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A stochastic analysis procedure is developed to examine the properties of chaotic
roll motion and the capsize of ships subjected to periodic excitation with a
random noise disturbance. To take into account the presence of randomness in
the excitation and the response, a generalized Melnikov method is developed to
provide an upper bound on the domain of the potential chaotic roll motion. The
associated Fokker—Planck equation governing the evolution of the probability
density function (PDF) of the roll motion is derived and numerically solved by the
path integral solution procedure to obtain joint probability density functions
(JPDFs) in state space. A chaotic response can be found in two regions (near the
homoclinic and heteroclinic orbits). The global behavior of the roll motion can be
depicted by the JPDF. It is found that the presence of noise enlarges the boundary
of the chaotic domains and bridges coexisting attracting basins in the local
regimes. The attracting domain of capsize is of the greatest strength. The
probability of capsize is considered in this paper as an extreme excursion problem
with the time-averaged PDF as an invariant measure. With this measure, the
heteroclinic region is identified as an ‘unsafe’ regime. Numerical results indicate
that, under the presence of noise, all roll motion trajectories of a ship that visit the

regime near the heteroclinic orbit will eventually lead to capsize.

1 INTRODUCTION

Ship dynamics often contain complicated non-linear
physical behavior. In particular, the associated stability
of roll motion is of great practical importance. Existing
stability criteria are expressed in terms of minimum
values of certain key features of the righting arm or the
GZ curve. For certain classes of ship, static stability
standards based on statistical and other analyses of
intact static conditions are sufficient for design purposes,
and can give a qualitative understanding of the stability
behavior for the naval architect.! Although the GZ
curve is found to be an important ship characteristic in
assuring safety,? other ship properties are also signifi-
cant. These include hydrodynamic and viscous roll
damping, as affected by the wave exciting force, initial
conditions, and the presence of water on deck. The
dynamics of a ship rolling in a regular seaway can be
highly non-linear. Harmonic, subharmonic or even
chaotic motions may occur.
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In recent works, the non-linear mechanism of ship roll
motion has been depicted by applying global stability
analyses. One approach 7% is to generate invariant
manifolds and simulate roll responses corresponding to
fine grids of initial conditions. Detailed pictures of the
basin boundaries between bounded and escaping (diver-
gent and hence capsizing) motions are constructed. The
results illustrate the manner in which systems that are
inherently safe when wunforced become unsafe as
periodic excitation is applied. Another approach? is to
generate the invariant manifolds and employ the
concept of lobe dynamics to demonstrate the mechanism
of ‘unexpected capsize’. In practice, long trains of pure
regular waves do not exist—the presence of discernable
environmental disturbances is inevitable. The perturbed
waveforms may be modeled as regular waves with
random noise as the external disturbance. Thus, the
ship’s roll motion under perturbed regular waves can be
considered as a noise-disturbed non-linear system,
which has been of interest to researchers in various
science and engineering fields in recent years.

Bulsara et al.® introduced the generalized version of
the Melnikov function for providing the criterion for
chaotic response in the presence of noise. They



186 H Lin, S.C. S. Yim

embedded the noise in the Hamiltonian system to form
noisy homoclinic orbits, and inferred that, on average,
the threshold for chaotic response is elevated by the
presence of noise. A parallel investigation of the
generahzed Melmkov function was conducted by Frey
and Simiu.'® They approximated ideal white noise by
adopting Shinozuka’s band-limited noise representation,
which is considered as a perturbation to a homoclinic
orbit. By applying the concept of average flux, they
concluded that chaotic motion is not suppressed by the
presence of weak noise.

Probability density functions (PDFs) have also been
utilized to depict the stochastic properties of noisy non-
linear systems. Kapitaniak!' solved the associated
Fokker—Planck equation of a dynamic system with
noise and illustrated that the noisy chaotic response is
characterized by a nonstationary multi-maxima mar-
ginal PDF. Bulsara et al.'? investigated the noise effect
on the behavior of non-linear systems through the
Lyapunov exponent and the PDF. A smoothing effect of
noise on the PDF depicting the chaotic attractor and
noise-induced chaotic motions was observed through
numerical simulations. Kunert and Pfeiffer'* employed a
finite-difference procedure to solve the Fokker—Planck
equation. The resulting steady-state joint probability
density function (JPDF) shows the imprint of the
corresponding chaotic attractor on the Poincaré section.

The invariant properties of noisy chaotic motions
have also been examined. Kifer'* proved the existence of
invariant measures of attractors under noisy distur-
bances. Jung and Hinggi'® proposed the time- -averaged
PDF as an invariant measure for deterministic and noisy
chaos.

The objective of this investigation is to gain a better
understanding of the non-linear behavior of ship roll
motion and capsize under perturbed regular waves, with
the disturbance approximated by white noise. The
system model considered approximates the roll motion
of a ship with water on deck. This model reveals two
distinct (1 e. homoclinic and heteroclinic) dynamic
regions.> The criterion for noisy chaotic roll motion
and a global description of the system’s behavior for
each region will be derived. The noise effects on the non-
linear roll response and the probability of capsize will be
investigated.

The criterion for chaotic roll motion under noisy
regular waves will be derived through the generalized
Melnikov function which is derived in this study by
expanding the analysis in Frey and Simiu.!° By taking
one step further, a mean-square representation of the
Melnikov criterion will be developed to provide an
upper bound to the domain of possible chaotic response
in parameter space. However, in this study, ideal white
noise, rather than Shinozuka’s band-limited noise, will
be utilized.

The global behavior of the noisy non-linear roll
motion can be described by the evolution of the PDF

characterized by the Fokker—Planck equation. A path
integral solution procedure will be employed to compute
the transient and steady-state JPDFs. Local existing
attractors will be depicted by the steady-state PDF. The
noise effect on a single chaotic attractor and coexisting
periodic and chaotic attractors will be examined.
Finally, the relationship between chaotic roll motion
and capsize will be illustrated stochastically through the
JPDFs. The probability of capsize will be considered as
an extreme excursion problem and investigated with the
time-averaged PDF as an invariant measure.

This paper represents a first attempt to study the
qualitative behavior of the chaotic motion and capsize
of ships in probability space. The goal is to provide a
foundation for stochastic analysis of highly non-linear
ocean systems. To keep the analysis manageable and for
clarity of presentation, pure roll motion is assumed.
More realistic systems with coupled roll, heave and sway
motions and potential applications of the probability-
space approach will be examined in future studies.

2 THE SYSTEM UNDER CONSIDERATION

The system considered in this study describes a single
degree-of-freedom ship roll motion under periodic
(sinusoidal) waves with additive Gaussian white noise.
Assuming a beam sea condition and that the roll motion
is uncoupled from other degrees of freedom, the
governing equation can be expressed as follows®

[as + A44(w)]$ + Bua(w)9 + Buag(w)|6| + AGZ, ()

= sca(w)cos(“)t + 64) + 6(’) (1

where ¢ is the roll angle, Iy is the moment of inertia (in
air) of the ship about the roll axis, A4 is the
hydrodynamic added mass coefficient, By is the linear
roll damping coefficient, By, is the quadratic drag
coefficient, A is the ship’s weight, and GZy(¢) is a
polynomial approximation to the non-linear roll-restor-
ing moment-arm. F,,, w and ¢ are the amplitude,
frequency and phase shift of the external wave exciting
force, respectively. £(¢) is an ideal, zero-mean, delta-
correlated Gaussian white noise, i.e.

€@®) =0
(E()&(n) = vé(d 1) )]
where (...) represents the ensemble average, &(. ..) is the

Dirac delta function, and v is the noise intensity. This
additive Gaussian white noise approximates the dis-
turbance in a sinusoidal external periodic force. By
including the effect of water on deck, the roll motion is
characterized by two distinct dynamics in different
regions—homoclinic and heteroclinic.> Assuming fre-
quency-independent coefficients, dividing eqn (1) by the
inertia coefficient (mass plus added mass), taking a two-
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Fig. 1. Homoclinic (inside) and heteroclinic orbits in unper-
turbed rolling motion.

term polynomial approximation of the GZ(¢) curve,
and rescaling time, the non-dimensionalized versions of
the homoclinic and heteroclinic dynamics are obtained,
respectively, as follows:

¥+ aX + agX|x| — x + B5x* = Acos(Qr + ¥) + n(r)
3)

and

¥+ oX + agX|X] + x — B2x® = Acos(Qr + W) + (1)

4
where
(n(r)) =0
{(n(r' (1)) = Ké(7" — 1) 5

and « represents the noise intensity.

The unperturbed systems can be obtained by introdu-
cing two state variables:

- {2)-{2)

then
. OH\(xy, x3) X,
OH (xy, x;) *1 = Boxy
8)(71
and
OH,(x1, x3)
. 0%, { X2 }
X =/hHX) = =
2(¥) —0H,(xy, x3) —X1 + ﬂezx?
(9x1

(®
where the state variables x; and x, represent the roll
angle and velocity, respectively, and H »(x;, x;) are the
Hamiltonians.

There are three fixed points for eqn (7): at (0, 0) and
(£1p,, 0), which represent an unstable upright equili-
brium position (local saddle) and the positive and

negative loll angles (two centers), respectively. Moreover,
three fixed points for eqn (8), at (0, 0) and (+1/4,,0),
represent a global center, and positive and negative
angles of vanishing stability (saddles), respectively. The
associated phase plane is shown in Fig. 1, in which a pair
of homoclinic orbits (inside, small amplitude roll
motions) and a pair of heteroclinic orbits (outside,
relatively large amplitude roll motions) are depicted.
Equations (3) and (4) govern the dynamics of the roll
motion in the local homoclinic and heteroclinic regions,
respectively. Accordingly, the ship’s roll motion may
exhibit chaotic response under two different criteria
(homoclinic and heteroclinic). The characteristics of and
the relationship between the chaotic motion and capsize
under the influence of noise will be investigated
separately in each region.

Equations (3) and (4) can be rearranged and
expressed as follows

X=f1,2(X)+g(X,T) (€)

where g(X, 7) is considered as a perturbation to the
Hamiltonian systems:

0
X.7) =
g(X;7) { —axy ~ 0gXa|xy| + A cos(Qr + U) + n(7) }

(10)

By performing equivalent linearization on the quadratic
drag force, eqn (10) can be simplified as:

0
g(,m) = { —cxy + Acos(Qr + ¥) + (1) } ()

where cx, represents the equivalent linear damping force
of the system. Equations (3) and (4) can then be cast in
the form of stiffening and softening Duffing equations:

¥+ cx — x + B3x3 = A cos(Qr + ¥) 4 5(7) (12)

and

F4cx+x— B2x* = Acos(Qr + ) + (1) (13)
For lightly damped systems, the exact form of the
damping mechanism is insignificant and it can be
demonstrated that systems with both the quadratic
damping force and the linearized damping force exhibit
similar behavior. For convenient interpretation, only
systems with the linearized damping force will be
considered. Moreover, because the chaotic behavior
has been widely investigated for both (deterministic)
stiffening and softening forced Duffing systems, eqns
(12) and (13) will be used to illustrate the characteristics
of their corresponding stochastic ship roll motions.

3 METHODS OF ANALYSIS

In order to examine the characteristics of chaotic ship
roll motions and capsize, several analysis procedures are
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developed. The generalized Melnikov method is derived
to provide criteria for the existence of the chaotic
response in a noisy environment. The Markov process
approach is used to depict the global stochastic behavior
of the system’s response via the evolutionary history of
the PDF. Finally, the roll motion responses are
simulated directly using numerical integration.

3.1 The generalized Melnikov method

The Melnikov function provides a quantitative tool to
determine the existence of transverse intersections of
homoclinic orbits and hyperbolic periodic orbits in the
two-dimensional (roll angle and angular velocity) vector
field. The presence of such intersections implies the
existence of the chaotic response.’®"'® By a heuristic
extension, the Melnikov method will be generalized
herein for the ship’s roll motion under periodic
excitation with white noise.

Scaling the perturbations cx,, 4 cos(Q27) and n(7) by ¢,
eqn (9) then becomes

X =fi2(X) + eg(X, ) (14)

with g(X, 7) as expressed in eqn (11). As mentioned
above, with different system parameters, two diverse
chaotic dynamics (homoclinic and heteroclinic) for the
roll motion may occur. Thus, a criterion for noisy
chaotic roll motion in each case will be derived
separately.

3.1.1 The homoclinic region ,
For relatively small roll motions (in the homoclinic
region), the two homoclinic orbits can be represented by
q‘i‘(r) as explicit time functions:'®

42 (r) = (:l: V2 \/Etanh(r))

Bocosh(r)’ " Bycosh(7) (13

In addition to the periodic wave excitation and
linearized drag damping, the external random noise is
considered as another source of perturbation to the
homoclinic orbit. Due to the symmetry of the homo-
clinic orbits with respect to x, (Fig. 1), only the positive
portion needs to be examined. The generalized Melni-
kov function is then given by

M (r0v0) = | S8 A gl ()5 maldr
_ \/EATFQ COS(QTI()) _ ﬁ_
oo (T
2
Q ° tanh(r)
- G J_oo cosh(r)

= M{(m,) + M} (1) (16)

(T + 79, )dT

where ‘+°, as a superscript or subscript, implies the
positive portion of the function. The first two terms in
eqn (16), represented by My (1),), correspond to the
Melnikov function due to the deterministic perturba-
tions, i.e. the periodic force and damping only. The last
(integral) term, represented by M;' (r,,), corresponds to
the Melnikov function due to the influence of Gaussian
white noise. M, (75,) is a Gaussian random variable
when the corresponding convolution integral is inter-
preted as linear filtering.'® The transfer function of the
linear filter, ¢%(7), can be obtained through the Fourier
transform:
+oo —iQr

F(Q) = J_w @ (r)e Vdr = V%Th(%s})

The variance of M; (r5,) can be obtained through the
transfer function F(Q):

a7

13.135n (18)
Bo

where S,(€?) is the white noise spectral density, 27«. In a

noisy environment, the criterion for chaotic ship roll

motion near the homoclinic orbits can be obtained by

setting eqn (16) equal to zero:

M (11,) + M (13,) =0 (19)

oM, = J FH(Q)S,(2)dQ ~

Because M, (73,) is a Gaussian random variable, the
criterion represented by eqn (19) can only be interpreted
in a stochastic sense. The left-hand side of the equality is
a Gaussian random variable with mean M{ (r;,) and
variance 0. Moreover, since the Melnikov function
renders a necessary condition for the existence of the
chaotic response,'® the criterion for noisy chaotic ship
roll motion can be depicted via a mean-square
representation:

< (_4i) 2> _ < V247 cos(ry,)
36 Bocosh <?)
(20

Then the following generalized (stochastic) Melnikov
criterion, in terms of the parameters A4, 2, ¢, 8y, and &,
for chaotic response in the noisy forced small-amplitude
ship roll motion can be obtained:

4c\? 2427202
() <y + o @y
0 Bcosh? (-2—-)

2

>+ (ML?(TZO»

The mean-square representation of the critical surface
for chaotic roll motion can be obtained when equality in
eqn (21) is achieved. The criteria with or without noise
disturbance in different parameter domains are
represented by the dashed and solid lines, respectively,
in Fig. 2.
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Fig. 2. Generalized Melnikov criterion for homoclinic chaos:

(a) upper bound in ¢-4 plane with (£2, 8o, ¥)=(1-0, 1-0, 1-57);

(b) upper bound in ¢-2 plane with (4, Gy, ¥)=(0-3, 1.0, 1-57).
%==0-0 and 0.01 for solid and dashed lines, respectively.

3.1.2 The heteroclinic region

For relatively large ship roll motions (in the heteroclinic
region) the heteroclinic orbits can be represented by
g%2(7) as an explicit time function:

g (r) = i—l—tanh (——T ),:t !
ﬁe \/—2— 2( T )
v/2B.cosh —ﬁ
(22)

The corresponding generalized Melnikov function
including stochastic effects is given by

M (1 730) = —2270_cos(am,)
Besinh (7>
N 2v/2¢ 1 J°° (T + T30) dr
36 V2B )0 o2 (L>
V2
= M (11,) + M (73) (23)

Again, ‘+°, as a superscript or subscript, implies the
positive portion of the function (Fig. 1). Similarly, the
variance of M; (75,) is given by

37.22x

oM, = Jio F*(£2)S,(Q)dQ =~ 7 (24)
where
FO) = —20 25)
EeE)

The mean-square representation of the stochastic
criterion is given by

2

2v/2¢ 2 _ V247 cos(§2my,)
<(3_ﬁ_> >~< ﬂsmh(ﬁ)l >+<Mz<m»
‘ V2
(26)

Then the following generalized (stochastic) Melnikov
criterion in terms of the parameters 4, €, ¢, 3, and & for
relatively large amplitude chaotic roll motion in a noisy
environment can be obtained:

2
2V2¢ 24%7° Q2 )
<
3 | ST (A M @7
© B2sinh? | —
V2

Again, the mean-square representation of the critical
surface can be obtained when equality in eqn (27) is
achieved. The criteria with and without noise distur-
bance in different parameter domains are represented by
the dashed and solid lines, respectively, in Fig. 3.

It is noted that the positive correction term,

2. =13.155/03 (or 37-22x/B;), of the Melnikov
function elevates the upper bound for possible chaotic
response as shown in Fig. 2. Hence, noise could lower
the threshold for chaotic ship roll motions, and enlarge
the chaotic domain in the parameter space.

3.2 The Markov process approach

The behavior of the noisy forced ship roll motion under
periodic excitation with Gaussian white noise can be
approximated by a Markov process, the PDF of which
satisfies a deterministic partial differential equation called
the Fokker—Planck equation. The (temporal) solution to
this partial differential equation can be obtained through
a path integral solution procedure.zo_22 The numerical
evaluation of the path integral solution procedure is
performed based on the representation of the path sum.

3.2.1 The Fokker—Planck equation
The associated Fokker—Planck equations corresponding
to small [eqn (12)] and large [eqn (13)] ship roll motions
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Fig. 3. Generalized Melnikov criterion for heteroclinic chaos:
(a) upper bound in c-4 plane with (2, 8., ¥)=(0.5255, 1.0,
0-0); (b) upper bound in ¢ plane with (4, G., ¥)=(0-115,
1.0, 0-0). x=0-0 and 0.-001 for solid and dashed lines,

respectively.
are:
oP(X,7) @
) e - 8x1’{x2P(Xa T)}
0 3
- a—xz{[—()xZ + Xy — ﬂoxl + A COS(QT)]
K &
x P(X, 1)} +58_x%P(X’ T) (28)
and
OP(X, 1) B _i )
~or " ox {x2P(X,T)}
0
- gx_z{[—cxz — x1 + Bexi

2

+ Acos@n)P(X, D} + 5L px, 7y (29)
2 0x3

respectively, where P(X, 1) is the JPDF in (roll angle and

angular velocity) phase space; [x;, —cxptx;+

Boxi + Acos(Qr)] and [x5, —exy — x;—Bexi + A cos(7)]

correspond to the drift vectors; and «/2 is the only non-
zero entry in the two-by-two diffusion matrix (see
Risken?! for a detailed derivation). Periodic excitation
appears in eqns (28) and (29) as a drift vector in both
cases, hence the temporal solution of the PDF is
periodic with a period 2x/Q in time according to the
Floquet theorem.?® In order to study the evolution of
the JPDFs of the roll angle and angular velocity, the
path integral solution will be employed.

3.2.2 The path integral solution
In the path integral solution procedure, the traveling
path of the PDF in phase space is discretized into
infinitesimal segments. Each segment represents a short-
time propagation between two consecutive states in the
corresponding Markov process. The short-time propa-
gation is approximated by a time-dependent Gaussian
distribution, called the short-time PDF, whose mean
and variance is determined by the drift vector and the
diffusion matrix, respectively. The PDF for the succeed-
ing state can be determined through the propagation.
Thus the probability for a desired state can be obtained
by applying the short-time propagation iteratively.

The short-time PDFs, G(X', X, T; dr), corresponding
to eqns (28) and (29) are obtained as follows

G(X', X, 7;dr) = (2rdr) 2D,
X exp[—— S—ZTDQ'ZI < — exy 4 x1 — Boxi
Xy —x\? xp—x
+ Acos(Qr) — sz 2) ]6<x2— ‘dT ‘) (30)

and

G(X',X,1;dr) = (27l'dT)_2D2_21/2

X exXp [ — dTTDi}_l ( —cxy—x1 + ﬂex? + A cos(Qr)
/ 2 !
Xy — X3 X1 — Xy
dar ) ]‘S(’Cz T ) (31)

where X' and X represent the following and previous
states, respectively. The PDF at the desired state can
then be computed iteratively:

N-1
P(X,T):}iin% JJ
Yo, =0

N-1
X exp [—dTZ G(X;41, Xj, 775 A7) P(Xy, To)} dX; (32)
7=0

where P(x,, 7o) represents the initial condition (i.e. initial
distribution) of the PDF. The path integral solution
procedure yields the exact solution in the limit as
N— oo and dr —0 in eqn (32). A numerical approx-
imation to the path integral solution is accomplished by
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the path sum or discrete lattice representation of the
path integral.** Based on the path integral solution
algorithm, the propagation of the probability between
consecutive states is described by the corresponding
segment of the discretized mean path in probability
space. The probability domains at the ends of each
segment, i.e. the previous and following states, are
discretized into a finite number of elements. Accord-
ingly, the short-time PDF corresponding to the transi-
tion between consecutive states can be discretized into a
transition tensor, and the PDF at the desired time can be
achieved by iterating the short-time transition.

3.3 Direct numerical simulation

Realizations of the response of the noisy forced small
and large amplitude ship roll motions can be obtained
by directly integrating the governing differential equa-
tions [eqns (12) and (13)], e.g. using a Runge—Kutta
fourth-order algorithm. Numerical representation of the
Gaussian white noise selected in this study is based on
Shinozuka’s band-limited noise representation®> which
describes a Gaussian noise of zero mean, limited
frequency bandwidth, and finite variance. It comprises
a sum of harmonics with random frequencies and phase
shifts with the noise level measured by o2 In this
investigation, the number of harmonics is chosen to be
50 for an adequate representation of the Gaussian noise.
It is noted that in contrast to Shinozuka’s Gaussian
noise, ideal white noise is of infinite variance, and its
strength is scaled by the noise intensity. However,
Shinozuka’s Gaussian noise model is adequate for
demonstrating the characteristics of the system’s
response under the influence’ of ideal white noise.
Thus, for this purpose, a numerical simulation with a
Runge—Kutta fourth-order integration scheme along
with Shinozuka’s noise representation is employed.

4 STOCHASTIC INTERPRETATION OF THE
NON-LINEAR SYSTEM’S BEHAVIOR

The ship roll motion is governed by two diverse
dynamics in different phase domains, i.e. homoclinic
and heteroclinic. The complete information about the
system’s behavior in each region can be depicted via the
evolution of the associated PDFs. In order to preserve
the characteristics of the system’s responses, the
intensity of the disturbance is kept small. The stability
of chaotic ship roll motion in each region is illustrated
stochastically. Moreover, the relationship between the
chaotic motion near the heteroclinic orbits and capsize
will be illustrated.

4.1 The homoclinic region

Chaotic ship roll motion may exist in the local

homoclinic region when the Melnikov criterion [eqn
(21)] is satisfied. The stochastic representation of one
single chaotic attractor and coexisting chaotic and
periodic attractors are demonstrated as follows.

4.1.1 The existence of a single chaotic attractor

Figure 4(a) shows an example of a deterministic chaotic
roll motion in the homoclinic region represented by the
Poincaré map. For the parameter set considered, there
are no other attractors. In the presence of a small
random disturbance to the external periodic excitation,
the existence of this chaotic attractor can be identified
via the JPDF on the Poincaré section [Fig. 4(b)], which
is obtained by sampling the density at integer multiples
of the excitation period. The imprint of the chaotic
attractor is preserved and the PDF indicates the
preferred locations of the trajectories in the average
sense. The evolution of the PDF can be illustrated as
well. The slightly disturbed ship roll motion is excited
with a deterministic quiescent initial condition (0, 0) as
shown in Fig. 5(a). The PDF starts spreading immedi-
ately and tends to cover and delineate the image of the
chaotic attractor in just two evolutions [i.e. two periods
of the deterministic external wave excitation, Fig. 5(b)].
The Poincaré section of the PDF achieves a steady state
rather quickly. The steady-state chaotic attractor is
clearly portrayed in 20 cycles [Fig. 5(c)].

4.1.2 The coexistence of chaotic and periodic attractors
Coexistence of attractors is one of the characteristics of
non-linear systems. Figure 6(a) shows an example of the
coexisting (homoclinic) chaotic and periodic attractors
in the homoclinic region represented by the Poincaré
map. These two distinctly different types of roll motion
exist under the same system parameters with different
initial conditions.

The PDF describes the complete information about
the roll motion’s behavior in the local homoclinic
region, hence the coexistence of attractors can be
demonstrated by this probabilistic representation,'” as
shown in Fig. 6(b). This representation can be
performed by exciting the slightly disturbed ship roll
system with deterministic initial conditions in the basin
of the chaotic attractor and tracking the evolution of the
PDF in state space. The PDF evolves from the quiescent
position (0, 0) and spreads out to cover the chaotic
attractor, as shown in Fig. 7(2) and (b). The steady state
of the Poincaré section is achieved in about 20 cycles, as
shown in Fig. 7(c), and the PDF depicts the two
coexisting attractors clearly. The PDF represents the
distribution of the ensemble of the trajectories and
indicates the relative strength of the attractors. As
shown in Fig. 7(c), a finite portion of the PDF is
concentrated in the region of the periodic attractor.
Based on a detailed examination of the numerical
results, it is observed that the periodic and chaotic
attractors are similar in strength. Therefore, sample
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paths of the roll motion may drift in and out of both
attractors and exhibit periodic as well as chaotic roll
motions when noise is present. Moreover, the PDF
elucidates the overall steady-state stochastic behavior
in the parameter space, and the initial conditions
become insignificant when describing the global long-
term behavior. This contrasts with the sensitivity to
the initial conditions of the sample paths of a single

(deterministic) chaotic trajectory and demonstrates the
smoothing effect of low-intensity random noise
disturbance.

The slight difference in parameters is noted in Fig. 6.
The shift in the threshold of the different response states
is caused by the presence of noise which is indicated in
the Melnikov criterion. The approximation in the path
integral solution procedure introduces additional
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uncertainties as the number of iterations increases,
which could shift the threshold further. However, the
resulting PDFs still fully reflect the global behavior of
the ship’s roll motion and provide a strong indication of
the response characteristics.

4.2 The heteroclinic region

For relatively large amplitude ship roll motions (in the
local homoclinic region) the ship capsizes when the
response trajectory escapes out of the heteroclinic orbits
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and diverges with time. The response may also reveal
chaotic behavior when the stochastic Melnikov criterion
[eqn (27)] is met. With a small disturbance added to the
periodic excitation, the relationship between the chaotic
ship roll motion near the heteroclinic orbits and capsize
can be demonstrated stochastically.

Near the heteroclinic orbits, an example of chaotic
roll motion coexisting with periodic motion in a

deterministic state is shown in Fig. 8(a). By adding a
weak random noise to the excitation, the PDF of the
roll motion response in the local heteroclinic region
can be obtained as described in the previous sections
and shown in Fig. 8(b). On the Poincaré section, no
steady-state solution can be achieved for the PDF.
The boundaries of the coexisting attractors are
bridged by the noise, and divergence of the PDF



Chaotic roll motion and capsize of ships 195
=2.00 ~1.43 =120 —0B8 -0.00 -0.13 025 O3 1.00 1.38 170 213 2.80
2.5 T T T T T T T T T T T T T 280
217 | ~ 217
a) 18y -1 1.6
1.80 - - 1.%0
o -
117 -1 .17
L 4
0.83 - o83
= 4
N oso | - 0s0
0.17 |- —~ 017
o - a
~-0.7 - —0.7
-0.30 | -1 0.0
-85 - -1 —©.83
-1.17 - —1.17
-1.80 A v L 1 I L i 1 A L 1 1 A 4 il i A A L 1 1 it ] -1.80
~2.00 -1.43 —-1.25 -088 -0.50 -0.13 020 O8I 1.00 .38 1,75 213 280
X1
—250 -2.13 —1.77 -140 ~1.03 -0.66 —0.30 007 044 081 117 184 101
WL B B D B B0 A N B B N BN B A U B A B NN AN A R0 b N N B BN SN S b S N B R NN NN B b NN B R AR BN BB )
w F Jn
b) E 3
138 [ ERET
E 3
100 F Jr00
084 F 3 o4
o~ o028 | 3
> * - 3 0.29
-0.07 | 4 w07
-043 | J -0.43
E 3
E 3
E 3
-0.79 |- 1 —o.7e
-4 | ERRRY)
E 3
-150 : AL L4 L0 g0 L L1 d A ) 42 bt 8t 3 At 442 20114442l iaay j: _‘-so
~250 =213 —1.77 -1.40 —1.03 -0.86 ~0.30 D07 044 OB1 1.7 154 1.09
X1
~2.50 —213 =177 -140 —1.03 -0.66 —0.30 D.O7 044 081 117 154 181
LT T T T T TT T T VYT T T P P AT T P AP YT T Y VT T TV Y Y T Y T I T T TTYTT
o E
LA I od Jn
) 136 £ J 13e
E 3
- -
E 3
1.00 b = IR
o84 F 3 o4
N oz F J o290
> - B
-0.07 | 3 —o.07
E 3
043 J —0.43
-0.79 F 4 o7
E 3
E 3
-4 F 3 -114
E 3
—1%0 '_IAAlLlllllllllllIlljllllIllllllljllllllllIIIJJII- —1.50
-2 081 117 134 181

S0 =213 =177 -1.40 —-1.03 -0.868 —0.30 007 0.44
X1

Fig. 7. Evolution of joint probability density: contour map of probability density at (a) initiation at (0-0, 0-0); and at (b) the 2nd and
(¢) the 20th cycles of the forcing period. (4, Q, ¢, B, ¥)=(0-3, 1-0, 0-185, 1.0, 1.57).

indicates the dominant attracting strength of capsiz-
ing relative to the other bounded (chaotic and
periodic) motions. Therefore, in the neighborhood
of the heteroclinic orbits with the presence of noise,
all the motion trajectories will eventually lead to
capsize.

5 NOISE EFFECTS ON RESPONSE BEHAVIOR

As demonstrated, the boundaries of the domains of the
periodic and chaotic ship roll motion attractors are
bridged when the system is disturbed by random noise.
Thus the intensity of the random noise can be
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considered as a control parameter. In this study, the
homoclinic and heteroclinic regions of the ship roll
motion in phase space are assumed to be sufficiently
far apart from each other so that each region can be
investigated separately. The influence of noise on
chaotic behavior and capsize in both homoclinic and
heteroclinic regions can be examined by varying its
intensity and is illustrated via the transient and
steady-state PDFs. For both the homoclinic and

heteroclinic regions, modifications of the chaotic
domain due to noise as depicted by the associated
generalized Melnikov functions, and the transitions
between different response states, will be demonstrated
through numerical simulations. The relationship
between chaotic ship roll motion and capsize in the
heteroclinic region will be considered as an extreme
excursion problem with the time-averaged PDF as an
invariant measure.
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5.1 Noise-induced transitions in the ship roll motion

5.1.1 The homoclinic region

Near the homoclinic region, due to the fact that the ship
roll motion trajectories are bounded by the potential
barriers formed by the heteroclinic orbits, as long as the

disturbance is weak, all the responses can be considered
to be of finite amplitude. As delineated analytically by
the generalized stochastic Melnikov function, the pre-
sence of weak noise can expedite the occurrence of
chaotic roll motion response, which is demonstrated in
Fig. 9(a) and (b). Figure 9(a) shows that the response
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(time histories from direct numerical simulations): solid, short-

dashed and long-dashed lines represent the responses from the

system with o°=0-0, 0-0042, and 0-0057, respectively. (4, ©, c,
Be, ¥)=(0-115, 0-5255, 0-4, 4.0, 0.0).

without noise disturbance is periodic (in fact, one-third
subharmonic). Figure 9(b) shows that chaotic roll
motion is induced by the presence of external noise,
which implies that noise enlarges the chaotic domain
in the parameter space. With stronger noise intensity,
the response appears random as shown in Fig. 9(c).
Thus, with noise intensity as a control parameter, in
the neighborhood of the homoclinic chaotic domain,
the chaotic response appears to be an intermediate
state between periodic and random roli motion
responses.

5.1.2 The heteroclinic region

Transitions induced by the external noise can be
observed in the heteroclinic region as shown in Fig.
10. The solid line represents a periodic roll motion
response without noise in the excitation (c2=0-0). The
periodic response stays bounded under the presence of a
low-intensity external disturbance (short-dashed line,
0?=0-004%). However, it diverges to the capsizing
domain when the intensity of the disturbance is slightly
increased (long-dashed line, ¢>=0-0052). Thus it can be
concluded that the heteroclinic dynamics of the roll
motion is very sensitive to the magnitude of the
intensity of the external noise disturbance. Because of
the noise-induced bridging effect (which bridges the
boundaries of all the coexisting attractors) and the
relatively weak strength of the chaotic attractor, no
chaotic roll motion response near the heteroclinic
orbits can be observed even with small disturbances
(see previous section). Thus, due to the instability of
the response behavior in the heteroclinic region, roll
motion trajectories close to the heteroclinic orbit will
eventually diverge from the bounded motion to the
capsizing domain under the presence of a small
disturbance.

5.2 Noise effects on chaotic roll motions
5.2.1 Chaotic roll response in the homoclinic region

5.2.1.1 A single chaotic attractor. The noise effect on
a single roll motion chaotic attractor can be
demonstrated by varying the external noise intensity.
When the roll motion near the homoclinic orbits is
disturbed by noise, the stochastic properties of the
chaotic attractor can be examined via the PDF. As
shown in Fig. 11(a), with a weak noise intensity
(x=0-003), the clear portrait of the boundary of the
JPDF implies that the disturbed roll motion trajectories
stay inside the chaotic attractor. By increasing the noise
intensity (k=0.02), the shape of the JPDF becomes
blurry [Fig. 11(b)], which implies that the boundary of
the chaotic attractor has deteriorated and the
trajectories may visit the vicinal area outside the
attractor. This noise-induced smoothness of the PDF
indicates that the preference of a (jagged) amplitude
distribution of the chaotic roll motion response becomes
ambiguous. In other words, the noise decreases the
‘orderliness’ of the chaotic roll motion and the response
exhibits a more random-like behavior. Further increase
in the noise intensity may result in large excursions of
the roll motion amplitude leading to capsize, which is
not considered in the local homoclinic region. Capsize
induced by large noise disturbances to the chaotic
response near the homoclinic orbits will be discussed as
an extreme excursion problem later.

5.2.1.2 Coexisting chaotic and periodic attractors. The
distribution of the PDF of the roll motion response in
phase space indicates the relative strengths of the
corresponding (periodic and/or chaotic) attractors.
Recall that the steady state is achieved by solving the
transient Fokker—Planck equation for long times using
the path-integral method with a quiescent initial
condition [i.e. (0, 0)]. For ship roll motion under
deterministic excitation (i.e. without noise), with a
quiescent initial condition, the response converges to a
chaotic attractor only (see Section 4.1.2). The coexisting
periodic attractor can only be reached with non-
quiescent initial conditions.

The steady state of the PDF for the roll motion
response with a small disturbance (k=0-001) is shown
in Fig. 12(a). It indicates that, even with such a small
disturbance, the periodic attractor can be reached from
quiescent initial condition, thus the attracting basins of
the periodic and chaotic attractors in phase space have
been bridged. Because of the weak noise intensity, only
partial information on the chaotic attractor is depicted
by the corresponding JPDF. The exact shape of the
chaotic attractor cannot be clearly identified as com-
pared to that of Fig. 6(b).

However, when the noise intensity increases
(x=0.003), in the steady state [Fig. 12(b)], it is observed
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that the relative strength of the chaotic attractor also
increases. The global information about the dynamical
system is now fully depicted by the JPDF. This can be
explained by the fact that as the basins of attraction for
the periodic and chaotic attractors overlap further, it
becomes easier for the roll motion trajectories to revisit
the chaotic attractor from the stronger periodic attrac-
tor. When the noise intensity increases further

(k=0-007), the roll motion behavior appears random,
as shown in Fig. 12(c), and the possibility of capsize
should be considered.

Thus it is observed that the strength of the chaotic
attractor (relative to the periodic attractor) is enhanced
by the presence of low-intensity random noise. Hence, it
may be easier to identify the chaotic characteristics and
global information over the entire phase space of the



200 H. Lin, S.C. S. Yim

=250 =2.15 -1.77 140 103 ~0.08 -0.30 007 044 081 117 154 1.9

N N N A AR AN A R R R R R A R R B RS
wn Jin
) 138 F J1%
o 3
100 E Jra
osm | Joue
~ o F Jox
> - 3
-o00r £ 4007
-4 J-04
o 3
-an E {-on
E E
E 3
-l E J-1a4
E 3
-1.%0 jlllllllllllllllllll,llllllllllllllllllllllIl,llll"_lu
=250 -213 =177 140 -1.05 —0.88 -0.30 Q07 Q.44 081 117 156 191
X1
—230 213 —1.77 -140 ~1.43 -0 -030 007 044 OS1 147 154 181
_YII"'IIIll"Tll'l'lll'“'Illl""lll||"|"T'1.
wmE Jn
b) F E
138 q13
100 | Jro0
ass | Jos
" 3
& om F Jozs
> - 3
-007 | i -0
E ]
043 q-e4
o 3
E E
-om | J-ar
- 3
-1 E ER
150 :llkllllllllllljllllllllIIllAljllllAlllllllAlljll: —1.50

=230 ~113 =177 140 ~1.03 008 -0.30 007 0.4 OS1 117 134 t91

X1

~2.50 ~L13 ~1.77 -1.40 -183 —0.08 -0.30 007 Q.44 081 117 154 18%

T T T v T Y T T T Iy YT T T T Ty T I T T T oY

FIYTryyT Ty Ty ey r T vV e T Y Y Ir T Ty T T T T Yy rY T e,

N\
!/
10 B NS

IESSVBEIREITESIVETCSTUNUTURRUINIRSTUSNSNITNY
3 g g

ALt LAl i a0 12000 rresiad

50
=230 -213 -1.77 -1A40 —1.03 088 -0.30 007 0.44 081 117 154 18t
X1

Fig. 12. The transition in the probability density on the Poincaré section under the influence of noise: contour maps of probability
density with (a) £=0-001; (b) £=0-003; (¢) £=0-007. (4, Q, ¢, By, ¥)=(0-3, 1-0, 0-185, 1-0, 1-57).

ship roll motion via stochastic analysis by adding an
adequate amount of disturbance in an otherwise
deterministic system.

5.2.2 Chaotic roll response in the heteroclinic region
As demonstrated in previous sections, the chaotic roll
motion response in the heteroclinic region diverges,

leading to capsize of the ship, when an external
disturbance is applied. No steady-state solution for the
associated PDF can be obtained due to the fact that the
basins of all coexisting attractors are bridged by the
noise, and among them, the capsizing attractor is of the
greatest strength.

In a deterministic state (near the heteroclinic orbits),
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the phenomenon that different initial conditions may
lead to chaotic roll motion or capsize could be explained
by the overlapping of the boundaries of the basins of
attraction® or by the lobe dynamics.? However, in a
stochastic state, the boundaries of all basins of attrac-
tion are bridged and the sensitivity to the initial
conditions becomes insignificant. Thus, a ship will
capsize eventually when the associated roll motion
response trajectory visits the heteroclinic region. There-
fore, by considering the heteroclinic region as the
‘unsafe region’, the probability of capsize stemming
from disturbed chaotic roll motion response near the
homoclinic orbits can be evaluated.

5.3 Distribution of the maximum response

The effects of weak random noise on single and
coexisting attractors in the local homoclinic region of
the roll angle and velocity phase space were examined in
the previous two sections. Noise-induced smoothness in
the PDFs indicates that probability mass may leak out
of the boundaries of the attractors. Thus, albeit at a low
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probability level, the associated roll motion trajectories
may visit the heteroclinic region and eventually lead to
capsize. The probability of capsize of the associated
deterministic bounded responses due to the presence of
noise can be estimated via a time-averaged PDF as an
invariant measure.

5.3.1 Time-averaged probability density function

As mentioned in Section 3, the steady-state JPDF of the
roll angle and angular velocity state-space is periodic.
Thus the PDF on the Poincaré section exhibits an
invariant property (see Figs 4-7, 11 and 12). This
periodicity can be removed by taking the average of the
PDF over a suitably large duration to form a time-
averaged PDF !>?® which can be defined as the invariant
measure for all dynamics, i.e. deterministic, chaotic and
random:

Putx) = [ P, e (33)

and the invariant measure on x, (i.e. the marginal PDF)
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Figure 13(a) represents the (time-averaged) invariant
measures of the periodic (deterministic) (solid line) and
slightly disturbed (stochastic) (dashed line) ship roll
motions. The deterministic results are obtained numeri-
cally from the statistics of the periodic attractor, and the
stochastic results are obtained via the path-integral
procedure. The similarity in the invariant measures of
these two cases indicates that the deterministic state may
be obtained in the limit as the noise intensity approaches
Zero.

For purely random excitation with no periodic
component, the exact theoretical solution of the PDF
for the corresponding Fokker—Planck equation®’ and
the approximated invariant measure from the Markov
process approach obtained using the path-integrai
procedure are compared in Fig. 13(b). The figure
shows good agreement between the two solutions in
general. Thus the two figures [Fig. 13(a) and (b)] indicate
that the invariant properties of the ship roll motion can

be revealed by the time-averaged PDF (invariant
measure). Also, the path integral solution procedure
can provide a good approximation which is especially
accurate at the tail (a quality essential for extreme
excursion problems).

By employing Rice’s formula,?® the mean up-crossing
frequency of the roll motion can be evaluated:

pix, (x4) = Jo XyPay(xg, X2)dx) (3%

Moreover, by adopting the assumption of statistically
independent large-amplitude up-crossings (which leads
to Poisson-distributed crossing events®®) the asymptotic
approximation of the probability that x; exceeds a
specified (high) level x4 during time 7, is given by:

Pr(x4, ) =1~ exp["ﬂ; (xd)Tn] (36)

The cases with a single chaotic attractor [see Fig. 4(b)]
and coexisting periodic and chaotic attractors [see Fig.
6(b)] under the influence of noise with various intensities
are examined. Figure 14(a) shows the time-averaged
PDF for the noisy single chaotic attractor corresponding
to Fig. 4(b), but with a relatively high noise intensity
(0-02 for the dashed line and 0-07 for the solid line). The
corresponding probabilities for extreme excursions
(7= 10) are shown in Fig. 14(b).

Also, as demonstrated in the previous section, the
external noise bridges the domains of attraction of the
coexisting periodic and chaotic ship roll motions and its
intensity governs the relative strengths of the attractors.
Hence, both attractors should be considered when the
extreme excursion is estimated. In regard to the
coexisting attractors, the time-averaged PDF of the
roll motion response and the corresponding probabil-
ities of the extreme excursions (7,=10) are shown in
Fig. 15(a) and (b), respectively.

Note that the probability of a large displacement is
increased as the noise intensity increases for both the
single- and the coexisting-attractor cases. However, the
influence of the presence of noise is more pronounced
for the case with the single chaotic attractor [Fig. 14(b)]
than that for the case of coexisting attractors [Fig.
15(b)]. The existence of a coexisting periodic attractor
enlarges the attraction domain [e.g. see Fig. 6(b)] and
flattens the invariant measure [c.f. Figs 14(a) and 15(a)].
This may cause the variation of noise intensity to appear
less significant in terms of the probability of large
displacement in the coexisting-attractor case [Fig. 15(b)]
than in the single chaotic attractor case [Fig. 14(b)].

6 CONCLUDING REMARKS

This paper examines the periodic, chaotic and capsizing
responses of a ship’s roll motion from a stochastic point
of view. With the intensity of an external random noise
source as the control parameter, the characteristics of
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and the relationships among these responses are
demonstrated, and the associated extreme value dis-
tribution is examined. The main conclusions are as
follows.

1. The ship’s roll motion is governed by two diverse
dynamic regions—homoclinic and heteroclinic. For
both regions, stochastic analytical criteria for noisy
chaotic motions have been derived in terms of a
generalized Melnikov function which takes into
account the presence of additive white noise. The
noise enlarges the domain of the chaotic response in
parametric space, and chaotic motions may occur in
this expanded region.

2. The local behavior of the chaotic roll motions near
the homoclinic or heteroclinic regions are examined
stochastically through PDFs. In the homoclinic
region, the locally existing chaotic attractor, and
coexisting chaotic and periodic attractors are por-
trayed by the steady-state PDF on the Poincaré
section. However, due to the strong attraction of
capsizing and the fact that coexisting basins of
attraction are bridged by the external noise, no
steady-state PDF can be obtained in the heteroclinic
region. Thus, in the vicinity of the heteroclinic region
with noise present, all roll motion trajectories
eventually escape from the bounded motion region
to the capsizing region.

3. For small amplitude roll motions, the presence of
random noise decreases the orderliness and increases
the randomness of the chaotic response. The noise
bridges the domains of attraction of coexisting
attractors and influences their relative strengths.
Moreover, it significantly diminishes the sensitivity
of the chaotic roll motion response to initial
conditions. Thus noise intensity can be considered
as a control parameter, and a small but finite random
disturbance could be helpful in identifying the
existence of chaotic responses in an experiment.

4. The external noise has an opposite effect in the
heteroclinic region. Although for relatively large
amplitude roll motions the noise also bridges the
domains of attraction cf coexisting attractors and
scales their relative strengths, the presence of even
very weak noise eventually leads to unbounded
(capsizing) motions. Thus the ‘steady-state’ PDF
concentrates at plus and minus infinity, which implies
that a steady-state chaotic response cannot exist.

5. Heteroclinic chaotic motions and capsize are closely
related. The ship can be considered to be in danger of
capsize when the response trajectories visit the
heteroclinic region. The probability of extreme
excursions can be estimated with the time-averaged
PDF as an invariant measure. The probability of
extreme excursions is elevated with increasing noise
intensity, which increases the probability of capsize.

As mentioned in the Introduction, this paper repre-

sents a first attempt to study the qualitative behavior of
the chaotic motion and capsize of ships in probability
space. The goal is to provide a foundation for the
stochastic analysis of highly non-linear ocean systems.
To keep the analysis manageable and for clarity of
presentation, pure roll motion has been assumed.
However, it is well-known that for large roll motions,
the effect of coupling among roll, heave and sway
motions may not be negligible. Thus the conclusions
concerning large roll motions obtained in this study
should only be interpreted qualitatively. The region of
validity of the results will be further examined by using a
more complex model of the ship motion and a stochastic
description of the wave excitation. In particular, it has
been observed that the impact of large breaking waves
could be a major cause of capsize.>® These issues, and
potential applications of the probability-space
approach, will be addressed in future studies.
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