
Non-Redundant Multi-View Clustering Via Orthogonalization

Ying Cui
ECE Department

Northeastern University
Boston, MA 02115

cui.yi@neu.edu

Xiaoli Z. Fern
School of EECS

Oregon State University
Corvallis, OR 97339

xfern@eecs.oregonstate.edu

Jennifer G. Dy
ECE Department

Northeastern University
Boston, MA 02115
jdy@ece.neu.edu

Abstract

Typical clustering algorithms output a single clustering
of the data. However, in real world applications, data
can often be interpreted in many different ways; data can
have different groupings that are reasonable and interest-
ing from different perspectives. This is especially true for
high-dimensional data, where different feature subspaces
may reveal different structures of the data. Why commit
to one clustering solution while all these alternative clus-
tering views might be interesting to the user. In this pa-
per, we propose a new clustering paradigm for explorative
data analysis: find all non-redundant clustering views of
the data, where data points of one cluster can belong to
different clusters in other views. We present a framework
to solve this problem and suggest two approaches within
this framework: (1) orthogonal clustering, and (2) cluster-
ing in orthogonal subspaces. In essence, both approaches
find alternative ways to partition the data by projecting
it to a space that is orthogonal to our current solution.
The first approach seeks orthogonality in the cluster space,
while the second approach seeks orthogonality in the fea-
ture space. We test our framework on both synthetic and
high-dimensional benchmark data sets, and the results show
that indeed our approaches were able to discover varied so-
lutions that are interesting and meaningful.

keywords: multi-view clustering, non-redundant cluster-
ing, orthogonalization

1 Introduction

Many applications are characterized by data in high di-
mensions. Examples include text, image, and gene data.
Automatically extracting interesting structure in such data
has been heavily studied in a number of different areas in-
cluding data mining, machine learning and statistical data
analysis. One approach for extracting information from un-
labeled data is through clustering. Given a data set, typical

clustering algorithms group similar objects together based
on some fixed notion of similarity (distance) and output a
single clustering solution. However, in real world applica-
tions, data can often be interpreted in many different ways
and there may exist multiple groupings of the data that are
all reasonable in some perspective.

This problem is often more prominent for high dimen-
sional data, where each object is described by a large num-
ber of features. In such cases, different feature subspaces
can often warrant different ways to partition the data, each
presenting the user a different view of the data’s structure.
Figure 1 illustrates one such scenario. In particular, Fig-
ure 1a shows a scatter plot of the data in feature subspace
{F1, F2}. Figure 1b shows how the data looks like in fea-
ture subspace {F3, F4}. Note that each subspace leads to a
different clustering structure. When faced with such a situ-
ation, which features should we select (i.e., which cluster-
ing solution is better)? Why do we have to choose? Why
not keep both solutions? In fact both clustering solutions
could be important, and provide different interpretations of
the same data. For example, for the same medical data, what
is interesting to physicians might be different from what is
interesting to insurance companies.

2 4 6 8 10 12 14 16 18 20 22
6

8

10

12

14

16

18

20

F1

F
2

−5 0 5 10 15 20 25
2

4

6

8

10

12

14

16

18

20

F3

F
4

(a) (b)

Figure 1. This is a scatter plot of the data
in (a) subspace {F1, F2} and (b) subspace
{F3, F4}. Note that the two subspaces lead
to different clustering structures.

Hierarchical clustering [18] presents a hierarchical
grouping of the objects. However, the different cluster-
ing solutions obtained at different hierarchical levels differ
only in their granularity – objects belonging to the same
cluster in fine resolutions remain in the same cluster at the
coarser levels. On the other hand, cluster ensemble meth-
ods [22, 10] do create a set of cluster solutions but the final
goal is still to find a single clustering solution that is most
consistent throughout the set.

The goal of exploratory data analysis is to find structures
in data, which maybe multi-faceted by nature. Traditional
clustering methods seek to find a unified clustering solution
and are thus inherently limited in achieving this goal. In this
paper, we suggest a new exploratory clustering paradigm:
the goal is to find a set of non-redundant clustering views
from data, where data points belonging to the same cluster
in one view can belong to different clusters in another view.

Toward this goal, we present a framework that extracts
multiple clustering views of high-dimensional data that are
orthogonal to each other. Note that there are kN possible
k disjoint partitioning of N data points. Not all of them
are meaningful. We wish to find good clustering solutions
based on a clustering objective function. Meanwhile, we
would like to minimize the redundancy among the obtained
solutions. Thus, we include an orthogonality constraint in
our search for new clustering views to avoid providing the
user with redundant clustering results. The proposed frame-
work works iteratively, at each step adding one clustering
view by searching for solutions in a space that is orthogonal
to the space of the existing solutions. Within this frame-
work, we develop two general approaches. The first ap-
proach seeks orthogonality in the cluster space, while the
second one seeks orthogonality in the feature subspace. We
present all the multiple view clustering solutions to the user.

2 Literature Review

In this section, we briefly review the literature related to
our research in different aspects.

First, our research can be considered as performing non-
redundant clustering [13, 5]. In non-redundant clustering,
we are typically given a set of data objects together with
an existing clustering solution and the goal is to learn an
alternative clustering that captures new information about
the structure of the data. Existing non-redundant clustering
techniques include the conditional information bottleneck
approach [5, 14, 15], the conditional ensemble based ap-
proach [16] and the constrained model based approach [17].
Compared to existing non-redundant clustering techniques,
the critical differences of our proposed research are:

(1) Focusing on searching for orthogonal clustering of
high-dimensional data, our research combines dimen-
sionality reduction and orthogonal clustering into a

unifying framework and seeks lower dimensional rep-
resentation of the data that reveals non-redundant in-
formation about the data.

(2) Existing non-redundant clustering techniques are lim-
ited to finding one alternative structure given a known
structure. Our framework works successively to reveal
a sequence of different clustering of the data.

Our framework produces a set of different clustering so-
lutions, which is similar to cluster ensembles[22, 10]. A
clear distinction of our work from cluster ensembles is that
we intentionally search for orthogonal clusterings and do
not seek to find a consensus clustering as our end product.

Similar to cluster ensembles, multi-view clustering [3]
seek a single final clustering solution by learning from mul-
tiple views, whereas our non-redundant multi-view cluster-
ing paradigm looks for multiple clustering solutions.

An integral part of our framework is to search a cluster-
ing structure in a high-dimensional space and find the corre-
sponding subspace that best reveals the clustering structure.
This topic has been widely studied, and one closely related
work was conducted by [8]. In this work, after a clustering
solution is obtained, a subspace is computed to best cap-
ture the clustering, and the clustering is then refined using
the data projected onto the new subspace. Interestingly, our
framework works in an opposite direction. We look at a sub-
space that is orthogonal to the space in which the original
clustering is embedded to search for non-redundant cluster-
ing solutions.

Finally, while we search for different subspaces in our
framework, it is different from the concept of subspace clus-
tering in [1, 21]. In subspace clustering, the goal is still to
learn a single clustering, where each cluster can be embed-
ded in its own subspace. In contrast, our method searches
for multiple clustering solutions, each is revealed in a dif-
ferent subspace.

3 Multi-View Orthogonal Clustering

Given data X ∈ Rd×N , with N instances and d features.
Our goal is to learn a set of orthogonal clustering views
from the data.

There are several ways to find different clustering views
[22, 10]. One can apply different objective functions, uti-
lize different similarity measures, or use different density
models. In general, one can apply different clustering algo-
rithms, or utilize one algorithm on randomly sampled (ei-
ther in instance space or feature space) data from X . Note
that such methods produce each individual clustering inde-
pendently from all the other clustering views. While the
differences in the objective functions, similarity measures,
density models, or different data samples may lead to clus-
tering results that differ from one another, it is common to

2

see redundancy in the obtained multiple clustering views.
We present a framework for successively generating multi-
ple clustering views that are orthogonal from one another
and thus contain limited redundancy. Below, we describe
our framework for generating different clustering views by
orthogonalization.

X

Clustering/
Dim. Red.

Orthogonalization

View 1 View 2 View n

Clustering/
Dim. Red.

Clustering/
Dim. Red.

Orthogonalization

View 3

Clustering/
Dim. Red.

Orthogonalization

Residue Space Residue Space

Figure 2. The general framework for generat-
ing multiple orthogonal clustering views.

Figure 2 shows the general framework of our approach.
We first cluster the data (this can include dimensionality re-
duction followed by clustering), then we orthogonalize the
data to a space that is not covered by the existing cluster-
ing solutions. Repeat the process until we cover most of
the data space or no structure can be found in the remaining
space.

We developed two general approaches within this frame-
work: (1) orthogonal clustering, and (2) clustering in or-
thogonal subspaces.

These two approaches differ primarily in how they rep-
resent the existing clustering solutions and consequently
how to orthogonalize the data based on existing solutions.
Specifically, the first approach represents a clustering so-
lution using its k cluster centroids. The second approach
represents a clustering solution using the feature subspace
that best captures the clustering result. In the next two sub-
sections, we describe these two different representations in
detail and explain how to obtain orthogonal clustering solu-
tions based on these two representations.

3.1 Orthogonal Clustering

Clustering can be viewed as a way for compressing data
X . For example in k-means [11, 20], the objective function
is to minimize the sum-squared-error criterion (SSE):

SSE =
k∑

j=1

∑

xi∈Cj

||xi − µj ||2

where xi ∈ Rd is a data point assigned to cluster Cj , and
µj is the mean of Cj . We represent xi and µj as column
vectors. The outputs for k-means clustering are the cluster

means and the cluster membership of each data point xi.
One can consider k-means clustering as a compression of
data X to the k cluster means µj .

Following the compression viewpoint, each data point xi

is represented by its cluster mean µj . Given k µj’s for rep-
resenting X , what is not captured by these µj’s? Let us con-
sider the space that is spanned by xi, i = 1 . . .N , we refer
to this as the original data space. In contrast, the subspace
that is spanned by the mean vectors µj , j = 1 . . . k, is con-
sidered the compressed data space. Assigning data points
to their corresponding cluster means can be essentially con-
sidered as projecting the data points from the original data
space onto the compressed data space. What is not covered
by the current clustering solution (i.e., its compressed data
space) is simply its residue space. In this paper, we define
residue space as the data projected onto the space orthogo-
nal to our current representation. Thus, to find alternative
clustering solutions not covered in the current solution, we
can simply perform clustering in the space that is orthogo-
nal to the compressed data space.

Given current data X(t), and the clustering solution we
found on X(t) (i.e., M (t) = [µ(t)

1 µ
(t)
2 · · ·µ(t)

k], and the clus-
ter assignments), we describe two variations for represent-
ing data in the residue space, X(t+1) that are based on the
“hard” and “soft” clustering views respectively.

Hard clustering. In hard clustering, each data point be-
longs to a single cluster, thus is represented using a
single mean vector. For data point x

(t)
i belonging to

cluster j, we project it onto its center µ
(t)
j as its repre-

sentation in the current clustering view. The residue,
x

(t+1)
i , is then the projection of x

(t)
i onto the subspace

orthogonal to µ
(t)
j . This can be formalized by the fol-

lowing formula:

x
(t+1)
i = (I − µ

(t)
j µ

(t)T
j /(µ(t)T

j µ
(t)
j))x(t)

i

Soft clustering. In soft clustering, each data point can par-
tially belong to all clusters. Therefore, we can repre-
sent the data using all cluster centers. We achieve this
by projecting the data onto the subspace spanned by
all cluster means and compute the residue, X(t+1), as
the projection of X(t) onto the subspace orthogonal to
all the cluster centroids. This can be formalized by the
following formula:

X(t+1) = (I − M (t)(M (t)T M (t))−1M (t)T)X(t)

The algorithm for orthogonal clustering is summarized
in Algorithm 1. The data is first centered to have zero
mean. We then create the first view by clustering the orig-
inal data X . Since most of the data in our experiments are
high-dimensional, we apply principal components analy-
sis [19] to reduce the dimensionality, followed by k-means.

3

Algorithm 1 Orthogonal Clustering.

Inputs: The data matrix X ∈ Rd×N , and the number of
clusters k(t) for each iteration.
Output: The multiple partitioning views of the data into
k(t) clusters at each iteration.
Pre-processing: Center the data to have zero mean.
Initialization: Set the iteration number t = 1 and
X(1) = X .
Step1: Cluster X(t). In our experiments, we performed
PCA followed by k-means. The compressed solution are
the k means, µ

(t)
j . Each µ

(t)
j is a column vector in Rd

(the original feature space).
Step2: Project each x

(t)
i in X(t) to the space orthogonal

to its cluster mean to form the residue space representa-
tion, X(t+1).
Step3: Set t = t + 1 and repeat steps 1 and 2 until the
desired number of views or until the sum-squared-error,∑k

j=1

∑
x
(t)
i

∈C
(t)
j

||x(t)
i − µ

(t)
j ||2, is very small.

Note that one can apply other clustering methods within our
framework. We chose PCA followed by k-means because
they are popular techniques. In step 2, we project the data
to the space orthogonal to the current cluster representation
(using cluster centers) to obtain our residue X(t+1). The
next clustering view is then obtained by clustering in this
residue space. We repeat steps 1 (clustering) and 2 (orthog-
onalization) until the desired number of views are obtained
or when the SSE is very small. Small SSE signifies that the
existing views have already covered most of the data.

3.2 Clustering in Orthogonal Subspaces

In this approach, given a clustering solution with means
µj , j = 1 . . . k, we would like to find a feature subspace
that best captures the clustering structure, or, in other words,
discriminates these clusters well. One well-known method
for finding a reduced dimensional space that discriminates
classes (clusters here) is linear discriminant analysis (LDA)
[12, 9]. Another approach is by applying principal compo-
nent analysis (PCA) on the k mean vectors µj’s [8].

Below we explain the mathematical differences between
these two approaches. LDA finds a linear projection Y =
AT X that maximizes the

trace(S−1
w Sb)

where Sw is the within-class-scatter matrix and Sb is the
between-class-scatter matrix defined as follows.

Sw =
k∑

j=1

∑

yi∈Cj

(yi − µj)(yi − µj)T

Sb =
k∑

j=1

nj(µj − µ)(µj − µ)T

where yi’s are projected data points; µj’s are projected clus-
ter centers; nj is the total number of points in cluster j
and µ is the center of the entire set of projected data. In
essence, LDA finds the subspace that maximizes the scatter
between the cluster means normalized by the scatter within
each cluster.

Similarly, the PCA approach in [8] seeks a linear projec-
tion Y = AT X , but maximizes a different objective func-
tion trace(MMT), where M = [µ1µ2 · · ·µk] and the µj’s
are the projected cluster centers.

For both methods, the solution can be represented as
A = [φ1φ2 · · ·φq], which contains the q most important
eigenvectors (corresponding to the q largest eigenvalues) of
S−1

w Sb for LDA and MMT for PCA respectively.
Note that the trace(Sb) = trace(M ′M ′T), where M ′ =

[
√

n1µ1
√

n2µ2 · · · √nkµk]. The difference between the
two approaches is the normalization by the within-class-
scatter S−1

w and a weighting of each µj by nj , the number
of data points in cluster Cj . But, both M and M ′ span the
same space. Thus, in practice, both approaches result in
similar results. For computational purposes, we choose the
PCA approach on the µj’s and set q = k − 1, the rank of
MMT .

Once we have obtained a feature subspace A =
[φ1φ2 · · ·φk−1] that captures the clustering structure well,
we project X(t) to the subspace orthogonal to A to obtain
the residue X(t+1) = P (t)X(t). The orthogonal projection

operator, P , is: P (t) = I − A(t)(A(t)T
A(t))−1A(t)T

.
Algorithm 2 presents the pseudo-code for clustering in

orthogonal subspaces. In step 1, we apply a clustering algo-
rithm (PCA followed by k-means in our experiments). We
then represent this clustering solution using the subspace
that best separates these clusters. In step 2, we project the
data to the space orthogonal to the computed subspace rep-
resentation. We repeat steps 1 and 2 until the desired num-
ber of views are obtained or the SSE is very small.

4 Experiments

In this section, we investigate whether our multi-view or-
thogonal clustering framework can provide us with reason-
able and orthogonal clustering views of the data. We start
by performing experiments on synthetic data in Section 4.1
to get a better understanding of the methods, then we test
the methods on benchmark data in Section 4.2. In these ex-
periments, we chose as our base clustering – PCA followed
by k-means clustering. This means, we first reduce the di-
mensionality with PCA, keeping a dimensionality that re-
tains at least 90% of the original variance, then follow PCA

4

Algorithm 2 Clustering in Orthogonal Subspaces.

Inputs: The data matrix X ∈ Rd×N , and the number of
clusters k(t) for each iteration.
Output: The multiple partitioning views of the data into
k(t) clusters, and a reduced dimensional subspace for
each iteration A(t).
Pre-processing: Center the data to have zero mean.
Initialization: Set the iteration number t = 1 and
X(1) = X .
Step1: Cluster X(t). In our experiments, we performed
PCA followed by k-means. Then, find the PCA solution
of M (t), M (t) = [µ(t)

1 µ
(t)
2 · · ·µ(t)

k] and keep k(t) − 1
dimensions to obtain the subspace, A(t), that captures the
current clustering.
Step2: Project X(t) to the space orthogonal to A(t) to
produce X(t+1) = P (t)X(t), where the projection oper-
ator P (t) is:

P (t) = I − A(t)(A(t)T
A(t))−1A(t)T

Step3: Set t = t + 1 and repeat steps 1 and 2 until the
desired number of views or until the sum-squared-error,∑N

i=1 ||x(t)
i − A(t)y

(t)
i ||2, is very small.

with k-means clustering. Because we apply k-means clus-
tering, we implement orthogonal clustering with the “hard”
assumption. In this section, we refer to the orthogonal clus-
tering approach as method 1, and the clustering in orthogo-
nal subspaces as method 2.

4.1 Experiments on Synthetic Data

We would like to see whether our two methods can find
diverse groupings of the data. We generate two synthetic
data.

Data 1: We generate a four-cluster data in two dimensions
with N = 500 instances as shown in Figure 3, where
each cluster contains 125 data points. We test our
methods by setting k = 2 for our k-means cluster-
ing. We would like to see that if the methods group the
clusters into two in the first iteration, then they should
group the clusters the other way in the next iteration.
This data tests whether the methods can find orthogo-
nal clusters.

Data 2: We generate a second synthetic data in four dimen-
sions, with N = 500 instances as shown in Figure 4.
We generate three Gaussian clusters in features F1 and
F2 with 100, 100 and 300 data points and means µ1 =
(12.5, 12.5), µ2 = (19, 10.5), and µ3 = (6, 17.5),
and identity covariances. We generate another mixture
of three Gaussian clusters in features F3 and F4 with

200, 200 and 100 data points and means µ1 = (2, 17),
µ2 = (17.5, 9), and µ3 = (1.2, 5), and identity covari-
ances. This data tests whether the methods can find
different clustering solutions in different subspaces.

Table 1. Confusion Matrix for Synthetic Data1
SYNTHETIC DATA1 METHOD1 METHOD2
ITERATION1 C1 C2 C1 C2
L1 125 0 125 0
L2 0 125 0 125
L3 125 0 125 0
L4 0 125 0 125
ITERATION2 C1 C2 C1 C2
L1 125 0 125 0
L2 125 0 125 0
L3 0 125 0 125
L4 0 125 0 125

4.1.1 Results for Synthetic Data 1

The confusion matrix in Table 1 shows the experimental re-
sults for synthetic data 1 for methods 1 and 2, in two iter-
ations. We can see that for the first iteration, both meth-
ods grouped classes L1 and L3 into a single cluster C1, and
classes L2 and L4 into another cluster C2. For the second
iteration, the data was partitioned in a different way, which
grouped classes L1 and L2 into one cluster, and classes L3

and L4 into another cluster. Figure 3 shows the scatter plot
of the clustering results of both methods in the original 2D
data space for the two iterations. Different colors are used
to signify the true classes, and the ellipses show the clusters
found by k-means. The figure confirms the result summa-
rized in the confusion matrix. Both methods 1 and 2 have
similar results as shown. In subfigure a3 and b3 of Fig-
ure 3, we plot the sum-squared-error (SSE) as a function
of iteration. Note that, as expected, SSE for both methods
decreases monotonically until convergence. Moreover, the
SSE at iteration 2 and after is zero meaning that the first two
clustering views have covered the data space completely.

4.1.2 Results for Synthetic Data 2

Table 2 shows the confusion matrix for our clustering with
the two different labelings: labeling 1 is for features 1 and
2, and labeling 2 is for features 3 and 4. High number of
common occurrences means that the cluster correspond to
those labels. Observe that for both methods 1 and 2, they
found the clusters in labeling 2 (features 3 and 4) perfectly
with zero confusion in the off-diagonal elements in the first
iteration/view. In the second iteration/view, methods 1 and

5

−20 −15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

F1

F
2

−20 −15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

F1

F
2

(a1.iteration1 for method1) (b1.iteration1 for method2)

−15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

F1

F
2

−15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

F1

F
2

(a2.iteration2 for method1) (b2.iteration2 for method2)

1 2 3
0

1

2

3

4

5

6
x 10

4

Iteration

S
um

−
S

qu
ar

e−
E

rr
or

1 2 3
0

1

2

3

4

5

6
x 10

4

Iteration

S
um

−
S

qu
ar

e−
E

rr
or

(a3.SSE for method1) (b3.SSE for method2)

Figure 3. Scatter plots of synthetic data 1.
The two columns show the results of meth-
ods 1 and 2 respectively. The colors repre-
sent different class labels and the ellipses
represent the clusters found. Row 1 and 2
show the results for iteration 1 and 2 respec-
tively; Row 3 shows SSE as a function of iter-
ation.

2 found the clusters in labeling 1 (features 1 and 2) per-
fectly also with zero confusion. This result confirms that
indeed our multi-view approach can discover multiple clus-
tering solutions in different subspaces. Figure 4 shows scat-
ter plots of the data. The left column ((a1), (a2), (a3)) is
the plot for method 1. (a1) shows the clustering in ellipses
found by method 1 in iteration 1. The left sub-figure shows
the groupings in the original features 1 and 2, and the data
points are colored based on true labeling 1. The right sub-
figure shows the clusterings in the original features 3 and
4, and the color of the data points are based on true label-
ing 2. (a2) is the same scatter plot of the original data X
with the clusters found by method 1 as shown by the ellipses
in iteration 2. Similarly, (b1) and (b2) show the results of
method 2. (a3) and (b3) are the SSE for the two methods
in each iteration. Method 2 converges to zero much faster
than method 1 here. Note that SSE monotonically decreases
with iteration and that the algorithm captures most of the
information in two clustering views. From these results, in
iteration 1 we found the right partition based on features 3
and 4, but group the clusters in features 1 and 2 incorrectly.

On the other hand, iteration 2 groups the clusters based on
features 1 and 2 correctly, but the partition for the clusters in
features 3 and 4 is wrong. The results confirm that indeed
our multi-view approach can discover multiple clustering
solutions in different subspaces.

Table 2. Confusion Matrix for Synthetic Data2
SYNTHETIC DATA2 METHOD1 METHOD2

ITERATION 1
LABELLING1 C1 C2 C3 C1 C2 C3
L1 41 40 19 41 40 19
L2 44 34 22 44 34 22
L3 115 126 59 115 126 59
LABELLING2 C1 C2 C3 C1 C2 C3
L1 200 0 0 200 0 0
L2 0 200 0 0 200 0
L3 0 0 100 0 0 100

ITERATION 2
LABELLING1 C1 C2 C3 C1 C2 C3
L1 100 0 0 100 0 0
L2 0 100 0 0 100 0
L3 0 0 300 0 0 300
LABELLING2 C1 C2 C3 C1 C2 C3
L1 126 34 40 126 34 40
L2 115 44 41 115 44 41
L3 59 22 19 59 22 19

4.2 Experiments on Benchmark Data

We have shown that our two methods work on synthetic
data. Here, we investigate whether they reveal interesting
and diverse clustering solutions on real benchmark data. We
select data sets that have high-dimensionality and that have
multiple possible partitioning.

In this section, we investigate the performance of our
multi-view orthogonal clustering algorithms on four real
world data sets, including the digits data set from the UCI
machine learning repository [4], the face data set from the
UCI KDD repository [2], and two text data sets: the mini-
newsgroups data [2] and the WebKB data set [6].

The digits data is a data set for an optical recogni-
tion problem of handwritten digits with ten classes, 5620
cases, and 64 attributes (all input attributes are integers
from 0 . . . 16). The face data consists of 640 face images
of 20 people taken with varying pose (straight, left, right,
up), expression (neutral, happy, sad, angry), eyes (wear-
ing sunglasses or not). Each person has 32 images captur-
ing every combination of features. The image resolution
is 32 × 30. We removed the missing data and formed a
960 × 624 data matrix. Each of the 960 features represents
a pixel value. The mini-newsgroups data comes from the
UCI KDD repository which contains 2000 articles from 20

6

0 10 20 30
6

8

10

12

14

16

18

20

22

F1

F
2

Label 1

−10 0 10 20 30
2

4

6

8

10

12

14

16

18

20

F3

F
4

Label 2

0 10 20 30
6

8

10

12

14

16

18

20

22

F1

F
2

Label 1

−10 0 10 20 30
2

4

6

8

10

12

14

16

18

20

F3

F
4

Label 2

(a1.iteration1 for method1) (b1.iteration1 for method2)

0 10 20 30
6

8

10

12

14

16

18

20

F1

F
2

Label 1

−10 0 10 20 30
2

4

6

8

10

12

14

16

18

20

22

F3

F
4

Label 2

0 10 20 30
6

8

10

12

14

16

18

20

F1

F
2

Label 1

−10 0 10 20 30
2

4

6

8

10

12

14

16

18

20

22

F3

F
4

Label 2

(a2.iteration2 for method1) (b2.iteration2 for method2)

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5
x 10

4

Iteration

S
um

−
S

qu
ar

e−
E

rr
or

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
x 10

4

Iteration

S
um

−
S

qu
ar

e−
E

rr
or

(a3.SSE for method1) (b3.SSE for method2)

Figure 4. These are scatter plots of synthetic
data 2 and the clusters found by methods 1
(a1, a2) and 2 (b1, b2). The color of the data
points reflect different class labels and the el-
lipses represent the clusters found. a1, b1
are the results for iteration 1; a2, b2 are the
results for iteration 2; a3 and b3 are SSE as a
function of iteration for methods 1 and 2 re-
spectively.

newsgroups. The second text data is the CMU four univer-
sity WebKB data set as described in [6]. Both text data sets
were processed following the standard procedure, including
stemming and removing stopwords.

4.2.1 Results for the Digit Data

Table 3 shows the confusion matrix for the digit data for
both methods 1 and 2. Because the results for methods 1
and 2 are similar, we will concentrate on the results from
method 1. For both iterations, we partition the data into
three clusters. In iteration 1, the resulting partition clustered
digits {0, 4, 6}, {1,7,8} and {2,3,5,9} into different groups.
In iteration 2, our method clustered {0,3,5,7,9}, {2,6,8,1}
and {4} into another set of clusters. And, in iteration 3, the
clusters we found are {0,1,8,9}, {2,3,6,7,4} and {5}. These
results show that in each iteration we can find a different
way of partitioning the ten classes (digits).

In Figure 5, we present the mean image of each cluster
obtained by method 1 in three iterations. Below each image
we show the dominant digits contained in the cluster. For a

Table 3. Confusion Matrix for the Digits Data
DIGIT METHOD1 METHOD2
IT1 C1 C2 C3 C1 C2 C3
0 550 0 4 550 0 4
4 371 197 0 369 199 0
6 555 2 1 555 2 1
1 12 477 82 12 477 82
7 0 566 0 0 566 0
8 15 321 218 15 321 218
2 5 27 525 5 27 525
3 0 41 531 0 41 531
5 35 236 287 35 236 287
9 2 152 408 2 152 408
IT2 C1 C2 C3 C1 C2 C3
0 547 2 5 548 2 4
3 380 92 100 348 66 158
5 326 216 16 322 212 24
7 492 68 6 492 67 7
9 470 8 84 458 9 95
2 58 490 9 58 488 11
6 12 539 7 12 532 14
8 182 354 18 173 350 31
1 2 308 261 0 285 286
4 65 41 462 138 49 381
IT3 C1 C2 C3 C1 C2 C3
0 529 4 21 545 1 8
1 478 45 48 394 77 100
8 484 46 24 317 213 24
9 381 54 127 265 143 154
2 120 397 40 522 21 14
3 106 454 12 151 393 28
6 107 407 44 47 486 25
7 16 536 14 54 500 12
4 67 275 226 187 159 222
5 27 1 530 18 5 535

digit to be considered as contained in a cluster, we require
that at least 70% of its data points fall into the cluster. It is
interesting to note that digits 4 and 5 were not well captured
by any of the clusters in iteration 1. In contrast, in iteration
2, we see digit 4 well separated and captured by cluster 2.
In iteration 3, we were able to capture digit 5 nicely in a
single cluster. This further demonstrated that our method is
capable of discovering multiple reasonable structures from
data.

4.2.2 Results for the Face Data

Face data is a very interesting data set because it can be
grouped in several different ways (e.g., by person, pose,
etc.). We design the experiment to see if we can get dif-
ferent clustering information in different iterations.

First, we begin with our number of clusters K = 20 in
the first iteration, hopefully to find the 20 persons in the

7

("2","3","9")

Ite
ra

tio
n

1

("1","7") (’’0","6’’)

("2","6")

Ite
ra

tio
n

2

("4") ("0","7","9")

("0","1","8")

Ite
ra

tio
n3

("5") ("3","6","7")

Figure 5. The average digit for images within
each cluster found by method 1 in itera-
tions/views 1, 2 and 3. These clustering
views correspond to different digits.

database. Then, from the second iteration to the rest of the
iterations, we set K = 4 to see if the partitions found in the
remaining iterations can tell us any useful information. Fig-
ure 6 shows the average image for each cluster we find in
iteration 1. We observed from this figure and from the con-
fusion matrix (not shown due to space limitations and infor-
mation clutter) that iteration 1 leads to a clustering corre-
sponding to the different persons in the database.The num-
ber below the image is the percentage this person appears
in the cluster. It is a confidence measure of the identifica-
tion. And the images clearly show different persons. In the
second iteration, the four clusters we found are shown in
Figure 7. Each image is an average image of the images
within each cluster. It is clear that the clustering in iteration
2 groups the data based on different poses. This again sug-
gested that our method can find different clustering views
from the data. The more independent the important parti-
tions lie in the data, the better are the results of our method.
Since method 2 gave us similar images, we only provided
the results by method 1 here due to space limitation.

4.2.3 Results for the Mini-Newsgroups Data

The mini-newsgroups data set originally contains 20
classes. We removed the classes that are under the “misc”
category because it does not correspond to a clear concept
class. We also pre-processed the data to remove stop words,
words that appeared in less than 40 documents, and the
words that had low variance of occurrence in all documents.
After the pre-processing, the data contains 1700 documents
from 17 classes. Each document is represented by a 500-
dimensional term frequency vector.

Note that PCA followed by k-means does not work well

1

1

1 0.440.76

0.57

10.53

1

0.25

0.86

0.28

1

0.52

0.52

1

0.33

0.85

0.65

0.6

Figure 6. The average face image for each
cluster found by method 1 in iteration 1. This
clustering view corresponds to different per-
sons.

for text data. Here, we apply the spherical k-means method
[7] instead, which considers the correlation between docu-
ments rather than the Euclidean distance. Our experiments
showed that this method provided a reasonable clustering of
the text data sets.

Table 4. Confusion Matrix for WebKB Data
ITERATION 1 C1 C2 C3 C4
COURSE 134 12 81 17
FACULTY 2 78 61 12
PROJECT 1 47 28 10
STUDENT 2 68 402 86
ITERATION 2 C1 C2 C3 C4
CORNELL 103 86 27 10
TEXAS 50 87 83 32
WASHINGTON 35 77 138 5
WISCONSIN 60 86 30 132

Table 5 shows the confusion matrices by method 1 for
three iterations. For the first iteration, we set K = 3. The
results show that cluster C1 groups together recreation and
computer categories. The ten most frequent words tell us
that the documents here share information related to enter-
tainment. Cluster C2 groups science and talks together, and
the frequent words confirm that it groups science and the
religion part of the talk. Cluster C3 is a mixture of different
topics.

In iteration 2, we set K = 4 to see if it we can partition
the data to capture the four categories “computer”, “recre-

8

0.90 0.42

0.51 0.67

Figure 7. The average face image for each
cluster found by method 1 in iteration 2.
This clustering view corresponds to different
poses.

ation”, “talk” and “science”. From the confusion matrix,
we see that we were able to find these high level categories.
C1 is about computers; C2 contains news about recreation;
and C3 groups those files related to science. The last one
C4 contains documents from the “talk” category that are
related to politics.

In iteration 3, two of the “computer” classes (graph-
ics, os.ms) were grouped together with the “talk” category,
the remaining three “computer” classes were grouped to-
gether with the “recreation” category (auto, motorcycles
and sports). This suggests that our method continued find-
ing clustering structure that is different from the existing
results.

4.2.4 Results for the WebKB Text Data

This data contains 1041 html documents, from four web-
page topics: course, faculty, project and student. Alterna-
tively, the webpage can also be grouped based on their re-
gions/universities, which include four universities: Cornell
University, University of Texas Austin, University of Wash-
ington and Wisconsin Madison. Following the same pre-
processing procedure used for the mini-newsgroups data,
we removed the rare words, stop words, and words with
low variances. Finally, we obtained 350 words in the vo-
cabulary. The final data matrix is of size 350 × 1041.

The experimental results are quite interesting. For the
first iteration, we see our method found the partition that
mostly corresponds to the different topics, which can be
seen in Table 4. Cluster 1 contains course webpages, cluster
2 is a mix of faculty and project pages, cluster 3 consists of
a majority of student webpages. In the second iteration, our

method found a different clustering that corresponds to the
universities, as shown in Table 4.

5 Conclusion

The goal of explorative data analysis is to find the un-
derlying structure from a given set of data, which may be
multi-faceted by nature. Existing work on non-redundant
clustering attempts to address this problem by searching for
a single alternative clustering solution that is different from
an existing one. Our main contribution in this paper is that
we introduced a new paradigm for explorative data cluster-
ing that seeks to extract all non-redundant clustering views
from a given set of data (until there is only noise left in the
data).

We presented a general framework for extracting mul-
tiple clustering views from high dimensional data. In
essence, this framework works by incorporating orthog-
onality constraints into a clustering algorithm. In other
words, the clustering algorithm will search for a new clus-
tering in a space that is orthogonal to what has been covered
by existing clustering solutions. We described two different
methods for introducing orthogonality and conducted a va-
riety of experiments on both synthetic data and real world
benchmark data sets to evaluate these methods. The results
can be summarized as follows.

1. Using two different synthetic data sets, our proposed
framework was able to find different substructures of
the data or different structures embedded in different
subspaces in different iterations.

2. On benchmark data sets, our methods not only found
different clustering structures in different iterations,
but also discovered clustering structures that are sen-
sible, judging from the various evaluation criteria re-
ported (such as, confusion matrices and scatter plots).
The face data set for example, PCA+K-means identi-
fied individuals in the first iteration. In the second iter-
ation, our methods were able to identify a set of differ-
ent clusters that correspond nicely to different poses.
For other data sets, we observed similar results in the
sense that different concept classes were identified in
different iterations.

Note that this paper uses k-means as the basic cluster-
ing algorithm. However, the framework is designed with
no specific algorithm in mind and can work with any clus-
tering algorithm. Future directions will be to explore the
framework with other clustering methods.

Acknowledgments

This research is supported by NSF CAREER IIS-
0347532.

9

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.
Automatic subspace clustering of high dimensional data for
data mining applications. In Proc. of the ACM SIGMOD
Int’l Conf. on Management of Data, pages 94–105, 1998.

[2] S. D. Bay. The UCI KDD archive, 1999.
[3] S. Bickel and T. Scheffer. Multi-view clustering. In Proc. of

the IEEE Int’l Conf. on Data Mining, pages 19–26, 2004.
[4] C. Blake and C. Merz. UCI repository of ma-

chine learning databases. In http://www.ics.uci.edu/
∼mlearn/MLRepository.html, 1998.

[5] G. Chechik and N. Tishby. Extracting relevant structures
with side information. In Advances in Neural Information
Processing Systems 15 (NIPS-2002), 2003.

[6] CMU. CMU 4 universities WebKB data, 1997.
[7] I. S. Dhillon and D. M. Modha. Concept decompositions for

large sparse text data using clustering. Machine Learning,
42(1):143–175, 2001.

[8] C. Ding, X. He, H. Zha, and H. Simon. Adaptive dimension
reduction for clustering high dimensional data. In Proc. of
the IEEE Int’l Conf. on Data Mining, pages 147–154, 2002.

[9] R. O. Duda and P. E. Hart. Pattern Classification and Scene
Analysis. Wiley & Sons, NY, 1973.

[10] X. Z. Fern and C. E. Brodley. Random projection for high
dimensional data clustering: A cluster ensemble approach.
In Proc. of the Int’l Conf. on Machine Learning, 2003.

[11] E. Forgy. Cluster analysis of multivariate data: Efficiency vs.
interpretability of classifications. Biometrics, 21:768, 1965.

[12] K. Fukunaga. Statistical Pattern Recognition (second edi-
tion). Academic Press, San Diego, CA, 1990.

[13] D. Gondek. Non-redundant clustering. PhD thesis, Brown
University, 2005.

[14] D. Gondek and T. Hofmann. Conditional information bottle-
neck clustering. In The 3rd IEEE Intl. Conf. on Data Mining,
Workshop on Clustering Large Data Sets, 2003.

[15] D. Gondek and T. Hofmann. Non-redundant data clustering.
In Proc. of the 4th Intl. Conf. on Data Mining, 2004.

[16] D. Gondek and T. Hofmann. Non-redundant clustering
with conditional ensembles. In Proc. of the 11th ACM
SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining (KDD’05), pages 70–77, 2005.

[17] D. Gondek, S. Vaithyanathan, and A. Garg. Clustering with
model-level constraints. In Proc. of SIAM International
Conference on Data Mining, 2005.

[18] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A
review. ACM Computing Surveys, 31(3):264–323, 1999.

[19] I. T. Jolliffe. Principal Component Analysis. Springer-
Verlag, New-York, 1986.

[20] J. Macqueen. Some methods for classifications and analy-
sis of multivariate observations. Proc. Symp. Mathematical
Statistics and Probability, 5th, Berkeley, 1:281–297, 1967.

[21] L. Parsons, E. Haque, and H. Liu. Subspace clustering for
high dimensional data: a review. SIGKDD Explor. Newsl.,
6(1):90–105, 2004.

[22] A. Strehl and J. Ghosh. Cluster ensembles – a knowledge
reuse framework for combining multiple partitions. Journal
of Machine Learning Research, pages 583–617, 2002.

Table 5. Confusion Matrix for the Mini-
Newsgroups Data

ITERATION1 (K=3) C1 C2 C3
COMP.GRAPHICS 88 0 12
COMP.OS.MS 95 0 5
COMP.SYS.IBM.PC.HARDWARE 94 0 6
COMP.SYS.MAC.HARDWARE 88 0 12
COMP.WINDOWS.X 87 0 13
REC.AUTOS 81 0 19
REC.MOTORCYCLES 82 0 18
REC.SPORT.BASEBALL 81 0 19
REC.SPORT.HOCKEY 71 2 27
SCI.CRYPT 0 68 32
SCI.ELECTRONICS 0 76 24
SCI.MED 0 78 22
SCI.SPACE 0 74 26
TALK.POLITICS.GUNS 0 70 30
TALK.POLITICS.MIDEAST 0 61 39
TALK.POLITICS.MISC 0 72 28
TALK.RELIGION.MISC 0 77 23

ITERATION2 (K=4) C1 C2 C3 C4
COMP.GRAPHICS 98 0 2 0
COMP.OS.MS 94 0 0 6
COMP.SYS.IBM.PC.HARDWARE 78 15 3 4
COMP.SYS.MAC.HARDWARE 66 20 3 11
COMP.WINDOWS.X 43 39 5 13
REC.AUTOS 28 51 6 15
REC.MOTORCYCLES 17 59 6 18
REC.SPORT.BASEBALL 10 67 4 19
REC.SPORT.HOCKEY 5 62 4 29
SCI.CRYPT 5 8 57 30
SCI.ELECTRONICS 1 9 65 25
SCI.MED 1 22 61 16
SCI.SPACE 0 16 58 26
TALK.POLITICS.GUNS 0 37 20 43
TALK.POLITICS.MIDEAST 5 39 11 45
TALK.POLITICS.MISC 3 45 6 46
TALK.RELIGION.MISC 1 58 3 38

ITERATION3 (K=4) C1 C2 C3 C4
COMP.GRAPHICS 33 32 6 29
COMP.OS.MS 42 23 10 25
COMP.SYS.IBM.PC.HARDWARE 17 45 11 27
COMP.SYS.MAC.HARDWARE 15 41 20 24
COMP.WINDOWS.X 19 40 18 23
REC.AUTOS 15 47 27 11
REC.MOTORCYCLES 10 54 22 14
REC.SPORT.BASEBALL 7 51 33 9
REC.SPORT.HOCKEY 5 66 21 8
SCI.CRYPT 5 15 68 12
SCI.ELECTRONICS 10 9 65 16
SCI.MED 31 8 46 15
SCI.SPACE 15 24 48 13
TALK.POLITICS.GUNS 49 19 18 14
TALK.POLITICS.MIDEAST 45 24 16 15
TALK.POLITICS.MISC 55 12 12 21
TALK.RELIGION.MISC 56 8 20 16

10

