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This study examines the chaotic behavior of a practical nonlinear dynamical
system from the perspective of probability-based fatigue design. The stochas-
tic characteristics of chaotic response of freestanding rigid objects subjected
to horizontal harmonic base excitations are investigated. An approximate
method based on the Melnikov function to predict analytically the existence
of chaotic response is presented. Although the excitations to the rocking
systems are simple and purely deterministic, some stochastic characteristics
of the chaotic responses are detected using Poincaré maps and amplitude
probability densities. It is found that although the chaotic time histories have
a periodic time dependency (thus nonstationary), time series consisting of
Poincaré points may be ergodic. These stochastic characteristics are useful in
determining the fatigue life of nonlinear dynamical systems that operate
frequently in chaotic states.

9.1. INTRODUCTION

The existence of chaotic response has been observed in many deterministic
nonlinear physical and engineering systems [8, 6]. For some systems, the
occurrence of chaotic responses is undesirable and should be avoided.
However, for other systems, such as mixing of fluids and the control of heart
rate variability, the occurrence of chaos may be desirable and should be
promoted. In the design of such systems, the effects of long-duration steady-
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state chaos on fatigue should be taken into account. Because many conven-
tional fatigue design procedures are probability-based, it is important to
determine whether chaotic responses possess stochastic properties commonly
used in the design procedures. In particular, it is advantageous to examine
the stochastic properties of chaotic responses, if they exist, in terms of
probability density functions, even though chaotic responses are fully deter-
ministic and repeatable. To demonstrate the stochastic characteristics of
chaotic responses, a simple, freestanding rocking system is examined in this
study.

The rocking behavior of rigid objects has been of interest to civil engineers
for over a century. Many structures, from ancient historical minarets, monu-
mental columns, and tombstones, to modern-day petroleum storage tanks,
water towers, power transformers, nuclear reactors, and concrete radiation
shields, can be considered to be freestanding objects. They may be subjected
to support excitations due to earthquake ground motion and /or nearby
machine vibrations. An understanding of the rocking behavior of these
objects is of vital importance for safe operations, preservation of existence,
and the design of new equipment.

Recent studies have demonstrated that the rocking response of rigid
objects can be very sensitive to the system parameters and the excitation
details. In a series of dynamic tests performed on the Berkeley shaking table,
Aslam, Godden, and Scalise [1] showed that the rocking response was so
sensitive that some of the experiments were deemed nonrepeatable. Using a
single-degree-of-freedom (SDOF) model for the system, Yim, Chopra, and
Penzien [13] examined the sensitivity of the rocking response by conducting a
numerical study to identify, in a statistical sense, the parametric dependency
of overturning stability on the size, slenderness ratio, coefficient of restitu-
tion, and ground motion intensity. The deterministic results confirmed that
the rocking response can be sensitive to small changes in system parameters,
and probabilistic trends can be established only with a large sample size.

Recognizing the insurmountable difficulties in the analysis of the complex
behavior of the fully nonlinear rocking objects subjected to earthquake
excitations, Spanos and Koh [7] and Tso and Wong [9] simplified the SDOF
system by assuming the rigid objects to be slender and the base excitation to
be harmonic, thus allowing linearization of the individual governing equa-
tions of motion and removing the randomness in the excitation. They were
able to develop approximate analytical methods to predict the existence and
stability of harmonic and subharmonic responses. Hogan [3] extended the
stability analysis methods and developed a procedure to predict the existence
of chaotic responses. He applied his prediction procedure to analyzing the
experimental data of Wong and Tso [11] and was able to obtain a quantitative
match. As a result of these studies, significant advances in the understanding
of the rocking behavior were made.

Recently, Yang and Cheng [12] discovered new features of chaotic re-
sponses of nonlinear systems that fall in between the typical deterministic
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Figure 9.1. Freestanding rigid rocking object subjected to horizontal and vertical
excitations.

and stochastic dynamics. They showed that, in a stochastic sense, the steady-
state chaotic process is stationary and ergodic in terms of Poincaré time
series. Kapitaniak [5] also developed a new indicator of chaotic response in a
probabilistic sense. He pointed out that the chaotic response has a multimax-
ima curve in the amplitude probability density function.

This investigation focuses on identifying possible stochastic properties of
chaotic responses of the simplified system. An approximate analytical method
based on the Melnikov function to predict the existence of chaotic responses
is first derived. The analysis techniques developed by Kapitaniak [5] and
Yang and Cheng [12] are extended and employed to examine their stochastic
properties.

9.2. SYSTEMS CONSIDERED

The freestanding slender object is modeled as a rectangular rigid body
subjected to horizontal base motion excitation (Figure 9.1). Assuming that
the coefficient of friction is sufficient that there will be no sliding between the
object and the base, depending on the support accelerations, the object may
move rigidly with the base or be set into rocking. If rocking occurs, it is
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assumed that the body will oscillate rigidly about the centers of rotation O
and O'. The governing equation of motion for the rigid object with positive
angular rotation about corner O is [13]

1,6 + MRa,, + MgR(6, —6) =0, 6>0 (9.1a)

where I, is moment of inertia about O, M is mass, a, is the horizontal base
acceleration, R is the distance from O to the center of mass, and 6, =
cot™'(H /B) is the critical angle beyond which overturning will occur for the
object under gravity alone (H and B are the height and width of the object).
Similarly, the rocking about O’ is governed by the equation

1,6 + MRa,, — MgR(8,, +0) =0, 6<0 (9.1b)

Impact occurs when the angular rotation crosses zero approaching from
either positive or negative, and the base surfaces recontact. Associated with
the impact is a transition from rocking about one corner to rocking about the
other and a finite amount of energy loss (or “damping”) that can be
accounted for by reducing the angular velocity of the object after impact. As
in reference [13], it is assumed that the angular velocity before and after
impact is related by a parameter e through the following equation:

6(t*) =eb(t7), O<e<l (9.2)

where e is the coefficient of restitution, ¢* is the time just after impact, and
{~ is the time just before impact. In this study, the horizontal base excitation
is assumed to be harmonic with constant amplitude and a single frequency,

a,, =a,cos(wt + ¢) (9.3)

Note that there are two nonlinearities in the system associated with
impact. The first results from the transition from one governing equation to
the other as the center of rotation changes from one edge to the other. The
second is due to the abrupt reduction (jump discontinuity) in the angular
velocity caused by the impact (damping). In the limiting case, the damping
nonlinearity can be removed if it is assumed that the material of the rigid
object and the base support are stiff and that the rebound following impact is
perfectly elastic so that there is no energy loss, that is, e = 1 (a conservative,
or Hamiltonian, system).

9.3. METHOD OF ANALYSIS

Because the individual equations governing the rocking motion about each
edge [equations (9.1a) and (9.1b)] are linear, exact analytical solutions for



CONDITIONS FOR EXISTENCE OF CHAOTIC RESPONSE 223

these equations exist and are used in conjunction with the nonlinear transi-
tion conditions at impact in determining the responses [7]. Let 7 = a¢ and
Q = w/a [where & = (MgR/I,,)"/?] be the normalized time and frequency,
respectively, the piecewise linear versions of (9.1a) and (9.1b) can be reduced
to

—A,cos(Qr + ¢) — 1, 0>0 (9.4a)
—A.cos(r+d)+1, O<0 (9.4b)

0-0-=

The solutions of (9.4a) and (9.4b) are

O7(7) =a’sinh7 +b" coshr + 1 + Bcos(Q7 + &) (9.5a)
O (7) =a " sinhr + b~ coshr — 1 + Bcos(Q7 + ¢) (9.5b)

The superscript “ +” indicates that the expression is valid for ® > 0 and the
superscript “—” indicates that the expression is valid for ® < 0. The symbols
a', b", a”, and b~ denote constants of integration dependent on the initial
conditions, and B = 4,/(1 + Q?). The response to harmonic excitations can
be obtained by selecting the proper equation with the appropriate initial
conditions and increasing the time variable successively. If at a particular
time the magnitude of ® exceeds 1.0 and continues to diverge, the rigid
object will overturn. If @ returns to zero, then the corresponding angular
velocity can be determined and the solution given by the other equation can
be applied. This procedure is then repeated until steady-state response is
obtained.

9.4. CLASSIFICATION OF RESPONSES

When subjected to harmonic horizontal base excitation, depending on the
amplitude and frequency of the excitation, the response of a slender object
may either be unbounded, which leads to overturning, or it will eventually
settle into a bounded motion. It has been shown that in addition to periodic
response, there exist two additional types of bounded responses, namely,
quasiperiodic and chaotic [4, 14]. Examples of these responses are shown in
Figures 9.2, 9.3, and 9.4, respectively. In order to determine the regions of
existence of chaotic responses, we derive analytical expressions of their
boundaries.

9.5. CONDITIONS FOR EXISTENCE OF CHAOTIC RESPONSE

The existence conditions for chaotic response of the rocking system are
derived following the methodology outlined by Melnikov [2], and the Melnikov
integral function, which includes the effects of nonlinearity and excitations, is
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Figure 9.2. Periodic response: (a) time history; (b) phase diagram.

constructed. The integration is along a closed curve formed by heteroclinic
orbits that are trajectories connecting two fixed points. The heteroclinic
orbits are identified by examining the phase diagram of the associated
(undamped, unforced) Hamiltonian system. Existence of zeros of the
Melnikov function indicates the existence of chaotic response. The derivation
of the existence conditions is shown as follows.
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Figure 9.3. Quasiperiodic response: (a) time history; (b) phase diagram.
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Figure 9.4. Chaotic response: (a) time history; (b) phase diagram.
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Figure 9.5. Heteroclinic orbit for rocking system.

First the equation of motion is rewritten in the following vector form:
i =f(x) +eg(x,t), x=(u v)* (9.6)

where the asterisk indicates the transpose of vector (u, v). It is assumed that
the unperturbed (i.e., undamped and unforced) system has a Hamiltonian H
with f, = 8H /du and f, = H /dv, and the system satisfies the conditions [2]
for the existence of two heteroclinic orbits connecting the two unstable
hyperbolic singular points forming a closed curve. For the rocking system, it
can be shown that these conditions are satisfied. The singular points for the
rocking object are unstable equilibrium positions, (1,0) and (—1,0), where it
stands on one edge (Figure 9.5). In the center of the closed curve is a stable
singular point (0,0). Phase space trajectories near the stable singular point
remain in its neighborhood, whereas trajectories near the hyperbolic singular
points will diverge from them.

The external force and damping are then represented as perturbations to
the Hamiltonian system. The damping effect in the rocking system, which
causes sudden reduction in velocity by a factor e at displacement equal to 0,
can be expressed analytically by a function F(9, 6). The integral of this
function along the heteroclinic orbit is equal to the energy loss caused by
impact in each oscillation. For the rocking system considered, the equation of
motion for the general case with damping can be written as

1,6 + MgR(6,, ¥ 6) = —MRa, (1) + F(,06) (9.7)
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where a,, = g cos wt is the perturbation caused by external force, and the
equation with the upper signs represents equation of motion for 8 > 0 and
the lower signs for § < 0. The perturbation due to damping is found to be

. 1 0 1
F(B,O) = —51002(], - 62)[6(5‘")](0—) (98)

where 8(6/8,,) represents the Dirac delta function.
The equation of motion is then rewritten in the format used in (9.6) in the
form of a first-order system as follows:

6 =10 (9.9a)

) MeR 0, T 6 Mek ! (1 %) i ! 9.9b
v = F F0) - - = — el | .
{ i (0., ) 7 € COS w! v ( e”) P P ( )

(@] (@] cr cr

The Hamiltonian function corresponding to the undamped, unforced system
is then found by energy considerations:

v?  MgR MgR
H(8,v) = — — z4 60., (9.10)
2 21, 1,

If the value of the Hamiltonian, which corresponds to the total (kinetic plus
potential) energy of the system, exceeds a critical value (MgR62/21,), the
response will become unbounded, leading to overturning. Conversely, if the
total energy is less than the critical value, the response will be bounded and
stable.

Next, analytical expressions of the heteroclinic orbits are determined. By
equating the Hamiltonian H(6,v) and the critical value MgR6Z/21,, the
heteroclinic orbits can be expressed as functions of time. As mentioned
previously, there are two heteroclinic orbits. Note that there is a discontinuity
within each heteroclinic orbit and, therefore, four analytical expressions are
required to describe the closed curve.

Section I (with # > 0 and ¢ > 0) of the heteroclinic orbit can be expressed
as

(8,0) = (8, — e ?, ae™?) (9.11a)

where p = at ~ In 6. Similarly, section 11 (with 8 < 0 and v > 0) can be
expressed as

(6,0) = (e” — 8, ae”) (9.11b)
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The expressions of the lower orbit (sections 11T and I'V) can be obtained from
(9.11a) and (9.11b) with opposite signs by symmetry. These expressions are
then normalized by setting ® = 0/6,,, at =7,V =0/0, and w = afl, and
are rewritten as

(0,V) =(1-e",e7") (9.12a)
(0,V) =(e"—1,¢€") (9.12b)

M*(t,,) is used to denote the Melnikov’s function for the upper orbit, and is
defined by

M+(t()) = /_t:of(qO(l‘) /\g(qO(t),t + tO) dt
- .[j:(flfz) A (8182)* dt

= [ (e - fag) (9.13)

where the asterisk represents the transpose of a vector, and the f;s are the
linearized Hamiltonians and the g;s are the perturbations. By symmetry, the
expressions for M~ (t,) and M*(t,) are identical. Therefore, the existence of
solution to M™*(t,) = 0 implies the existence of zero solution to M ~(to).
Hence, the condition for existence of chaotic response can be determined by
examining just the upper curve. When no zeros exist, there is no chaotic
response for this system.

The analytical methods for existence and stability of periodic response and
the conditions for existence of chaotic response derived previously are
applied to the undamped and damped systems in the following sections.

9.5.1. Undamped Systems

The Melnikov function for an undamped slender system can be obtained by
letting F(8,v) = 0, thus (9.13) becomes

2
—2ea” cos wt,

M™(to) = 0., (a’ + w?)

4 cos Q7 014

- x 1+ QZ ( . )
where A, and () are the normalized amplitude and frequency of excitation,
respectively, with 4, = £/6_, and = w/a. The zero solutions, which yield
the condition for the existence of chaotic response, are given by cos {17, = 0.
Because this condition can always be satisfied by 7, = 2n for all integer n,
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the condition for existence of chaotic response is satisfied by any arbitrary
combination of system and excitation parameters.

9.5.2. Damped Systems

For damped systems, the Melnikov function (9.13) can be written as

M (1) = [ v@(1)(cacos w(t + tp) — F(6,6)) di

+ [0 (ea? cos (1 + 1) - F(8,6)) dr

—2ea’coswt, B,(1 —€?)

= - 9.15
a’ + w? 2 ( )
M*(t;) equal to zero is equivalent to
(1 —-e®)(1+ 0?2
cos Qr, = — - )( ) (9.16)

44,
where 4, and  are the normalized amplitude and frequency of excitation
respectively with 4, = ¢/6,, and Q = w/a.

Equation (9.16) can always be satisfied by some r, if and only if the
magnitude of the right-hand side is less than or equal to unity. Thus, the
existence of chaotic response is given by the combination of system parame-
ters e, ()}, and A, that satisfies the following inequality:

1 —e?)(1 + 2
( N ) <1 (9.17)
44,

It can be shown that (9.17) yields only the lower bound for existence of
chaotic responses. In the given region, periodic and quasiperiodic responses
coexist with chaotic responses [14].

9.6. STOCHASTIC CHARACTERISTICS

When a nonlinear dynamical system is in a chaotic state, precise prediction of
the time history of the motion is impractical because small uncertainties in
the initial conditions lead to diverging responses. However, probability den-
sity functions can provide a statistical measure of the chaotic dynamics.
There is some mathematical and experimental evidence that such distribu-
tions do exist for chaotic responses [6]. Accordingly, an identification tech-
nique for chaotic response in a probabilistic setting, the amplitude probability
density function, will be introduced.
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Furthermore, in the probabilistic sense, under an almost unique set of
initial conditions and a deterministic harmonic steady-state excitation, chaotic
responses for certain deterministic structural systems are found to be
stochastic [12]. Thus the chaotic process may serve well as a link between the
traditional deterministic and stochastic processes. Two stochastic properties
of chaotic responses—stationarity and ergodicity—also will be examined.
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Figure 9.6. Amplitude probability density functions for periodic responses: (a) har-

monic response, A, = 2.0 and T, = 1.0; (b) one-third subharmonic response, A, = 6.5
and T, = 0.4. (H/B = 10, R = 290, and e = 0.925.)
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9.6.1. Amplitude Probability Density Function
The amplitude probability function of a response time history @(¢) is defined

as the normalized relative frequency of occurrence of the values between ©
and O + dO (i.e., a normalized temporal average of ®). This definition
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Figure 9.7. Amplitude probability density functions for nonperiodic responses:
(a) chaotic response, 4, = 3.0 and T, = 0.4; (b) quasiperiodic response, A, = 4.0
and 7, = 04. (H/B = 10, R = 290, and e = 1.0.)
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differs from the conventional definition of probability density function of
0(t) for a given time ¢ in stochastic analysis, which is a normalized ensemble
average of the responses falling between ® and © + d© at time 1.

The amplitude probability density functions of a harmonic response and a
subharmonic response are shown in Figure 9.6a and 9.6b, respectively. They
are characterized by symmetric maxima at the two extreme values. The
maxima diffuse toward the center as the order of the subharmonic response
increases.

However, for chaotic responses, the amplitude probability density function
is characterized by a multimaxima curve [5], as shown in Figure 9.7a. The
multimaxima nature of the density function is due to the fact that in the
oscillatory waveform of chaotic responses there exist values of the amplitude
that are more probable than neighboring values. Although a multimaxima
probability density curve is useful in identifying possible chaotic responses, it
is not a sufficient indicator. In particular, it cannot differentiate between
quasiperiodic and chaotic responses. As shown in Figure 9.7b, quasiperiodic
response can also have a multimaxima curve in the amplitude probability
density function.

9.6.2. Stochastic Properties of Chaotic Response

Stochastic properties for some chaotic systems are known to exist based on
“ensemble experiment” [12]. To identify possible stochastic properties of the
rocking systems, time histories and Poincaré maps of their chaotic responses
are examined. The focus will be on two fundamental properties, stationarity
and ergodicity.

Prior to examining the stationarity and ergodicity properties of chaotic
responses, it is essential to determine the required sample length of a chaotic
time history to ensure stable probability properties. For this we examine the
amplitude probability function of a typical chaotic response. To avoid the
effects of transience, the response corresponding to the first 3000 cycles of
excitation period was discarded. Different segments of the same time history
were then sampled. Two representative amplitude probability density func-
tions, each segment equal to 1000 times the excitation period, are shown in
Figure 9.8a4 and 9.8b. As indicated, the amplitude probability density func-
tions are practically identical, indicating that the segment length is sufficient
for convergence of the amplitude probability density function.

A chaotic process is defined as an ensemble of chaotic responses that have
identical system parameters, but with infinitesimally small perturbations in
the initial conditions about a known chaotic attractor, and each sample
response is itself chaotic. Numerically, ensembles of responses are generated
by computing the time histories of responses of the system with initial
conditions corresponding to the grid points of an infinitesimal neighborhood
containing the known chaotic attractors. The reference time ¢ is chosen far
enough from the initial time that the correlations between each pair of
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responses have vanished. In this study, time histories and Poincaré points are
generated by computing approximately 1000 time series with initial condi-
tions corresponding to the grid points of a small square. The sizes of the
squares are carefully chosen to ensure the samples are representative of the
chaotic processes.

Time History. A stochastic process O(¢) is stationary if its statistical proper-
ties are invariant to a shift of the time reference, that is, the process () and
@(t + ¢) have identical distributions for any value of &. To test stationarity
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of chaotic responses, the probability density functions of a (5000-sample)
chaotic process corresponding to six values of time shifts (¢ = 0.0, 0.2, 0.4,
0.6, 0.8, and 1.0 times the excitation period) are presented in Figure 9.9. The
time ¢ is chosen as the end of the 1000th cycle of the excitation. Note that
the probability density function is dependent on the phase shift; thus chaotic
time histories are nonstationary. However, when the phase shift is an integer
multiple of the excitation period, the probability density functions are nearly
identical (Figures 9.9a and 9.9f). In addition, the probability density function
appears to be symmetric about the half-cycle time point, that is, the function
at 0.4 and 0.6 (Figure 9.9¢ and 9.9d) and the function at 0.2 and 0.8 (Figure
9.9p and 9.9¢) are practically equal. Thus the time dependence appears to be
periodic with period equal to the excitation period, and there may be an
invariant structure when periodic dependency is removed.

Poincaré Maps. The Poincaré points generated from the 1000-sample time
histories may themselves be considered as time series with a sampling rate
equal to the excitation period. The probability density functions at two
representative times ¢, and r, of the Poincaré time series of a chaotic process
are shown in Figure 9.10a and 9.10b. It is observed that the two functions are
practically identical, thus indicating that the Poincaré processes of chaotic
responses are stationary. This property is anticipated because the trajectory
of chaotic response settles into a strange attractor; hence, after transient
response has died out, the shape of the Poincaré map will not change with
time.

Yang and Cheng [12] observed an interesting behavior of the Poincaré
points of chaotic responses. In their study of nonlinear structures with
hysteresis and degradation, they found that the asymptotic distribution of the
Poincaré points originating from the infinitesimal square appear to be identi-
cal to that of the Poincaré map of a single time history. In particular, for
small multiples of the excitation period T, the Poincaré points stay close
together. As time increases, the Poincaré points keep stretching and folding
(Smale horseshoe effect [8]). Eventually, the Poincaré points settle down into
the same attractor as the one created by a single time history. This phe-
nomenon is demonstrated in Figure 9.11 for the chaotic rocking responses.
Numerical results indicate that the convergent rate of ergodicity depends on
the chosen small square of initial conditions and the system sensitivity. If the
small square of initial conditions falls in the sensitive region of the chaotic
state, the strange attractor can be achieved by fewer loading cycles. Further-
more, the more sensitive the response is, the fewer loading cycles are needed
for the ensemble Poincaré points to reach the distribution of the strange
attractor. Thus the rate of convergence of the Poincaré process to the chaotic
attractor may also be used as a measure of the sensitivity of the system
response.

Poincaré processes of the rocking systems are further examined for ergod-
icity in this study by examining the probability density functions. A stochastic
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Figure 9.11. Ergodicity in terms of Poincaré time series: (a) ensemble time series;
(b) onc time history. (A4, = 4.6, T, = 2.327, H/B = 100, R = 290, and ¢ = 0.5.)

process O(¢) is ergodic if its ensemble average equals appropriate time
average, that is, with probability 1, the statistics of @(¢) can be determined
from a single sample O(z,/). To examine the ergodic property of the
Poincaré process, the amplitude probability density function constructed
from a single time series (Figure 9.10¢) is compared to those obtained from
the 1000 sample Poincaré process discussed (Figure 9.10a and 9.105). Ob-
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serve that the two types of distributions are practically identical, which
indicates that the Poincaré process may be ergodic. The properties of the
correlation function of the Poincaré process will be examined in detail in a
future paper to confirm ergodicity.

9.7. CONCLUSIONS

This investigation deals with the identification of stochastic properties of
chaotic response of a dynamical system describing the rocking response of
rigid objects to horizontal harmonic base excitation. The existence periodic,
chaotic, and quasiperiodic responses are demonstrated. An analytical tech-
nique based on the Melnikov function is derived for the prediction of
existence of chaotic response. The stochastic dynamics of the rocking system
are examined by merging and extending the numerical analysis techniques
developed by Kapitaniak [5] and Yang and Cheng [12]. It is found that in a
stochastic sense, probability density functions are time dependent; hence, a
process formed by time histories of chaotic responses is not stationary.
However, a process consisting of Poincaré points of chaotic responses as time
histories may be ergodic. These stochastic properties are useful for fatigue
design of nonlinear dynamical systems with frequent chaotic motions.

Finally, the excitations considered in this study are purely deterministic.
For future research, it would be interesting to apply the stochastic techniques
to examine the behavior of nonlinear dynamical systems subjected to excita-
tions with significant stochastic components.
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NOTATION

Agypr Oy, horizontal and vertical ground accelerations

a,a, amplitude of horizontal and vertical excitations

a, coeflicient of periodic steady-state response

A, normalized amplitude of horizontal excitation, 4, = a,/(g6,,)
A, normalized amplitude of horizontal excitation, 4, = a,/8

b, coefficient of periodic steady-state response

d, fractal dimension

e coefficient of restitution

g acceleration of gravity
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r, ratio of vertical versus horizontal excitation amplitude, r, =
a,/a,
B, H width and height of block
1, mass moment of inertia
M mass of object
p(®, 1) amplitude probability density function
R radius of rotation
T, period of horizontal excitation
0 rotation of angle of rocking block
0, bracing angle
6., critical angle
6 angular velocity
0 normalized angle, ® = 6/6,
(6] normalized angular velocity, O=6 /0
« (MgR/1,)"/?
B A /(0 + Q%
T initial time, T = at
T the instant of occurrence of impact
Q normalized frequency of horizontal excitation
A Lyapunov exponent
w, frequency of horizontal excitation
1) sampling shift
b, shift between excitation and steady-state response
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