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Nonlinear oscillations, bifurcations and chaos in a
multi-point mooring system with a geometric
nonlinearity
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A taut multi-point mooring system with a large geometric nonlinearity under
wave and current excitation is examined in this paper. The system is found to
exhibit local instability and global bifurcations leading to complex nonlinear and
chaotic responses. A semi-analytic method based on stability analyses of
approximate solutions to the exact nonlinear system is shown to be an efficient
predictor of bifurcations and chaos. Thus the method may supplant or
significantly reduce the effort of a numerical parametric analysis for the strongly

nonlinear ocean system.
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1 INTRODUCTION

Complex nonlinear and chaotic responses have been
recently observed in various numerical and approximate
semi-analytical models of compliant offshore structures
and mooring systems.l_lo These systems are character-
ized by a unique equilibrium position (or single well
potential), a strong nonlinearity described by a mono-
tone increasing mooring restoring force, and by a fluid—
structure interaction exciting force which couples the
velocities of the structure with those of the field. System
stability is governed by complex near resonant phenom-
ena and sensitivity to initial conditions. Numerical
investigations of systems which exhibit similar non-
linear properties have revealed complex behavior
including coexisting periodic (harmonic, subharmonic
and superharmonic) and aperiodic (quasiperiodic,
chaotic) solutions defined by different initial condi-
tions. A fundamental example of such systems is the
symmetric and biased hardening Duffing equation.'' ="

While weakly nonlinear systems have been studied
extensively from both classical'* and modern’
approaches, complex single well potential systems with
a strong nonlinearity are limited in their scope of
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analysis as they belong to a class of degenerate
bifurcation problems. Two possible classical analytical
methods of treating strong nonlinearities, where small
perturbation solutions break down, are modified multi-
ple scales'® and the method of harmonic balance.!” Both
methods, applied to the hardening type Duffing
equation, show good agreement with numerical solu-
tions but are sensitive to order of approximation for a
symmetric elastic configuration without a linear static
term. '3 Stability analysis of system behaviour results
in a local bifurcation map defining the regions of
existence of the various nonlinear phenomena in
parameter space. This analysis consists of perturbing
an approximate solution and analyzing the resulting
variational equation numerically by Floquet analysis'*
or by analytically evaluating the equivalent Hill’s
variational equation.’’ Stability analysis by both
methods has been successfully employed on both
hardening and softening Duffing equations.'!”?"??
Qualitative stability analysis can also be performed on
autonomous systems in which the excitation is not time
dependent.'* This consists of finding all of the system’s
fixed points (or equilibrium solutions) and investigating
their local stability by perturbation. This technique is
employed in the analysis of quasi-statically formulated
systems or as an alternative approach to analysis of
time-averaged amplitude equations obtained by quanti-
tative analysis.'®

Ocean mooring systems include single and multi-point
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configurations.” Single-point moorings are character-
ized by curvature, material and hydrodynamic load
nonlinearities” whereas multi-point systems or spread
mooring systems incorporate an additional geometric
nonlinearity associated with mooring line angles. The
hydrodynamic excitation includes coupled nonlinear
fluid--structure interaction drag and inertial compo-
nents and requires separate treatment for small versus
large bodies.” Small bodies (with respect to the flow
wavelength) do not alter the incident flow, whereas large
bodics change the characteristics of the flow field in the
vicinity of the body and require knowledge of the
scattered and radiated potentials in addition to the
incident wave potential.®® Consequently, the exciting
forces on small bodies (e.g. semi-submersibles, articu-
lated towers) can be directly incorporated into the
system model via a semi-empirical relative motion
Morison equation.”” whereas large bodies (e.g. ships,
floating production systems) require solution of the
complete fluid-body boundary value problem or by
formulation of approximate quasi-static maneuvering
equations.®* The quasi-static large body formulation
car include additional constant descriptions of wind,
current, second order (slow) wave drift forces and
memory effects.”® A nonsteady gusting wind and first
order (fast) random waves have also been added to the
quasi-static models.*" In a recent paper, Bernitsas and
Chung8 present a review of the approaches developed
for single- and mult-point systems in the past four
decades. The nonlinear elastic force of single cable line
has been formulated by various methods. Examples are
quasi-static formulation of semi-empirical relations for
elastic rope.,*? catenary equations for chain,>* and finite
elements for steel cable.”> An alternative is to incorpo-
rate a mecasured restoring force or its approximation.
Examples of approximations by elementary functions
are a piece-wise linear formulation,* an exponential
function description® and a truncated power series
described by a quartic polynomial.*> Another single-
point configuration, modeling coupled tanker-mooring
tower motion, consists of a bi-linear formulation® and a
least squares approximation of the restoring force
resulting in a biased Duffing equation.” The geometric
nonlincarity of muilti-point systems has been exactly
incorporated in two-point® and four-point systems’ and
by wvarious approximations which are based on
measured data.*

Numerical time domain simulation has been the
primary tool for solution of both large’® and small
body configurations.® The harmonic balance method
complemented by local stability analysis were applied to
a single degree of freedom, geometrically nonlinear four-
point mooring system7 and to single-point systems
modeled by quartic*® and cubic polynomials.’ Local
autonomous system stability analysis was performed on
quasi-static, three degree of freedom, large body models
of single-"* and two-point® mooring systems. Addition

of nonsteady first and second order wave excitation,!

was performed by numerical simulation of the time-
dependent system for a given input parameter set. Local
stability analysis was performed on the reduced time-
averaged components of the wave excitation.’’ Another
example of local stability analysis is the ship roll model.
The roll restoring moment described by a quintic
polynomial approximation was analyzed by multiple
scales®®*® and by an equivalent harmonic balance
method.*® Local stability analysis of steady state
solutions by Floquet analysis revealed complex non-
linear and chaotic phenomena. However, the roll
oscillator fundamentally differs from the mooring
system as it is physically characterized by a double
well potential (or a saddle connection). The description
of the roll oscillator as a weakly nonlinear softening
Duffing equation with additional weak nonlinear
damping enables application of geometric methods'
to obtain global stability results.*' A detailed analysis*
also portrays a capsize mechanism (escape from the
well) not possible in the mooring problem.

Existing mooring systems analysis is portrayed by
both complex numerical models incorporating both
structural and hydrodynamic excitation or by idealized
numerical or semi-analytical models where the nonlinea-
rities are approximated and are in part described by their
linearized or quasi-static representation. Due to thzir
complexity, identification and control of system instabhil-
ities are not always attainable in the former models and
require extensive parametric analysis, whereas the latter
models are limited by their restrictive assumptions and
do not always reveal true system behavior. Comparison
of the complex phenomena obtained by the qualitative
global analysis of the quasi-static analysis of single->
versus two-point moorings analysis® reveals the existerice
of similar singularities and bifurcations but detailed
bifurcation analysis will be required to isolate and
identify the various mechanisms governing system
stability. Jiang, in a recent analysis of a single-point
mooring system'’ found self-sustained oscillations which
become chaotic when the system was subjected to an
additional bias or periodic waves. Furthermore, evidence
of strong subharmonic response and a period muiti-
plying route to chaotic motion appears in numerical
models of both large and small body ocean mooring
models that are subjected to combined steady and fast
motions.*'® These nonlinear solutions exist in a
relatively narrow parameter space but their magnitude
1s greater than that of the coexisting harmonic response.
As noted above, the multi-point mooring systems exhibit
a variety of both structural and hydrodynamical
nonlinearities. Consequently, in order to determine
mechanisms governing system instabilities and sensitiv-
ity to initial conditions, a comprehensive understanding
of system behaviour is needed. Examples of two
fundamental topics for investigation are: (i) the
influence of individual nonlinearities and the mechun-
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isms governing system instabilities and sensitivity to
initial condition, (ii) the relationship between constant
and time-dependent excitation as depicted in the
numerical® and perturbed quasi-static models incorpo-
prating constant/slowly varying and fast motions.'" In
order to address these questions the following system
was chosen for analysis.

This paper describes the analysis of a floating structure
connected to a symmetric multi-point mooring assembly.
The system is forced by periodic waves in a steady
current. In order to isolate the effect of geometric
nonlinearity, hnearized drag is employed and stiffness
of a taut continuous form is assumed. Consequently, the
validity of the model, which describes a strongly
nonlinear mooring system constructed from linear spring
elements, is restricted to small amplitude (linear) waves
and higher order effects are assumed weak and
incorporated into the co-linear current. In past analyses
of ocean systems, nonlinearities including the restoring
force were usually approximated by elementary functions
such as polynomial or exponential functions. Results of
analyses of these approximate systems could be mislead-
ing due to insufficient accuracy in the approximation and
the strong sensitivity of the original systems. In this study,
the exact analytical form of the nonlinear restoring is
retained instead of employing approximating elementary
functions. In order to quantitatively resolve system
response under nonsteady conditions, a small body is
chosen. thus eliminating the need to obtain a funda-
mental numerical solution. Global analysis by a
Liapunov function approach results in a bounded
solution set for small excitation. Although this result
insures the existence of an attractor, it does not address
coexistence or sensitivity to initial conditions which are
pursued by local stability and global bifurcation analysis.
Duc to the complexity of the algebraic nonlinearity in the
restoring force, the method of harmonic balance is

Y
X

utilized to obtain an approximate solution. Stability
analysis of the variational equation proves the existence
of multiple periodic solutions. Local stability analysis
leads to global period doubling bifurcations and the onset
of chaos. These analytical predictions are confirmed by
numerical solutions of the exact system. Numerical
simulations also show an underlying structure of multi-
ple coexisting attractors, including saddle-node bifurca-
tions (ultraharmonic resonances) and chaotic jumps
(explosions) brought on by an abrupt loss of stability
of a ultra-subharmonic solution.

2 SYSTEM MODEL

The multi-point mooring system considered (Fig. 1) is
formulated as a single degree of freedom (surge),
hydrodynamically damped and excited nonlinear oscil-
lator. The equation of motion is derived based on
equilibrium of geometric restoring forces and small
body motion under wave and current excitation.?

mX +cX + R(X) = F(X, X, 1) (1a)
where

R(X) = k[X + bsgn (X)]

d* + b
8 {1_\/d2+[X+bsgn(X)}2} (1b)

F(X, X, 1) = Mu— X)|u— X| + p(i — X) + pVi
(1e)

and

m, ¢,k = system mass, structural damping and stift-
ness (k = 2EA/\/(d2 + b%), EA elastic cable
force)

Fig. 1. Multi-point mooring assembly.
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A.p = hydrodynamic viscous drag and added mass
(A=05pSCy, pu=p9vYC,, p water mass
density)

8.V = system projected drag area and displaced

volume
C4, C, = drag and inertia coefficients
u(1) = time-dependent function of current and
wave velocity: u = ug+ uysin(wt); u =
ui(a,w), where u, is the current magnitude
and «,w are the wave amplitude and
frequency, respectively.

Note that () is the differentiation with respect to time
and sgn (X) denotes the sign of X.

A symmetric multi-point mooring system, based
on taut linear elastic cables with zero tension when
the system is unforced, yields an antisymmetric
restoring force (Fig. 2(a)). Although the cables have
linear elastic properties, the restoring force (stiffness)
R(x" may contain strong geometric nonlinearity
depending on mooring angles. The stiffness non-
lineurity can vary from a strongly nonlinear two-point
system (b =0) to an almost linear four point system
(b s d').

The excitation force is based on small body theory
with frequency-independent coefficients which assumes
that the presence of the structure does not affect the
wave field, hence waves propagating past the structure
remain unmodified. This approach can be justified for
slender body motion in the vertical plane (surge, heave,
pitch) where the wavelength is large compared to the
beam.*® The hydrodynamic drag and inertia forces are
based on superposition of wave and current velocities.
The current is assumed to be steady, in line with the
waves, and has a constant profile in the vertical
direction.

A quadratic drag force is assumed to account for
viscous effects on the body when the wave height is large
compared to the beam of the structure. In order to
isolate the influence of the geometric nonlinearity on the
system, equivalent linearization of the quadratic drag
force was performed.* The equivalent drag force
coefficient was obtained by equating the average power
of the linearized ()\;;) and the quadratic ()\) drag force
over one wave cycle [Ai, = ANin{ A ug, up) @ Ajn(ug = 0)
= 8§A/37].

Thus, for bodies with limited interaction with the sea
surface, the added mass and viscous damping coeffi-
cients are assumed to be independent of the excitation
frequency.

Rearranging and normalizing (x = X/d) the equation
of motion (eqn (1)) yiclds the following first order
autonomous system:

A=Y }'Y - }:(0~/10~f1*wa (b) - R(xa avﬁ) - 6_)/
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Fig. 2. Hamiltonian system: (a) restoring force, (b) potential,
(c) phase plane.
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where
o) = wt+ ¢
R(x) = afx + Bsgn (x)]

1 1

- (2b)
VIt \/1+[x+ﬂsgn(x)]2
F(8) = fo — fisin (6) (2¢)
and
k . b ¢+ )‘lin
“:'—7 [f:—7 [ iy
m+p d m+ p
. Au
Jo=" e
m+ i
N T »1 L (V)2
=1 "Wl - —
]\ nl"}”/L\/w\ +C8.) 4Cdl(\S
¢ = arctan {Zu) a zdlca) %]

where Cy = linearized drag coefficient.

3 GLOBAL ATTRACTION

The system (eqn (2)) does not have any fixed points in
three-dimensional space (x,y,0) because dff/df = w in
(eqn (2a}). However, a unique equilibrium position
[(x, 1), = (0,0)] in two-dimensional space (x,y) can be
determined via the associated integrable Hamiltonian
system which yields a phase diagram of stable centers
(Fig. 2(c)).

y = V2[P(xo) = P(x)] (3a)

where P(x) = [ R(x)dx is the potential energy of the
system (Fig. (2(b))

P) = o { ¥+ Bsen (x))° = &

21+ 3
- \/1 + [x + 3sgn (x)]z} (3b)

and P(xg) is a function of initial conditions calculable
from the invariant Hamiltonian energy H(x, y):

H(x,y) =4* + P(x;a,8) (3c)

Local stability analysis” of the unforced system

(f0,./i = 0) yields a unique asymptotically stable sink
at the origin. This analysis consists of calculating the
eigenvalues describing a nontrivial solution of the
linearized system near the origin which results in a

structurally stable sink.
e = %{—5 + \/52 — 40 (1 + ,82)‘3/2}

Excitation of the system by current alone
(fo #0,f; =0) creates a bias or a shift in the location
of the stable attractor ((x,y). = (c,0) where
R(c) = fy/a) of the response. However, with the
addition of harmonic wave excitation the hyperbolic
fixed point (sink) becomes a hyperbolic closed orbit
(limit cycle). Although the limit cycle loses the
circularity of the sink, it is anticipated by the invariant
manifold theorem to retain its stable characteristics for
small excitation.'® In order to validate and quantify the
qualitative results of local analysis, global stability of
the system is performed by a Liapunov function
approach.44

For the undamped (Hamiltonian) system, a weak
Liapunov function V(x,y) with F(0,0)=0 at
(x,¥)e = (0,0), and d¥/dz = 0, can be found by adding
a constant term /(1 + 3%) to the Hamiltonian energy
(eqn (3c)). Thus the origin is neutrally stable.

Modification of V(x,y) to account for damping,
results in a strong Liapunov function.

V(x.y) =3 +a|P) + T+ 7

+v(x,y+ %5)(2) (4a)
and
V=yy+a [dl:ix) x} +v(yx + xp + 6xx)
— —vjaxR(x) — (6 - v)y* (4b)

Choosing v (in eqn (4a, b)) sufficiently small (0 < v < §)
results in a globally stable unforced system where
V(x,y) is positive definite and dV/ds < 0.

The characteristics of the biased system with current
alone remain unchanged. The biased system describes a
quasi-statically formulated single degree of freedom
mooring system. Consequently, this result implies the
existence of an attractive set for multi-point mooring
systems driven by steady excitation representative of
superimposed constant forcing.

In order to confirm global stability of the harmoni-
cally excited system, differentiation of the Liapunov
function is performed along solution curves of the
forced system.45

V = —vaxR(x) — (6 — )y* + (fo — fi sin 0)(vx + y)
< —vaxR(x) = (6~ v)y* + [ufox] + | fo
+ ufix] + [ /1yl (4c)
Thus, for small fy and f1, and in the neighborhood of
(x,y) = (0,0), solutions of the system remain bounded
(d¥/dt < 0), and the limit cycles are globally stable for

small excitation. Strong excitation and coexistence of
solutions will be addressed by local stability analysis.
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4 HARMONIC SOLUTION AND FREQUENCY
RESPONSE

Investigation of system response under wave and
current and under wave excitation alone is similar to
analysis of a system with unsymmetric and symmetric
clastic functions, respectively. In both cases the T
periodic solution can be approximated by a finite
Fourier series expansion of the following form:

(1) ~ Y Ay cos [k(wt + )] (5a)
K
where

T

1y(1) # —xg <f + —>;
2

k =10,1,2,..., K(unsymmetric)

=-—xol t+= };
vy(1) ’c()( 1 3 )
k=1,3,5,..., K(symmetric) (5b)

and K is the desired order of approximation.

The unsymmetric solution includes both even and odd
harmonics whereas the symmetric solution consists of
onlv odd harmonics. Note that although the system
response is associated with the excitation characteristics
of system (i.e. wave excitation with or without current),
the two types of excitation can have both symmetric and
unsymmetric solution forms.

Due to the complex strong nonlinearity of the
restoring force (eqn (2b)), the harmonic balance
method is employed. The approximate solution (eqn
(5)) is substituted into the system (eqn (2)). After
rearranging and squaring, the harmonic and constant
coetlicients are equated separately to zero. The original
system of nonlinear differential equations is replaced by
a set of nonlinear algebraic equations:

G A, @) = 0 (6a)
where
i=12...,N
I N=k+2; k=0.1,...,K(x(t) — unsymmetric)
g k+3 .
l = k= 1,3,...,K(x(t) — symmetric)

(6b)

(see Appendix for details).

Solutions of this set (eqn (6)) are obtained using
an terative Newton-Raphson procedure. Frequency
response curves (Fig. 3) are generated numerically by
solving a set of nonlinear algebraic equations for the
unknown amplitudes (A4,) and phase (®).

The response frequency of the Hamiltonian system
wy = 27/T, is directly computed by integrating the
Haniiltonian phase plain to obtain the response
period T =4 [ p~'dx where y is given by eqn (3a). The
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Fig. 3. Frequency response: (a) wave and current (o = 10,
6=05 f, =001, fy =01); (b) wave (a =10, §=001,
fo=0,/1=2).

integral solution serves as an initial measure of accuracy
for determining the resolution of the approximate
solution from which the required order of approxi-
mation (K) is determined. The integral form of the
frequency response of the Hamiltonian system (‘back-
$ > ‘backbone’ curve) can be used to characterize the
degree of nonlinearity (Fig. 4). As noted previously, the
nonlinearity is strong for large mooring angles (3 < 1)
and small displacements. It also serves as a measure of
the accuracy of the approximate stability curves
describing the primary resonance jump phenomenon
or cyclic fold bifurcation.*
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Fig. 4. Degree of geometric nonlinearity (o« =1, § =0, f3, =0,
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Numerical simulations of the system were performed
using a Runge-Kutta integration scheme where error
control was achieved via the passage of the response
through the exact fixed equilibrium point. The results
show good agreement with low order approximations
under wave and current excitation [(i,k) = (3,1)] (Fig.
3(a); and under wave excitation along [(i,k) = (2,1)]
(Fig. 3(b)). The low order (one term) approximation of
a four-point system under wave excitation is sufficient
for a large range of parameter conditions particularly
for /# = 1, but more terms are needed to correctly model
the response of a two-point system (8 = 0), near the
primary resonance and in the low frequency secondary
resonance range (Fig. 3(b)). It should be noted that the
application of harmonic balance to a strong nonlinear
systems requires the calculation of an error term (e.g.
ratio of amplitude norm of two consecutive approxima-
tions: }]A%/EAiﬂ) in order to determine solution
convergence.

The expansion of the given restoring force (eqn (2b))
in a least squares sense yields a polynomial with odd
components which is without a linear term for 8= 0.
The sensitivity of the approximate solution to the order
of the approximation is similar to that of the Duffing
equation without a linear term.'®

5 STABILITY ANALYSIS AND EXISTENCE OF
PERIOD DOUBLING

Local stability of the approximate solution was
determined by considering a perturbed solution
x(1) =xo() +€(r), where xu(s) is an approximate
solution given by (eqn (5)) and €(s) is a small
perturbation. Substituting x(¢) in (eqn (2)) and

simplifying the resulting equation leads to a nonlinear
variational equation.

€+ 8¢+ aGlexg(1)] =0 (7a)
where
(€) = € _{ Xo + €+ Bsgn{xg)
V1t a3 \/1+[x0+e+ﬂsgn(x0)]2
___ xofsen (x) }
1+ o + Bsgn (xo)P

Linearizing the variational (eqn (7b)) yields a linear
ordinary differential equation with a periodic coefficient
function H [xo(1)] = H[xo(t + T)).

(7b)

€+ 66+ aH[xy(tr)]le=0 (8a)
where
H(xp) = (148" = {1 + [xo + Bsgn (xo))}
(8b)

Expanding H (xy) in a Fourier series H(0), leads to a
general Hill’s variational equation, which after sub-
stituting the solution (eqn (5)) into eqn (8) yields:

€+ 66+ aH[O(1)]e=0 (9a)
where
H(O) =%+2ﬂ:ancos n® (9b)
and
) =wt+¢+®
o = %EH(@)COS (n0) dO

{ 1,2,3,...,K [x(f) — unsymmetric]
n =
2,4,6,...,K [x(f) — symmetric]

Note that the approximation of the periodic coeffi-
cient in (eqn (8b)) by (eqn (9b)) is sensitivie to 8. Both
H(xg) and H(©) retain a singularity at
H(xy = 0) = #*(1 + 8)¥? and for xo > m, H(x,) is
asymptotic to /(1 + #°) (Fig. 5).

The even and odd components in the Hill’s equation
are associated with the symmetric and unsymmetric
solution forms and are related to the harmonic
components of periods T and 7/2. The particular
solution to the variational equation, € = exp (ét)Z(t),
can be found by Floquet theory?’ with Z(¢r) = Z(t + T)
and Z(t) = Z(t + T/2) for the symmetric solution form
with only even components. The unsymmetric solution
results in non-zero odd harmonic components with a
period doubled solution form Z(f) = Z(t + 2T) in eqn
(9b).

A low order two-term solution, xg(f) ==
Ag + Ay cos (O) corresponding to response of wave
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Fig. 5. Hill’s variational function: (a) H(x) (eqn (8b)); (b)
H(©) (eqn (9b)).

and current excitation, results in an equivalent variation
which defines the Z(r) = Z(¢++ T) first order unstable
region. As shown in Fig. 6(a) and (b), these regions
coincide with vertical tangent points of the primary
resonance on the frequency response curve. The
boundaries of the unstable region are obtained by
applying the harmonic balance method to the Hill’s
equation (eqn (9)) for €() at the stability limit (¢ = 0).

1
A= a [a(a% —a?) — ay

+ \/6‘%13 +2a8%(at — a}) + a?(a} — apay )
(10a)
For the undamped system, ¢ = 0, eqn (10a) simplifies to

The lowest order instability of the solution form
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Fig. 6. Stability diagram: (a) wave and current (o = 10, 8 =
6=1001, fo =001, fj=01); (b) wave (=10, =
§=001,f=0,f =2).

Z(t) = Z(t+2T) is obtained by inserting the period
doubled ¢(t) = by, cos (©/2) into eqn (9) resulting in
the boundaries of the first ‘1/2’ subharmonic region
(Fig. 6(a)).

W =2 [aao -8+ \/64 - 2ab%ay + o*a? (10b)

For the undamped system, 6§ = 0, eqn (10b) simplifies to
w A/ (20a).

As noted previously, symmetric solutions such as
Xo(t) = A, cos ©, corresponding to response of only
wave excitation, do not exhibit a period doubling
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phenomenon Z(¢) # Z(t + 2T) but determine secondary
resonances in which the Z(¢) = Z(t+ T/2) solution
loses stability. This instability is obtained by inserting
the unsymmetric solution form €(r) = by + b, cos (20)
into eqn (9), yielding an approximate order 2 super-
harmonic region (Fig. 6(b)).

5 1

V= {a(a(z) —a5) - 8ay
8ay

+ \/(54 +208%(a} — @) + o?(d} — 2aya,)*

(10c)

For the undamped system, § = 0, eqn (10c) simplifies to
< (aay/8).

The stability loss of the symmetric solution is
portrayed in the emergence of an unsymmetric solution
Xp(t) = Ay + A cos (O) + Aycos (20), which  when
inserted in the variational equation, yields a period
doubled solution Z(r) = Z(1 4 27T) similar to the
unsymmetric solution. This period doubling is asso-
ciated with the appearance of subharmonics in the
superharmonic domain (ultra-subharmonics).

Similar analysis of the 1/2 subharmonic'® and the k/2
(k odd) ultra-subharmonic resonance show the possible
existence of a 47 periodic solution. Thus the general
Hill’s equation suggests the possible cascade of period
doubling bifurcations.

6 BIFURCATIONS AND THE ONSET OF CHAOS

The approximate regions of bifurcation of the exact
system can be determined by the intersections of the
frequency response curve {4, = 4, (w)] and the stability
regions of the approximate solution eqn (10), which are
derived from the Hill’s variational equation. As shown
in Fig. 6(a), the stability region for the system under
wave excitation with a weak current is that of period
doubling of the unsymmetric solution. On the other
hand, for the system under wave excitation alone, the
stability boundary corresponds to loss of symmetry of
the symmetric solution (Fig. 6(b)).

Loss of symmetry of the solution can be observed via
the phase portraits [ y(x)] and power spectra [S(w)] of
the response. Since the exact system (eqn (2)) has
solution forms (x,y, @) and (—x,y,0 + 7/w), therefore,
if an orbit [x(¢),p(¢)] exists it is either self similar
[x(1), (1) = =x{1 + w/w), —p(t + w/w)] or it has a coex-
isting orbit [—x(t + m/w), —y(t + w/w)]. The breaking of
the symmetric solution in an unsymmetric solution
occurs with variation of excitation frequency in the
parameter space predicted by eqn (10c). The loss of
symmetry, shown in Fig. 7(a) and (b), can be observed
via the phase portrait and with the emergence of even
harmonics in the power spectra of the non-symmetric
solution. However, as the excitation frequency sweeps

past the even harmonics disappear and the response
again becomes symmetric (Fig. 7(d)).

As shown in Fig. &, the symmetry bifurcation or
dynamic symmetry breaking'® consists of a transition
from a self similar (symmetric) solution to two
coexisting period T partner orbits. Note that coexisting
solutions are defined by different initial conditions in the
same parameter space. Another consequence of sym-
metry® is that unsymmetric subharmonics of period T
will always occur in multiples. This is portrayed with the
phase plane and Poincaré map [Y,(X,)] of a 5T ultra-
subharmonic where unsymmetric subharmonics coexist
(Fig. 9(a) and (b)) whereas a self-similar subharmonic
will occur singly (Fig. 9(c)).
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Application of stability analysis to the system can also
reveal the type of local bifurcations causing loss of
stability, i.e. saddle-node or pitchfork bifurcations.'
This can be shown by calculation of the eigenvalues of
the monodromy matrix associated with the fundamental
solution of the linearized variational equation. The
eigenvalues E (or Floquet multipliers as &(z + 7/2) =
E¢(T)) characterize the stability of the perturbed
solution |E| < 1. Loss of stability can be obtained
through £ =1 (saddle-node) or E = —1 (pitchfork). The
eigenvalues are obtained by numerically integrating the
variational equation (eqn (8)) over time (0 to 7/2)."

Cascade of period doubling or the range of stability of
the 2" T limit cycle, can also be obtained by numerically
integrating the linearized variation equation (eqn (8))
over time (0 to 2"7). Thus, the magnitude of the
eigenvalues determines global period doubling 3839 and
verifies the validity of the stability regions previously
determined directly (subharmonic) or through loss of
symmetry of the response (ultra-subharmonic). The
period doubling (27) of the unsymmetric solution which
further bifurcates into a 47 solution, occurs with an
increase of excitation frequency in the parameter space
predicted by eqn (10b,c) of the unsymmetric and
symmetric configurations respectively. This behavior is
shown in Fig. 10 for the case with wave and current
excitation, and in Fig. 11 for wave excitation alone. I
the period doubling sequence is infinite with a finite
accumulation point, the resulting motion is chaotic.
Thus, local stability analysis can identify regions of
global bifurcation with universal characteristics.*®

Using the semi-analytical procedure discussed above
as a guide for numerical search in the parameter space,
various types of responses of the exact system are
identified. These responses consists of coexisting mul-
tiple periodic solutions, period doubling cascades and
explosions leading to chaotic attractors. The explosion'”
(or crisis) is characterized by contraction of a period 37
limit cycle leading to an abrupt change to a chaotic
attractor which becomes transient before settling to «
regular solution.” Selected system responses  are
demonstrated here via their steady state phase por-
traits, Poincar¢ plots and power spectra. Figure 12
shows coexisting periodic solutions of symmetric T, 2
partner 2T and a self-similar 57 obtained for various
initial conditions. Note that the magnitude of the
subharmonic response is more than twice the size of
the coexisting harmonic solution. A chaotic attractor
corresponding to an infinite period doubling cascade is
shown in Fig. 13 and a chaotic attractor corresponding
to explosions is shown in Fig. 14.

7 CONCLUSIONS

Complex nonlinear and chaotic responses are predicted
and found in a geometrically nonlinear taut multi-point
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mooring system, which is globally stable under small
wave and current excitations. Analysis of local bifurca-
tions consisting of symmetry loss and period doubling,
leads to global bifurcations and choas. Results show
multiple coexisting solutions and existence of chaotic
explosions which could not be predicted by equivalent

linearization methods. They also indicate a possible
underlying structure to the nonlinear phenomena where
period doubling bifurcations and further explosions are
found intersecting the superharmonic resonances of the
ocean system.

A semi-analytic method describing local and global
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bifurcations of the system characterized by an exact
form of the geometric nonlinearity is derived and
verified numerically. The method incorporates stability
analysis of a low-order system response, approximated
by the method of harmonic balance, leading to stability

curves defining symmetry loss and period doubling in
parameter space.

The characteristics of the external excitation determine
the domain of existence for the nonlinear phenomena.
A biased and harmonic excitation, generated by
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