Batch Bayesian Optimization
via Simulation Matching

Javad Azimi, Alan Fern, Xiaoli Z. Fern
School of EECS, Oregon State University
{azimi , afern, xfern}@eecs .oregonstate.edu

Abstract

Bayesian optimization methods are often used to optimize unknown functions that
are costly to evaluate. Typically, these methods sequentially select inputs to be
evaluated one at a time based on a posterior over the unknown function that is
updated after each evaluation. In many applications, however, it is desirable to
perform multiple evaluations in parallel, which requires selecting batches of mul-
tiple inputs to evaluate at once. In this paper, we propose a novel approach to
batch Bayesian optimization, providing a policy for selecting batches of inputs
with the goal of optimizing the function as efficiently as possible. The key idea is
to exploit the availability of high-quality and efficient sequential policies, by using
Monte-Carlo simulation to select input batches that closely match their expected
behavior. Our experimental results on six benchmarks show that the proposed ap-
proach significantly outperforms two baselines and can lead to large advantages
over a top sequential approach in terms of performance per unit time.

1 Introduction

We consider the problem of maximizing an unknown function f(z) when each evaluation of the
function has a high cost. In such cases, standard optimization techniques such as empirical gradient
methods are not practical due to the high number of function evaluations that they demand. Rather,
Bayesian optimization (BO) methods [12, 4] have demonstrated significant promise in their ability
to effectively optimize a function given only a small number of evaluations. BO gains this efficiency
by leveraging Bayesian models that take into account all previously observed evaluations in order
to better inform future evaluation choices. In particular, typical BO methods continually maintain a
posterior over f(x) that is used to select the next input to evaluate. The result of the evaluation is
then used to update the posterior and the process repeats. There are a number of well established
policies for selecting the next input to evaluate given the current posterior. We will refer to such
policies as sequential policies to stress the fact that they select one input at a time.

In many applications it is possible and desirable to run multiple function evaluations in parallel.
This is the case, for example, when the underlying function corresponds to a controlled laboratory
experiment where multiple experimental setups are examined simultaneously, or when the underly-
ing function is the result of a costly computer simulation and multiple simulations can be run across
different processors in parallel. In such cases, existing sequential policies are not sufficient. Rather,
batch mode BO is more appropriate, where policies select a batch of multiple inputs to be evaluated
at once. To the best of our knowledge and as noted in [4], there is no established work on BO that
considers the batch selection problem, except for a brief treatment in [21]. The main contribution of
this work is to propose an approach to batch BO and to demonstrate its effectiveness.

The key motivation behind our approach comes from the fact that the sequential mode of BO has a
fundamental advantage over BO in batch mode. This is because in sequential mode, each function
evaluation is immediately used to obtain a more accurate posterior of f(z), which in turn will allow

a selection policy to make more informed choices about the next input. Given an effective sequential
selection policy, our goal is then to design a batch policy that approximates its behavior.

In particular, our batch policy attempts to select a batch that “matches” the expected behavior of a
sequential policy as closely as possible. The approach generates Monte-Carlo simulations of a se-
quential policy given the current posterior, and then derives an optimization problem over possible
batches aimed at minimizing the loss between the sequential policy and the batch. We consider two
variants of this optimization problem that yield a continuous weighted k-means problem and a com-
binatorial weighted k-medoid problem. We solve the k-means variant via k-means clustering and
show that the k-medoid variant corresponds to minimizing a non-increasing supermodular function,
for which there is an efficient approximation algorithm [9].

We evaluate our approach on a collection of six functions and compare it to random and another
baseline batch policy based on submodular maximization. The results show that our approach signif-
icantly outperforms these baselines and can lead to large advantages over a top sequential approach
in terms of performance per unit time.

2 Problem Setup

Let X C R"™ be an n-dimensional input space, where we will often refer to elements of X as an
experiment and assume that each dimension i is bounded in [A;, B;]. We assume an unknown real-
valued function f : X — R, which represents the expected value of the dependent variable after
running an experiment. For example, f(x) might correspond to the result of a wet-lab experiment
or a computer simulation with input parameters . Conducting an experiment x produces a noisy
outcome y = f(x) + €, where € is a noise term that might be 0 in some applications.

Our objective is to find an experiment x € X that approximately maximizes f by requesting a
limited number of experiments and observing their outcomes. Furthermore we are interested in
applications where (1) running experiments is costly (e.g. in terms of laboratory or simulation time);
and (2) it is desirable to run & > 1 experiments in parallel. This motivates the problem of selecting
a sequence of batches, each containing k experiments, where the choice of a batch can depend on
the results observed from all previous experiments. We will refer to the rule for selecting a batch
based on previous experiments as the batch policy. The main goal of this paper is to develop a batch
policy that optimizes the unknown function as efficiently as possible.

Due to the high cost of experiments, traditional optimization techniques such as empirical gradient
ascent are not practical for our setting, due to their high demands on the number of experiments.
Rather, we build on Bayesian optimization (BO) [10, 12, 4], which leverages Bayesian modeling
in an attempt to achieve more efficient optimization. In particular, BO maintains a posterior over
the unknown function based on previously observed experiments, e.g. represented via a Gaussian
Process (GP) [19]. This posterior is used to select the next experiment to be run in a way that attempts
to trade-off exploring new parts of the experimental space and exploiting parts that look promising.
While the BO literature has provided a number of effective policies, they are all sequential policies,
where only a single experiment is selected and run at a time. Thus, the main novelty of our work is
in defining a batch policy in the context of BO, which is described in the next section.

3 Simulation Matching for Batch Selection

Given a data set D of previously observed experiments, which induces a posterior distribution over
the unknown function, we now consider how to select the next batch of k experiments. A key issue in
making this choice is to manage the trade-off between exploration and exploitation. The policy must
attempt to explore by requesting experiments from unexplored parts of the input space, at the same
time also attempt to optimize the unknown function via experiments that look promising given the
current data. While, under most measures, optimizing this trade-off is computationally intractable,
there are a number of heuristic sequential policies from the BO literature that are computationally
efficient and perform very well in practice. For example, one such policy selects the next experiment
to be the one that has the “maximum expected improvement” according to the current posterior
[14, 10]. The main idea behind our approach is to leverage such sequential policies by selecting a
batch of £ > 1 experiments that “closely matches” the sequential policy’s expected behavior.

More formally, let 7 be a sequential policy. Given a data set D of prior experimental results, 7 returns
the next experiment x € X to be selected. As is standard in BO, we assume we have a posterior

density P(f | D) over the unknown function f, such as a Gaussian Process. Given this density we
can define a density over the outcomes of executing policy 7 for k steps, each outcome consisting
of a set of k selected experiments. Let S* be the random variable denoting the set of k experiments
resulting from such k-step executions, which has a well defined density over all possible sets given
the posterior of f. Importantly, it is generally straightforward to use Monte Carlo simulation to
sample values of S*.! Our batch policy is based on generating a number of samples of S¥, which
are used to define an objective for optimizing a batch of k experiments. Below we describe this
objective and a variant, followed by a description of how we optimize the proposed objectives.

3.1 Batch Objective Function

Our goal is to select a batch B of k experiments that best “matches the expected behavior” of a base
sequential policy 7 conditioned on the observed data D. More precisely we consider a batch B to
be a good match for a policy execution if B contains an experiment that is close to the best of the k
experiments selected by the policy. To specify this objective we first introduce some notation. Given
a function f and a set of experiments S, we define 2*(f, S) = arg max,cs f () to be the maximizer
of fin S. Also, for any experiment x and set B we define nn(z, B) = argmingep || z — 2’ || to
be the nearest neighbor of x in set B. Our objective can now be written as selecting a batch B that
minimizes

OBI(B) = Eg [Esx [| *(f,57) —mn(2*(f,S7), B) |*| D] | DJ.

Note that this nested expectation is the result of decomposing the joint posterior over S* and f as
P(f,S* | D) = P(f | Sk,D) - P(Sk | D). If we assume that the unknown function f(x) is
Lipschitz continuous then minimizing this objective can be viewed as minimizing an upper bound
on the expected performance difference between the sequential policy and the selected batch. Here
the performance of a policy or a batch is equal to the output value of the best selected experiment.

We will approximate this objective by replacing the outer expectation over S* with a sample average
over n samples {S1, ..., S, } of S¥ as follows, recalling that each S; is a set of k experiments:

OBI(B)

Q

%ZEJ‘\&' [H z*(f,8;) —nn(z*(f, S:), B) H2 | D]

SN Prla=a*(£,5) | D) |« m(r, B) |

i TES;

1 o _ 9
EZ > ia ||z —nn(2,B) | (1)

i xTES;

The second step follows by noting that z*(f, S;) must be one of the k experiments in .S;.

We now define our objective as minimizing (1) over batch B. The objective corresponds to a
weighted k-means clustering problem, where we must select B to minimize the weighted distor-
tion between the simulated points and their closest points in B. The weight on each simulated
experiment «; ,, corresponds to the probability that the experiment x € S; achieves the maximum
value of the unknown f among the experiments in S;, conditioned on D and the fact that S¥ = ;.
We refer to this objective as the k-means objective.

We also consider a variant of this objective where the goal is to find a B that minimizes (1) under
the constraint that B is restricted to experiments in the simulations, i.e. B C J,; S; s.t. |B| = k.
This objective corresponds to the weighted k-medoid clustering problem, which is often considered
to improve robustness to outliers in clustering. Accordingly we will refer to this objective as the
k-medoid objective and note that given a fixed set of simulations this corresponds to a discrete
optimization problem.

3.2 Optimization Approach

The above k-means and k-medoid objectives involve the weights «v; , = P(x = z}(f) | D, Sk =
S;), for each z € S;. In general these weights will be difficult to compute exactly, particularly

"For example, this can be done by starting with D and selecting the first experiment x; using 7 and then
using P(f | D) to simulate the result y1 of experiment x1. This simulated experiment is added to D and the
process repeats for k — 1 additional experiments.

Algorithm 1 Greedy Weighted k-Medoid Algorithm
Input:S = {(z1,w1), ..., (Tm,wm)}, k
Output: B
B «— {x1,..., 2z} // initialize batch to all data points
while |B| > k do
2 «— argmingep Z;"zl wj- || ; —nn(z;, B\) || / point that influences objective the least
B~ B\=z
end while
return B

due to the conditioning on the set .S;. In this work, we approximate those weights by dropping the
conditioning on S;, for which it is then possible to derive a closed form when the posterior over f is
represented as a Gaussian Process (GP). We have found that this approach leads to good empirical
performance. In particular, instead of using the weights «; , we use the weights &; , = P(z =
xzf(f) | D). When the posterior over f is represented as a GP, as in our experiments, the joint
distribution over experimental outcomes in S; = {z;1,...,%; x} is normally distributed. That is,
the random vector (f(z;1),..., f(zir)) ~ N (p,X), where the mean p and covariance X have
standard closed forms given by the GP conditioned on D. From this, it is clear that for a GP the
computation of &; ,, is equivalent to computing the probability that the it" component of a normally
distributed vector is larger than the other components. A closed form for this probability is given by
the following proposition.

Proposition 1. If (y1,y2,.--,y%) ~ N (,uy, 3y) then foranyi € {1,...,k},

k—1

Pyi > y1,%i > Y2, > yk) = | | (1 —2(—py)) (2)
j=1

where ®(.) is standard normal cdf, p = (p1, pia, - - - pr—1) = (ADyA") ? Apy, such that A €

RE=DXE js q sparse matrix that forany j = 1,2, ---, k—1 we haveA;; = 1, and forany 1 < p <'i
we have A, , = —1, and forany i < p < kwe have A, , = —1.

Using this approach to compute the weights we can now consider optimizing the k-means and k-
medoid objectives from (1), both of which are known to be NP-hard problems. For the k-means
objective we solve for the set B by simply applying the k-means clustering algorithm [13] to the
weighted data set {J; U, s, {(2, &)} The k cluster centers are returned as our batch B.

The k-medoid objective is well known [22] and the weighted k-medoid clustering algorithm [11]
has been shown to perform well and be robust to outliers in the data. While we have experimented
with this algorithm and obtained good results, we have achieved results that are as good or better
using an alternative greedy algorithm that provides certain approximation guarantees. Pseudo-code
for this algorithm is shown in Figure 1. The input to the algorithm is the set of weighted experiments
and the batch size k. The algorithm initializes the batch B to include all of the input experiments,
which achieves the minimum objective value of zero. The algorithm then iteratively removes one
experiment from B at a time until |B| = k, each time removing the element whose removal results
in the smallest increase in the k-medoid objective.

This greedy algorithm is motivated by theoretical results on the minimization of non-increasing,
supermodular set functions.

Definition 1. Suppose S is a finite set, f : 2° — Rt is a supermodular set function if for all
By € By C Sand{x} € S\ By, it holds that f(B1) — f(B1 U {z}) > f(Bs) — f(B2 U {x}).

Thus, a set function is supermodular if adding an element to a smaller set provides no less improve-
ment than adding the element to a larger set. Also, a set function is non-increasing if for any set
S and element z if f(S) > f(S U {x}). It can be shown that our k-medoid objective function of
(1) is both a non-increasing and supermodular function of B and achieves a minimum value of zero
for B = |J, S;. It follows that we can obtain an approximation guarantee for the described greedy
algorithm in [9].

Theorem 1. [9] Let f be a monotonic non-increasing supermodular function over subsets of the

finite set S, |S| = m and f(S) = 0. Let B be the set of the elements returned by the greedy
algorithm 1 5.t |B| = k, g = m — k and B* = argming cgs g/ |= f(B’), then
1 +t\? wo_et—1 .
1)< [(1) 1) sy < Sy) ®

where t is the steepness parameter [9] of function f.

Notice that the approximation bound involves the steepness parameter ¢ of f, which characterizes
the rate of decrease of f. This is unavoidable since it is known that achieving a constant factor
approximation guarantee is not possible unless P=NP [17]. Further this bound has been shown to be
tight for any ¢ [9]. Note that this is in contrast to guarantees for greedy maximization of submodular
functions [7] for which there are constant factor guarantees. Also note that the greedy algorithm
we use is qualitatively different from the one used for submodular maximization, since it greedily
removes elements from B rather than greedily adding elements to B.

4 Implementation Details and Baselines

GP Posterior. Our batch selection approach described above requires that we maintain a posterior
over the unknown function f. For this purpose we use a zero-mean GP prior with a zero-mean
Gaussian noise model with variance equal to 0.01. The GP covariance is specified by a Gaussian
kernel K (z,2") = oexp (—5 || @ — ' ||?), with signal variance 0 = y70x Where ymax is the
maximum value of the unknown function. In all of our experiments we used a simple rule of thumb
to set the kernel width w to 0.01 Z?:l l; where [; is the input space length in dimension ¢. We have
found this rule to work well for a variety of problems. An alternative would be to use a validation-
based approach for selecting the kernel parameters. In the BO setting, however, we have found this
to be unreliable since the number of data points is relatively small.

Base Sequential Policy. Our batch selection approach also requires a base sequential policy 7 to be
used for simulation matching. This policy must be able to select the next experiment given any set
of prior experimental observations D. In our experiments, we use a policy based on the Maximum
Expected Improvement (MEI) heuristic [14, 10] which is a very successful sequential policy for BO
and has been shown to converge in the limit to the global optimum. Given data D the MEI policy
simply selects the next experiment to be the one that maximizes the expected improvement over the
current set of experiments with respect to maximizing the unknown function. More formally, let y*
be the value of the best/largest experimental outcome observed so far in D. The MEI value of an
experiment x is given by MEI(z) = E; [max{f(z) — y*,0} | D]. For our GP posterior over f we

can derive a closed form for this given by: u = y;(i‘;gm) where y* is our best currently observed

value. For any given example x, the MEI can be computed as follows:

_ Y —p@)
o(z)

where ® and ¢ are the standard normal cumulative distribution and density functions and (x) and
o(x) are the mean and variance of f(z) according to the GP given D, which have simple closed
forms. Note that we have also evaluated our simulation-matching approach with an alternative
sequential policy known as Maximum Probability of Improvement [16, 10]. The results (not shown
in this paper) are similar to those obtained from MEI, showing that our general approach works well
for different base policies.

MEl(z) = o(z)[-u®(-u)+¢(u)], u

The computation of the MEI policy requires maximizing MEI(x) over the input space X. In gen-
eral, this function does not have a unique local maximum and various strategies have been tried for
maximizing it. In our experiments, we (approximately) maximize the MEI function using the DI-
RECT black-box optimization procedure, which has shown good optimization performance as well
as computational efficiency in practice.

Baseline Batch Policies. To the best of our knowledge there is no well-known batch policy for
Bayesian optimization. However, in our experiments we will compare against two baselines. The
first baseline is random selection, where a batch of k£ random experiments is returned at each step. In-
terestingly, in the case of batch active learning for classification, the random batch selection strategy

Table 1: Benchmark Functions.

Function Mathematical representation
Cosines 1 — (u? + v? — 0.3cos(3mu) — 0.3cos(3mv)) u= 1.6z —0.5,0 =16y —0.5
Rosenbrock 10 — 100(y — 2%)? — (1 — 2)?
; 70
Michalewicz — 3% sin(ay). (sin (Z:?))

has been surprisingly effective and is often difficult to outperform with more sophisticated strategies
[8]. However, as our experiments will show, our approach will dominate random.

Our second, more sophisticate, baseline is based on selecting a batch of experiments whose expected
maximum output is the largest. More formally, we consider selecting a size k batch B that max-
imizes the objective Ef [max,cp f(x) | D], which we will refer to as the EMAX objective. For
our GP prior, each set B = {x1,...,z;} can be viewed as defining a normally distributed vec-
tor {f(z1),..., f(zx)) ~ N(w,X). Even in this case, finding the optimal set B is known to be
NP-hard. However, for the case where f is assumed to be non-negative, the EMAX objective is
a non-negative, submodular, non-decreasing function of B. Together these properties imply that a
simple greedy algorithm can achieve an approximation ratio of 1 — e~! [7]. The algorithm starts
with an empty B and greedily adds experiments to B, each time selecting the one that improves the
EMAX objective the most. Unfortunately, in general there is no closed form solution for evaluating
the EMAX objective, even in our case of normally distributed vectors [20]. Therefore, to imple-
ment the greedy algorithm, which requires many evaluations of the EMAX objective, we use Monte
Carlo sampling, where for a given set B we sample the corresponding normally distributed vector
and average the maximum values across the samples.

5 Experimental Results

In this section we evaluate our proposed batch BO approach and the baseline approaches on six
different benchmarks.

5.1 Benchmark Functions

We consider three well-known synthetic benchmark functions: Cosines and Rosenbrock [1, 5],
which are over [0,1]2, and Michalewicz [15], which is over [0, 7]?. Table 1 gives the formulas
for each of these functions. Two additional benchmark functions Hydrogen and FuelCell, which
range over [0, 1]2, are derived from real-world experimental data sets. In both cases, the bench-
mark function was created by fitting regression models to data sets resulting from real experiments.
The Hydrogen data set is the result of data collected as part of a study on biosolar hydrogen pro-
duction [6], where the goal was to maximize the hydrogen production of a particular bacteria by
optimizing the PH and Nitrogen levels of the growth medium. The FuelCell data set was collected
as part of a study investigating the influence of anodes’ nano-structure on the power output of mi-
crobial fuel cells [3]. The experimental inputs include the average area and average circularity of
the nano-particles [18]. Contour plots of the four 2-d functions are shown in Figure 1.

The last benchmark function is derived from the Cart-Pole [2] problem, which is a commonly used
reinforcement learning problem. The goal is to optimize the parameters of a controller for a wheeled
cart with the objective of balancing a pole. The controller is parameterized by four parameters
giving a 4-d space of experiments in [1, —1]*. Given a setting for these parameters, the benchmark
function is implemented by using the standard Cart-Pole simulator to return the reward received for
the controller.

5.2 Results

Figures 2 and 3 show the performance of our methods on all six benchmark functions for batch sizes
5 and 10 respectively. Each graph contains 5 curves, each corresponding to a different BO approach
(see below). Each curve is the result of taking an average of 100 independent runs. The z-axis of
each graph represents the total number of experiments and the y-axis represents the regret values,
where the regret of a policy at a particular point is the difference between the best possible output
value (or an upper bound if the value is not known) and the best value found by the policy. Hence the
regret is always positive and smaller values are preferred. Each run of a policy initializes the data set
to contain 5 randomly selected experiments for the 2-d functions and 20 random initial experiments
for the higher dimensional functions.

1@ A

0

Fuel Cell

Hydrogen Cosmes

Rosenbrock

Figure 1: The contour plots for the four 2—dimension proposed test functions.

— Sequential
=k k-medoid
-El- k-means

-&- EMAX

0.3] — Sequential|
' k-medoid
-B-- k-means
0.2 -&- EMAX
—— Random

= Sequential
‘o k-medoid
-E- k-means
-&- EMAX
—— Random

15 20 25 30 35 % 15 20 25 30 35 0 %O 15 20 25 30 35
of Experimets # of Experimets # of Experimets
Fuel Cell Hydrogen Cosines
0.5 _
= Sequential = Sequential
0. ‘2 k-medoid 2. = k-medoid
=B~ k-means -EF k-means
0.4 -6~ EMAX 28, -€ EMAX
0.35 ~——Random 271 ~——Random
o O . 600000 5 > SN
% 0.2 5 525
-3 & @
0.2]

——Sequential
4 k-medoid

e =B k-means 22
] 300 o
----- -9~ EMAX * .
——Random = 3
qﬂ 15 20 25 30 35 20%5 50 75 100 125 150 175 200 5 30 35 40 45 50 55 60 65 70 5 80
of Experimets # of Experimets # of Experimets.
Rosenbrock Cart-Pole Michalewicz

Figure 2:

— Sequential
k- k-medoid
-EF k-means
-& EMAX
~—— Random

0.25
— Sequential
e k-medoid
- k-means

0. -9~ EMAX

——Random

0.5

5

54

o

Performance evaluation with batch size 5.

0.05

'k k-medoid
-EF k-means
-& EMAX
——Random

20 25 30
of Experimets

Fuel Cell

35

— Sequential
ok k-medoid
-EF k-means
-9~ EMAX

~— Random

25
of Experimets

Rosenbrock

Figure 3: Performance evaluation with batch size 10.

?.5 20

25
of Experimets

Hydrogen

— Sequental
e k-medoid
=Bl k-means
& Emax

~—— Random

60 150 200

90 120
of Experimets

Cart-Pole

25
of Experimets

Cosines

— Sequential
k- k-medoid
-El k-means
-&- EMAX

50 60
#of Experimets

Michalewicz

Each graph gives curves for four batch approaches including our baselines Random and EMAX,
along with our proposed approaches based on the k-means and k-medoid objectives, which are
optimized by weighted k-means clustering and the greedy Algorithm 1 respectively. In addition, for
reference we plot the performance of the base Sequential MEI BO policy (k = 1) on each graph.
Note that since the batch approaches request either 5 or 10 experiments at a time, their curves only
contain data points at those intervals. For example, for the batch size 5 results the first point on a
batch curve corresponds to 10 experiments, including the initial 5 experiments and the first requested
batch. The next point on the batch curve is for 15 experiments which includes the next requested
batch and so on. Rather the Sequential policy has a point at every step since it requests experiments
one at a time. It is important to realize that we generally expect a good sequential policy to do better,
or no worse, than a batch policy with respect to performance per number of experiments. Thus, the
Sequential curve can be typically viewed as an upper performance bound and provides an indication
of how much loss is incurred when moving to a batch setting in terms of efficiency per experiment.

Comparison to Baselines. The major observation from our results is that for all benchmarks and
for both batch sizes the proposed k-means and k-medoid approaches significantly outperform the
baselines. This provides strong validation for our proposed simulation-matching approach to batch
selection.

k-means vs. k-medoid. In most cases, the k-means and k-medoid approaches perform similarly.
However, for both batch sizes k-medoid often does shows a small improvement over k-means and
appears to have a significant advantage in FuelCell. The only exception is in Hydrogen where k-
means shows a small advantage over k-medoid for small numbers of experiments. Overall, both
approaches appear to be effective and in these domains k-medoid has a slight edge.

Batch vs. Sequential. The advantage of Sequential over our batch approaches varies with the bench-
mark. However, in most cases, our proposed batch approaches catch up to Sequential in a relatively
small number of experiments and in some cases, the batch policies are similar to Sequential from
the start. The main exception is Cart-Pole for batch size 10, where the batch policies appear to be
significantly less efficient in terms of performance versus number of experiments. Generally, we see
that the difference between our batch policies and Sequential is larger for batch size 10 than batch
size 5, which is expected, since larger batch sizes imply that less information per experiment is used
in making decisions.

It is clear, however, that if we evaluate the performance of our batch policies in terms of experi-
mental time, then there is a very significant advantage over Sequential. In particular, the amount of
experimental time for a policy is approximately equal to the number of requested batches, assuming
that the batch size is selected to allow for all selected experiments to be run in parallel. This means,
for example, that for the batch size 5 results, 5 time steps for the batch approaches correspond to
30 total experiments (5 initial + 5 batches). We can compare this point to the first point on the
Sequential curve, which also corresponds to 5 time steps (5 experiments beyond the initial 5). In all
cases, the batch policies yield a very large improvement in regret reduction per unit time, which is
the primary motivation for batch selection.

6 Summary and Future Work

In this paper we introduced a novel approach to batch BO based on the idea of simulation matching.
The key idea of our approach is to design batches of experiments that approximately match the
expected performance of high-quality sequential policies for BO. We considered two variants of
the matching problem and showed that both approaches significantly outperformed two baselines
including random batch selection on six benchmark functions. For future work we plan to consider
the general idea of simulation matching for other problems, such as active learning, where there are
also good sequential policies and batch selection is often warranted. In addition, we plan to consider
less myopic approaches for selecting each batch and the problem of batch size selection, where there
is a choice about batch size that must take into account the current data and experimental budget.

Acknowledgments

The authors acknowledge the support of the NSF under grants IIS-0905678.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]
[13]

(14]

[15]

(16]
(7]
(18]

(19]
[20]

(21]
(22]

B. S. Anderson, A. W. More, and D. Cohn. A nonparametric approach to noisy and costly optimization.
In ICML, 2000.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult
learning control problems. 13:835-846, 1983.

D. Bond and D. Lovley. Electricity production by geobacter sulfurreducens attached to electrodes. Appli-
cations of Environmental Microbiology, 69:1548-1555, 2003.

E. Brochu, M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions,
with application to active user modeling and hierarchical reinforcement learning. Technical Report TR-
2009-23, Department of Computer Science, University of British Columbia, 2009.

M. Brunato, R. Battiti, and S. Pasupuleti. A memory-based rash optimizer. In AAAI-06 Workshop on
Heuristic Search, Memory Based Heuristics and Their applications, 2006.

E. H. Burrows, W.-K. Wong, X. Fern, F. W. Chaplen, and R. L. Ely. Optimization of ph and nitrogen
for enhanced hydrogen production by synechocystis sp. pcc 6803 via statistical and machine learning
methods. Biotechnology Progress, 25:1009—1017, 2009.

M. E. G Nembhauser, L Wolsey. An analysis of the approximations for maximizing submodular set func-
tions. Mathematical Programmingn, 14:265-294, 1978.

Y. Guo and D. Schuurmans. Discriminative batch mode active learning. Proceedings of Advances in
Neural Information Processing Systems (NIPS2007), 6, 2007.

V. P. II’ev. An approximation guarantee of the greedy descent algorithm for minimizing a supermodular
set function. Discrete Applied Mathematics, 114(1-3):131-146, 2001.

D. Jones. A taxonomy of global optimization methods based on response surfaces. Journal of Global
Optimization, 21:345-383, 2001.

L. Kaufman and P. J. Rousseeuw. Clustering by means of medoids. Statistical data analysis based on L1
norm, pages 405-416, 1987.

D. Lizotte. Practical Bayesian optimization. PhD thesis, University of Alberta, 2008.

S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129-137,
1982.

M. Locatelli. Bayesian algorithms for one-dimensional globaloptimization. J. of Global Optimization,
10(1):57-76, 1997.

Z. Michalewicz. Genetic algorithms + data structures = evolution programs (2nd, extended ed.).
Springer-Verlag New York, Inc., New York, NY, USA, 1994.

A. Moore and J. Schneider. Memory-based stochastic optimization. In NIPS, 1995.
G. Nemhauser and L. Wolsey. Integer and combinatorial optimization. Wiley New York, 1999.

D. Park and J. Zeikus. Improved fuel cell and electrode designs for producing electricity from microbial
degradation. Biotechnol.Bioeng., 81(3):348-355, 2003.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT, 2006.

A. M. Ross. Computing Bounds on the Expected Maximum of Correlated Normal Variables . Methodol-
ogy and Computing in Applied Probability, 2008.

M. Schonlau. Computer Experiments and Global Optimization. PhD thesis, University of Waterloo, 1997.

H. D. Vinod. Integer programming and the theory of grouping. Journal of the American Statistical
Association, 64(326):506-519, 1969.

