Linear programming: the ultimate practical problem-solving model

What is Linear programming?

- The process of <u>minimizing a linear objective function</u> subject to a finite number of <u>linear equality and inequality</u> <u>constraints</u>.
- The word "programming" is historical and predates computer programming.
- Quintessential tool for optimal allocation of scarce resources, among a number of competing activities.
- Why significant?
 - Widely applicable problem-solving model
 - Dominates world of industry.
 - Fast commercial solvers available: CPLEX, OSL
 - Ranked among most important scientific advances of 20th century

An Example: the Diet Problem

- Design a lowest cost diet that provides sufficient protein, with two choices:
 - steak: 2 units of protein/pound, \$3/pound
 - peanut butter: 1 unit of protein/pound, \$2/pound
- Proper diet needs 4 units protein/day.

Let x = # pounds steak/day in the diet.

Let y = # pounds peanut butter/day in the diet.

Goal: minimize 3x + 2y

Subject to the constraint:

$$2x + y \ge 4$$
$$x \ge 0, y \ge 0$$

Solving this problem geometrically

Linear Program – Definition

- A linear program is a problem with a set of n variables $x_1, x_2, ..., x_n$ that has
- 1. A linear objective function which can be minimized or maximized:

$$\min(or \max) c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

2. A set of *m* linear constraints. A constraint looks like:

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le (or \ge , =)b_i$$

Solution to LP

- Each linear inequality divides the n-d space into two halfspaces – only one of them satisfy the constraint
- Feasible set: the set of all points that satisfy all the constraints – the intersection of a set of half-spaces
- Not all linear programs have solutions
 - Infeasible problems when the feasible set is empty
 - Unbounded when the objective can achieve arbitrarily high value
- If the feasible set is non-empty and bounded, the optimum must occur at the corner of the feasible set

Example:

$$\max x_1 + x_2$$

s.t.

$$4x_1 - x_2 \le 8$$

$$2x_1 + x_2 \le 10$$

$$5x_1 - 2x_2 \ge -2$$

$$x_1 \ge 0, x_2 \ge 0$$

Feasible set

Contour line of objective

Canonical form of LP

• Objective (must be maximization) $\max c_1 x_1 + c_2 x_2 + \dots + c_n x_n$

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

 $i = 1, \dots, m$

Variables must be non-negative:

$$x_i \geq 0$$

 a <u>maximization</u> problem can be turned into a <u>minimization</u> problem

$$\max c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

is equivalent to

$$\min -c_1 x_1 - c_2 x_2 - \dots - c_n x_n$$

Equality constraint can be expressed using two inequality constraints:

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i$$

is equivalent to

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

 $a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \ge b_i$

An inequality constraint can be turned into an equality constraint

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

can be expressed by:

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n + s_i = b_i$$

 $s_i \ge 0$

- A variable x that is unrestricted in sign can be expressed by a pair of non-negative variables
 - Introduce two nonnegative variables x^+ and x^-
 - Replace x wherever it appears with $x^+ x^-$

• Any feasible solution x to the original LP can be mapped to a feasible solution of the new LP using $x^+ - x^-$

Example:

$$\max x_1 + x_2$$

s.t.

$$4x_1 - x_2 \le 8$$

$$2x_1 + x_2 \le 10$$

$$5x_1 - 2x_2 \ge -2$$

$$x_1 \ge 0, x_2 \ge 0$$

Turn this problem into a minimization problem with equality constraint

LP formulation: another example

- Bob's bakery sells bagel and muffins.
- To bake a dozen bagels Bob needs
 - 5 cups of flour, 2 eggs, and one cup of sugar.
- To bake a dozen muffins Bob needs
 - 4 cups of flour, 4 eggs and two cups of sugar.
- Bob can sell bagels for \$10/dozen and muffins for \$12/dozen.
- Bob has 50 cups of flour, 30 eggs and 20 cups of sugar.
- How many bagels and muffins should Bob bake in order to maximize his revenue?

More example of reduction

- Problems that don't look like a linear program sometimes can be reduced to LP
- Example:
 - You are given a set of n data points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
 - You want to learn a linear model that predicts y from x accurately: y = ax + b
 - In particular, you want to minimize the sum of absolute error:

$$\min_{a,b} \sum_{i=1}^{n} |ax_i + b - y_i|$$

How can we solve this problem using LP?

Solving linear programs

- LP has been widely used for large practical problems for the 50 + years
- Many solvers available we can think of them as blackboxes
 - With known algorithm that runs in poly time
- Integer linear programing is NP-complete
 - Variables are limited to take integer values combinatorial optimization problems
 - Without any known poly time algorithm