 Mass of each: 212 x 103 kg  (234 US tons)
 Total mass: 2.42 x 109 kg  (2.67 x 106 tons)

 Capital costs: 
 $1350/kW 
 $168/kWh
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