Shape Outlier Detection Using Pose Preserving Dynamic Shape Models

Chan-Su Lee and Ahmed Elgammal

Rutgers, The State University of New Jersey Department of Computer Science

Outline

Introduction

- Shape Outlier Detection for Visual Surveillance
- Previous works

Dynamic Shape Models

- Kinematics Manifold Embedding
- Decomposable Generative Models

Outlier Detection

- Shape Normalization
- Hole filling
- Outlier Detection
- Iterative Estimation of Shape Style and Outlier with Hole Filling

Experimental Results

- Outlier Detection in Fixed View
- Outlier Detection in Continuous View Variations

Conclusions & Future Works

Visual Surveillance System

Smart video surveillance system

 Requires fast, reliable and robust algorithms for moving object detection, tracking, and activity analysis

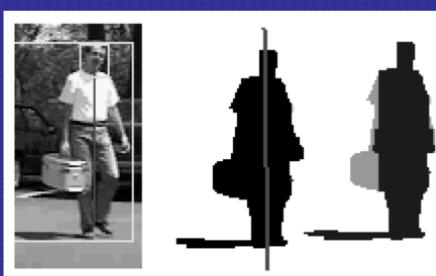
Block based approach

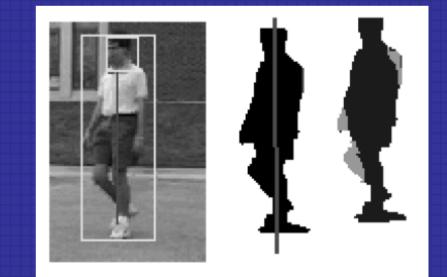
- Why shape outlier detection in visual surveillance ?
 - To monitor interactions between people and objects
 - To detect unusual event such as depositing an object, exchanging bags, or removing an object
 - Abnormal action detection

Decomposable Nonlinear Dynamic Shape Model

Previous Works

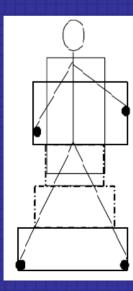
Static shape based approaches [Haritaoglu et al, ICCV 1999] Static shape analysis Carrying object detection based on symmetric analysis & temporal analysis



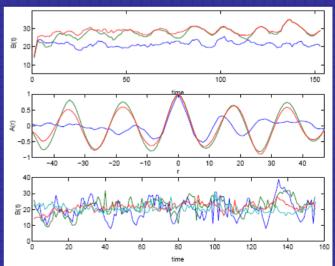


Previous Works

Motion-based Recognition
 [BenAdelkader et al, FGR 2002]
 – Subdivision of body silhouette
 – Periodicity of body part motion as constraints
 – Pendulum-like motion of legs







Can we detect carrying object in a single image?

People can detect carrying object even a single foreground shape image

 People know possible shape of normal walking in different views in different people

Dynamic Shape Models

Dynamic Shape Deformations

□Shape Deformations in Gait

- Temporal variations (Body configuration)
- Different in different people, in different view, etc.

į	ļ		X	į	X	X	į,	k	k.			ł			Ň	X	Å	Å,	k	ARK.	ARK.			Š.
					X	X	X					ł												
		Ì						永	卡	i i	ł	ļ	-	ł		ł				-	ł		Ì	

Walking sequence in different people

Walking sequence in different view

Dynamic Shape Models

Learning nonlinear generative models

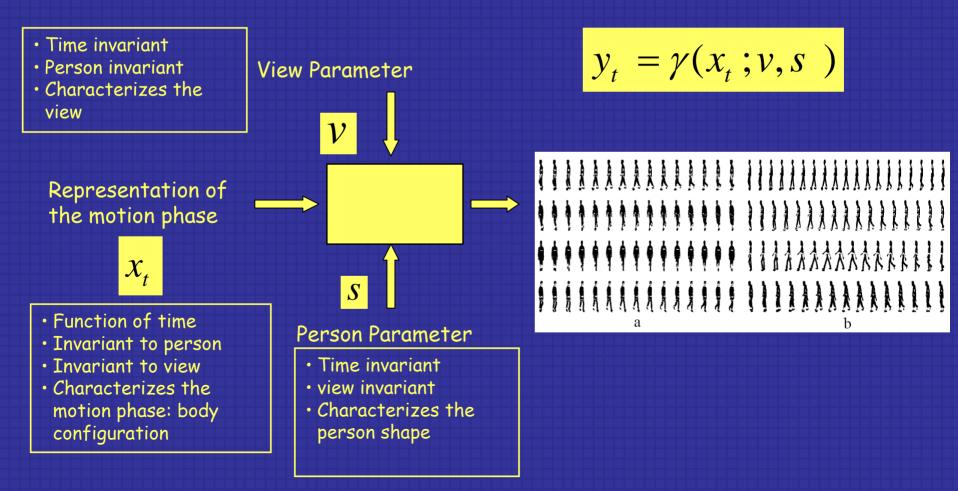
$$y_t = \gamma_o(x_t; a_1, a_2, \cdots, a_n)$$

Representation of configuration space

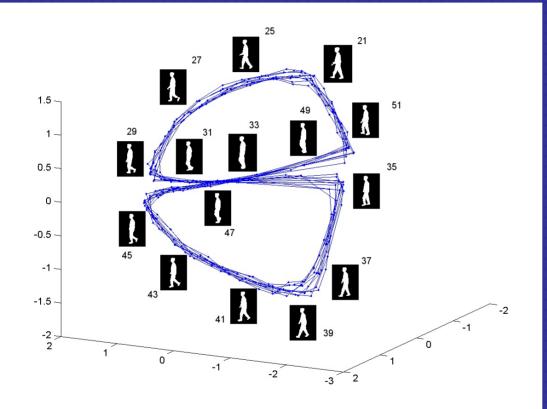
- Compact, and low dimensional
- Dynamic characteristics + time invariant factors
- Learn nonlinear mapping
 - Capture nonlinearity in body configuration and observed data
- Factorize static parameters

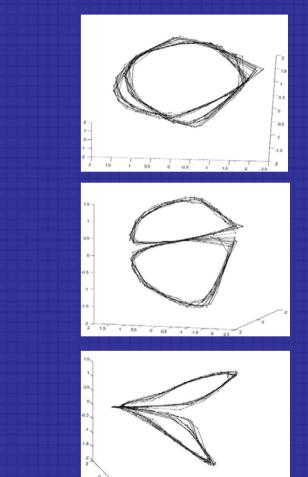
Generative Model for Gait

A generative model for walking silhouettes for different people from different views



Ending the Gait Manifold [Elgammal, A, & Lee, C.-S. CVPR 2004a]

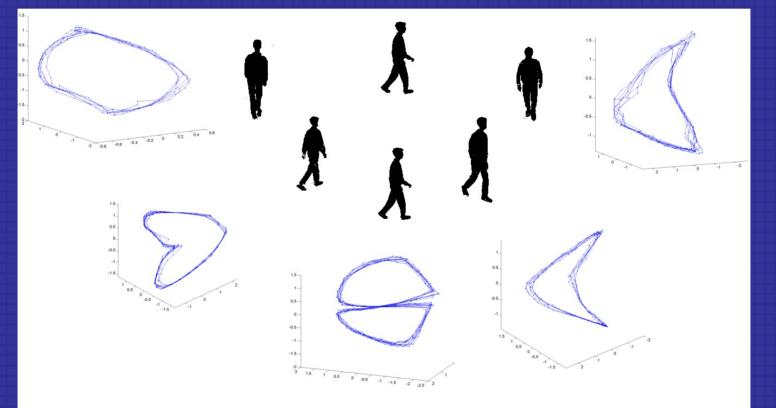




Walking cycle:300frames
 No temporal information.
 Obtain embedding that shows body configuration

Embedding Gait Manifolds in Different View

Manifold twists differently depending on the view point, the body shape, clothing, etc.

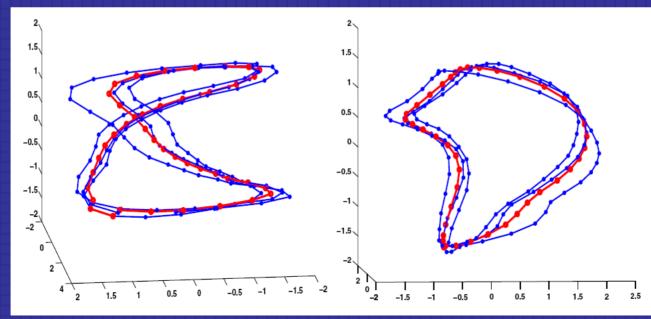


[Elgammal, A, & Lee, C.-S. CVPR 2004b]

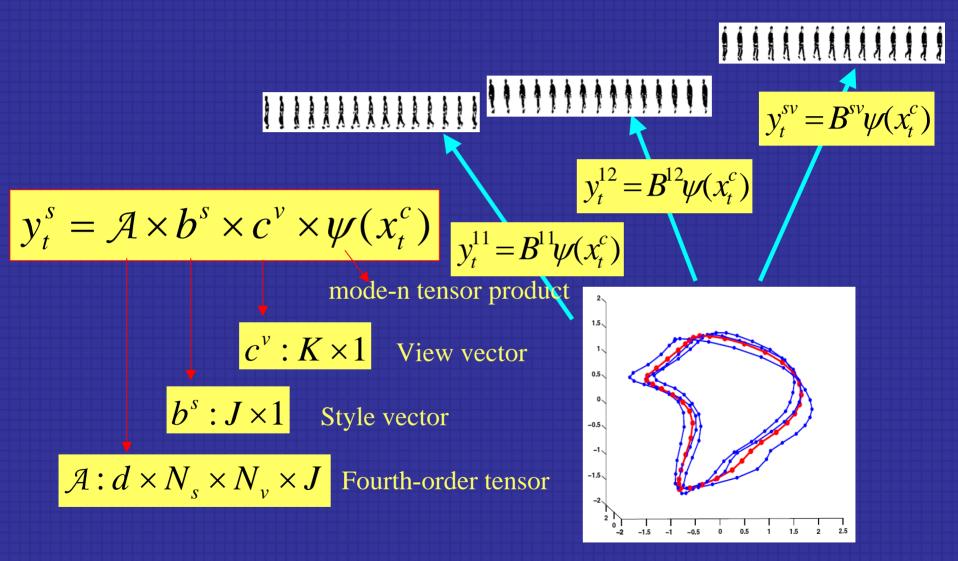
Kinematics Manifold Embedding

Representation of body configuration in low dimensional space

- Applying nonlinear dimensionality reduction for motion capture data
- Invariant in different views



Multilinear Decomposition

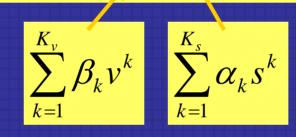


Kinematics Manifold Representation

Estimation of Parameters

 To synthesize new gait shape, we need to know states of shape images (body configuration, view type, person style)

$$E(x_t, v, s) = \left\| y_t - C \times v \times s \times \Psi(x_t) \right\|$$



- Estimation of configuration for the known style and view factors is a nonlinear 1-dimensional search problem
- Obtain style(view type) conditional class probability by assuming a Gaussian density around the mean of the style classes(view classes)

 $\beta_k \propto p(s^k \mid y, x, v) \beta_k \propto p(v^k \mid y, x, s)$

 $p(y | x, s^k, v) \approx N(C \times v \times s^k \times \psi(x), \sum s^k)$

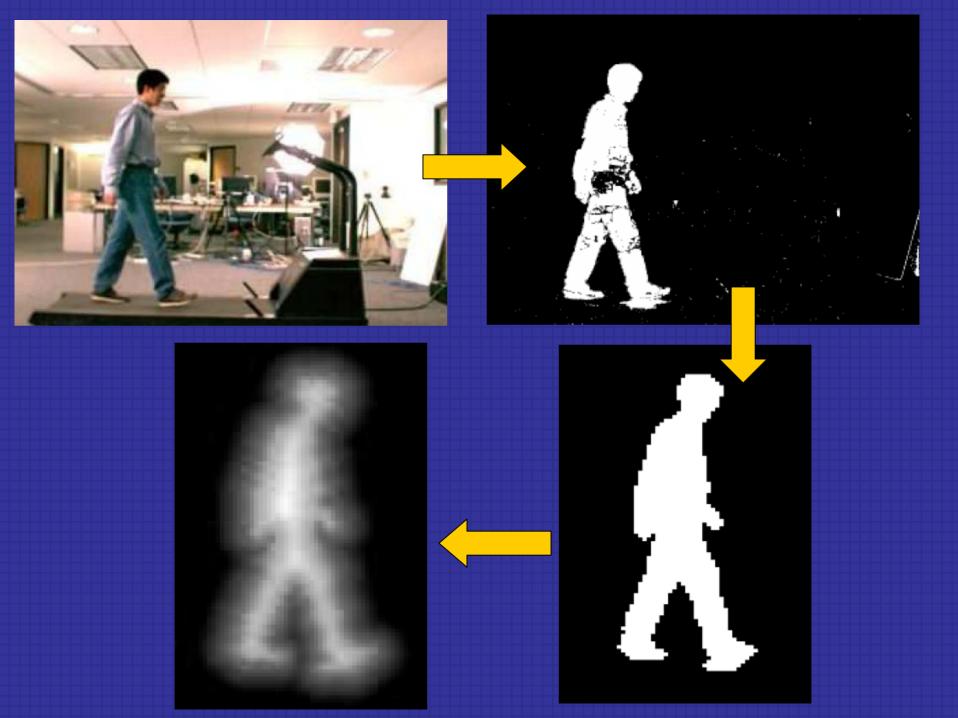
Iterative Estimation with Annealing

This setting favors an iterative procedure However, wrong estimation of any of the factors would lead to wrong estimation of the others • Avoid hard decision: at the beginning weights are forced to be close to uniform weights. The weights are gradually become discriminative thereafter Deterministic Annealing-like procedure: adaptive view and style class variances

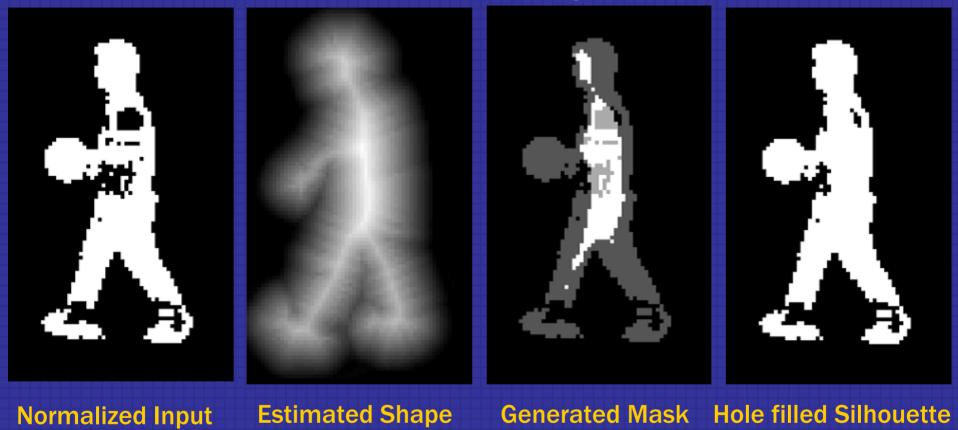
$$\sum^{v} = T_{v} \sigma_{v}^{2} I$$

$$\sum^{s} = T_{s}\sigma_{s}^{2}I$$

Outlier Detection

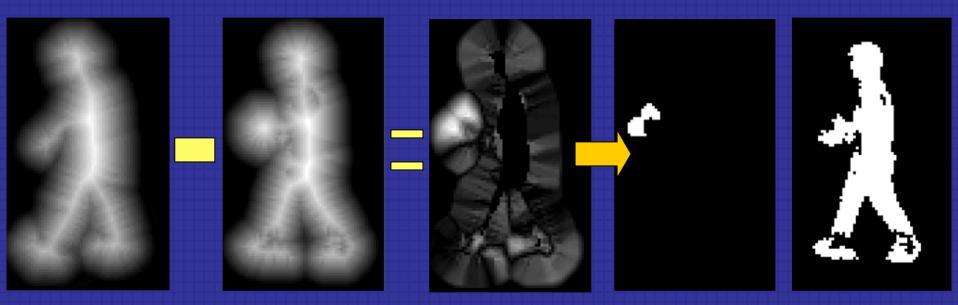


Hole Filling



$$h(x)_{hole \ mask} = \begin{cases} 1 & d_c(x) \ge d_c^{TH_{hole}} \\ 0 & otherwise \end{cases}$$

Shape Outlier Detection



$$O(x)_{outlier\ mask} = \begin{cases} 1 & \left\| z_c(x) - z_c^{est}(x) \right\| > e_c^{TH_{outlier}} \\ 0 & otherwise \end{cases}$$
$$y_{outlier}(x) = z \left(bin \left(z_c(x) \otimes z_c^{est}(x) \right) \bullet O(x)_{outlier\ mask} \right)$$

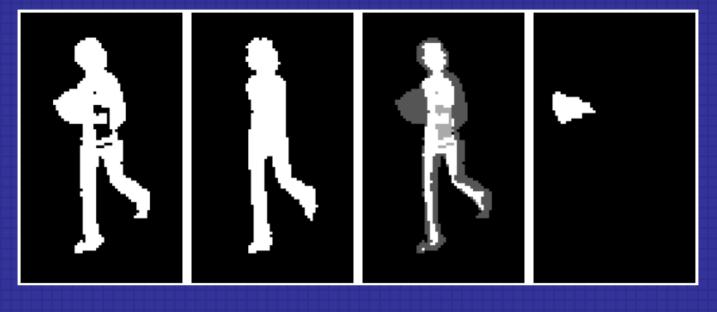
Iterative Estimation

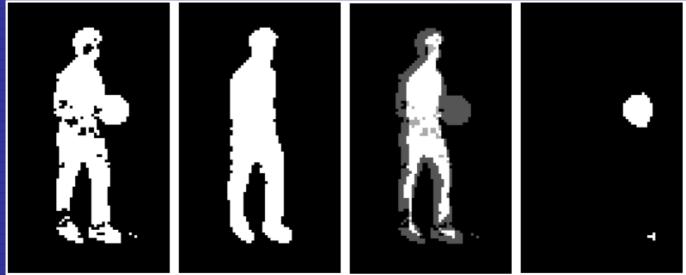
- Image shape y_i estimated view v, estimated style s
- - Generate N configuration samples based on estimated view and style $y_i^{sp}, i = 1, \cdots, N_{sp}$
 - Generate hole filling masks from sample $h_i = h_{hole mask}(y_i^{sp})$
 - Estimate best fitting configuration sample with hole filling masks
 - Update input silhouette with hole filling
 - Estimate outlier from hole filled sample
 - Remove outlier

- Reduce hole threshold value $d_c^{TH_{hole}}$, outlier threshold value $e_c^{TH_{outlier}}$

Experimental Results

Outlier Detection in Fixed Views





Outlier Detection in Fixed Views

Original Image

Estimated Shape

Background Subtraction

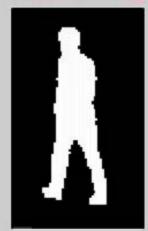
Detected Outlier

Outlier Detection in Fixed View

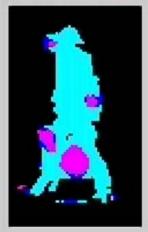
Original Image

Background Subtraction

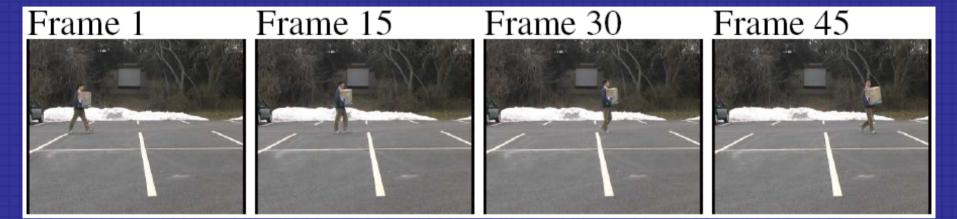
Estimated Shape



Detected Outlier



Outlier Detection in Continuous View Variations



Frame 60

Frame 75

Frame 90

Frame 105

Outlier Detection in Continuous View Variations

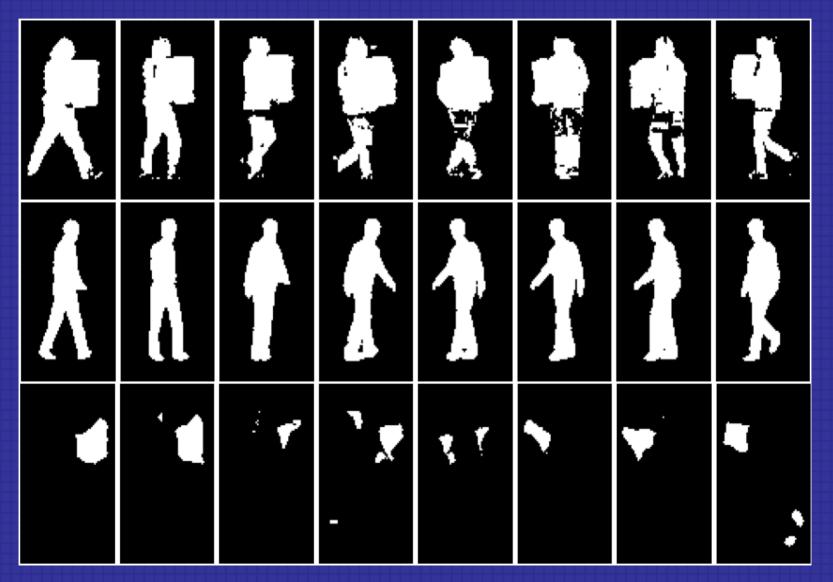
Original Image

Estimated Shape

Background Subtraction

Detected Outlier

Outlier Detection in Continuous View Variations



Shadow and abnormal pose detection

Original Image

Estimated Shape

Background Subtraction

Detected Outlier

Conclusions

Nonlinear Decomposable dynamic shape model

- Provides shape model in different view and people
- Detect shape outlier/carrying object by outliner detection with hole filling
- Gradual reduction of threshold value for outlier detection and hole filling mask to be gradual reduction of misalignment due to outlier or hole

Future Works

Analysis of temporal characteristics

- Analysis of sequence of outlier for the detection of high level classification of outlier
 - Carrying object / Shadow / Abnormal action / ...
- Estimation of shape models with temporal coherence

