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In this study we examine the complex and chaotic oscillations of a dynamical system with nonlinear
excitation and restoring forces for the purpose of controlling these oscillatory states. The physical
system, modeled as a system of first-order nonlinear ordinary differential equations, takes into
account a geometric nonlinearity in the restoring force, a quadratic viscous drag, and a harmonic
excitation force. It is controlled using small perturbations about a selected unstable cycle and control
is instigated for periodic cycles of varying periodicities. The controller, when applied on the
dynamical system with additive random noise in the excitation, successfully controls the system
with noise levels in excess of 5% of the total energy, giving the first evidence that (stochastic)
control of these systems is possible. © 1997 American Institute of Physics.

[S1054-1500(97)01102-6]

Sensitive nonlinear dynamics including chaotic oscilla-
tory behavior has been observed in experimental data of
a moored, submerged structure. This phenomenon has
been verified through analysis and computer simulation
of the governing dynamical system. Methods of analyzing
system response to harmonic and noisy excitations and
subsequent control are needed, should this unpredictabil-
ity of the observed behavior be deemed undesirable. In
this study we present an analysis and control procedure
that uses the chaotic response of the system to an advan-
tage. By describing the nonlinear response with unstable
periodic orbits (UPOs), a locally linear mapping of the
dynamics is obtained. This linear mapping is subse-
quently employed in a controller design and the control-
ler is applied to the moored structure. Finally, robustness
of the controller is investigated under noisy conditions
and modifications to the controller are made in order to
maintain control of the moored structure under the con-
ditions when noise is present in the excitation. The meth-
ods presented are equally applicable to most chaotic sys-
tems for which the response time history can be
monitored.

1. INTRODUCTION

Recently, chaotic responses have been predicted in a
system characterized by a large geometric nonlinearity in the
restoring force and viscous drag excitation.!> An example of
a system modeled by these types of nonlinearities is a mass
moored in a fluid medium subject to wave excitations. These
systems include sonars, remote sensors, and data collection
devices deployed for mineral exploration, which are of inter-
est to the U. S. Navy and the U. S. Bureau of Mines, are
typically suspended by cables from the ocean floor. This
class of fluid—structure interaction problems contain highly
nonlinear drag and mooring effects. However, despite being
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of fluid origin, which often indicates infinite dimensionality,
the overall effects of the nonlinear fluid loads on the struc-
ture can be approximated in terms of an added inertia and a
nonlinear coupling of the Morison form. The ponlinear
mooring resistance force can be approximated by a low-order
polynomial. Hence the resulting mathematical models of
these systems are reducible to a low degree system of ordi-
nary differential equations of the Duffing type. This order of
approximation is often acceptable for preliminary analysis
and design of the types of fluid—structure systems considered
(see Refs. 1 and 2 for detailed justifications).

Currently, chaotic motions of moored fluid—structure in-
teraction systems employed by the U. S. Navy and the U. S.
Bureau of Mines are not considered in their design. Prelimi-
nary analysis of experimental data from such a system has
demonstrated the likely presence of chaotic motions in noisy
environments.> Should the unpredictability of the chaotic be-
havior observed in these and other associated fluid—structure
interaction systems“‘5 be deemed undesirable, methods of
analyzing system response to harmonic and noisy excitations
and subsequent control of the systems are needed. The analy-
sis and control procedure presented in this study uses the
chaotic response to its advantage. By describing the nonlin-
ear response with the unstable periodic orbits (UPOs) of the
system, a consistent means of characterizing these strange
attractors is obtained.®"® This characterization can include
the calculation of such invariants as the topological entropy,
the Hausdorff dimension,’ the multifractal spectrum,9 or the
Lyapunov spectrum.10

In this study, particular system trajectories are identified
and then used to control the chaotic responses. The proposed
control method utilizes the local linearity about an unstable
cycle to maintain a periodic response within the chaotic op-
erating regime. To maintain stability of the desired periodic
response, this method applies a small perturbation about the
unstable cycle at discrete time intervals.!! The proposed
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method has been applied successfully to several physical
systems, including control of a thermal convection looplz'l3
and the chaotic oscillations in a continuous stirred tank
reactor.'* Other control methods including the use of artifi-
cial neural networks for adaptive learning of chaotic oscilla-
tions for model reference control of these oscillations has
been examined in the cases of chaotic fluid flows'® and
plasmas.'6!

In Sec. II we describe the physical system, which in-
cludes nonlinear effects of fluid structure interaction as well
as nonlinear geometric stiffness. Numerical investigations
show that this system possesses periodic, quasiperiodic, and
chaotic responses to certain combinations of driving wave
amplitudes and frequencies. The regions of chaotic responses
are first identified by a semianalytical method of investigat-
ing the bifurcation structure and routes to chaos.” The ana-
lytical predictions are highlighted in Sec. III. This informa-
tion is used in Sec. IV to numerically investigate chaotic
oscillations of the system. In Sec. V the notion of an UPO is
introduced and a method of obtaining them is outlined. This
method uses only the response time series of the chaotic
system and hence is applicable to many systems in which the
dynamics are not precisely known a priori, but a chaotic
time series is available. The ability of the method to identify
appropriate unstable cycles in a general chaotic system, and
subsequent control of the chaotic responses is investigated in
Sec. V1.

The controller utilizes a selected UPO to maintain a tra-
jectory in an oscillatory manner, essentially rendering the
system response periodic, even though the system is other-
wise operating in a chaotic parameter regime. In Sec. VII we
give the results of applying this technique to the nonlinear
oscillator defined in the previous sections.

Finally, since the proposed control scheme uses a first-
order approximation about an UPO, it is expected that the
addition of noise may cause some stability problems with the
controller. Several avenues of rendering a robust controller
are available; these include filtering the noise and geometric
projection. Filtering either assumes prior knowledge of the
model (as in Kalman filtering'®) or it assumes knowledge
about the nature of the noise (as in statistical linearization'?).
Geometric projection,zo’21 on the other hand, uses the fuzzy
image of the dynamics (via a strange attractor in phase
space) to project a trajectory back onto the original phase
space. However, in this study, a modification of the control-
ler is employed to obtain the desired robustness. This modi-
fication extends the method in the case when noise is present
and is discussed in Sec. VIIL

il. SYSTEM WITH GEOMETRIC AND HYDRODYNAMIC
NONLINEARITIES

Figure 1 shows a system moored by cables in a fluid
medium. The fluid itself is undergoing motion and an asso-
ciated excitation force is described by the forcing function
F(x,x,1), where x=dx/dt and x=dx/dt. With restraints for
vertical and rotational motion, this system is modeled as a
single-degree-of-freedom system for the surge, x.2 The (non-

bt

FIG. 1. A moored system suspended by cables and subject to current and
wave excitation.

linear, second-order ordinary differential) equation of motion
is derived by using the fact that the system is hydrodynami-
cally damped with external forcing. The forcing excitation is
modeled as the sum of a constant current and an oscillatory
wave term. Because the cables are thin and the dimensions of
the mass are small compared to the orbital motions of the
wave particles, the fluid—structure interaction can be mod-
eled accurately by use of the small-body theory, which as-
sumes that the presence of the structure does not influence
the wave field. This implies that the waves flowing past the
structure do not change due to the fluid—structure interaction.
The mooring angle produces a geometric nonlinearity in the
restoring force that can become highly nonlinear for b=0, a
two-point system, or nearly linear for b>d for the four-point
system. The equation of motion for this system is given by
Refs. 1 and 2 as

mX+cX+R(X)=F(X,X,1), (1a)

where the nonlinearities are contained in the restoring force
R and the excitation force F. The restoring force describes
the geometric configuration of the mooring lines and as-
sumes linear elastic behavior so that the nonlinearity is
strictly due to the geometric configuration of the system. The
restoring force can be shown? to have the form

d*+b?
d*+[X+b sgn(X)]?)’
(1b)

R(X)=k[X+b sgn(X)]( 1- \/

where sgn(X) is the signum function defined by

+1, for X>0,
sgn(X)=4 0, for X=0,
-1, for X<O.
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The excitation force is a combination of viscous drag
and inertial components based upon the interactions between
the moored structure and the fluid medium. This excitation
force is modeled by

F(.X',th)=)\(u-X)|u—X|+/L(d—jf)+p\7d. (1c)

The system parameters are given by the system mass
m, damping ¢, and line stiffness k. A and w are the hydro-
dynamic viscous drag and added mass, p is the fluid density,
V is the displaced volume of fluid, u=u(¢) is the fluid par-
ticle velocity under current and waves given by u(f)=u,
+uq sin(wt), and u;=u,(a, ).

Assuming the structure does not alter the fluid flow, per-
forming an equivalent linearization on the quadratic drag
force and normalizing, a dimensionless first-order autono-
mous nonlinear differential equation can be obtained:

x=y,
y=—R(x)—yy+F(y,x,0), (2a)
9::: w’

where x= X/d and the resulting nonlinear restoring force be-
comes

R(x)=y{x+ B sgn(x)]
1 1

* VIt A7 T+[x+B sgn(0) P/’ @
and the excitation force is given by
Fly,x,0)=fo—f sin(6). (2c)
The appropriate dimensionless constants are defined by
k b c+X
w:r_n,T;z’ B=2 Y ara 2d)

and the constants f, and f; depend upon the hydrodynamic
characteristics of the system. Although at first glance this
system appears to be significantly more complex than the
simple nonlinear systems presented in standard texts, e.g.
Nayfeh and Mook, it turns out that the fluid—structure sys-
tem possesses nonlinear response properties very similar to

those of the Duffing system.!?

lll. ANALYTICAL PREDICTIONS

Numerical simulations of the response of the structure in
the fluid medium have been shown to exhibit periodic, qua-
siperiodic, and chaotic responses in surge motion, as de-
picted in Fig. 1. This response has been verified through an
analytical treatment of Egs. (2a)—(2c). In this analysis, a
Hamiltonian approach is employed to examine the funda-
mental geometric nonlinearity and a harmonic-balance
method?®? is used to investigate the frequency response
characteristics of the primary, sub- and superharmonics.23 A
variational approach is also employed to identify a bifurca-
tion structure and routes to chaos of the model.'”

The associated Hamiltonian®* of the system described by
Eqgs. (2a)—(2c) is obtained by neglecting the damping term

2.00 / ,‘
r |l
, !
% -=-£ =0 /
1.50 4 — f = 0.5 ;
1 —_—f =1
] —_— = 2 /
b /
1 /
.: /
11,00 2 /
> i
0.50 4
i

FIG. 2. Degree of geometric nonlinearity as a function of the mooring angle.

(by setting y=0) and the forcing term (F=0). From this
formulation, the natural period, T,, of the Hamiltonian is
computed from the natural period, T,=27/®,, where

ar Fmax dx \ 7! .
o355 .

Y(x)=v2(V(xo) — V(x))?=1, )

and V(x) is the potential energy and is given by

2
V(x)=¢(%—rw1+<ﬁ+x>2+ B ©

Equation (3) characterizes the geometric nonlinearity
and is sometimes called the frequency response (or back-
bone) curve.??> The curvature of the backbone curve shows
the degree of nonlinearity. For a weak nonlinearity the cur-
vature is near zero and the backbone curve resembles a ver-
tical line. For a strong nonlinearity the curvature is positive
for a stiffening system and negative for a softening system.
This is exhibited in Fig. 2, which gives the result for Eqgs.
(2a)—(2c) for the stiffening case. As can be seen, the moor-
ing angle creates a strong nonlinearity for =0 and a weak
nonlinearity for 8> 1.

The harmonic balance’*** method of approximating a
solution to the system [Egs. (2a)—(2c)] is applied to study the
frequency response characteristics of the resonance modes.
The method assumes an approximate solution of the form

M

xo(t)= k§=‘,o A, cos(kwt+ ¢p), (6)

where M is the order of the approximation and A is the
amplitude of the kth harmonic. This approximate solution is
then substituted into the original equations and the resulting
expressions are rearranged and squared. By equating the har-
monic terms and the constant terms separately to zero, a set
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FIG. 3. Frequency response curves subject to {a) current and wave excita-

tion (y=0.5, ¢=10.0, f,=0.01, f;=0.1) and (b) wave excitation alone

(=001, =100, fo=0.0, f;=2.0).

of nonlinear algebraic equations in the A;’s and ¢;’s is ob-
tained and subsequently solved using standard procedures.”
Figure 3 shows the zeroth- and first-order amplitude as a
function of frequency. As is evident, this system exhibits a
jump phenomena as the frequency is swept through the val-
ues shown.”

The system bifurcations are identified by considering a
perturbed solution of the form x(#)=x((t)+ €(t), where
xo(2) is an approximate solution and e(t) represents a small
perturbation. Substituting this into Egs. (2a)—~(2c) and linear-
izing the resulting expression yields

é+ yé+ YH[xo(1)]e=0, (Ta)

where vy and i are defined in Eq. (2d) and the periodic func-
tion H is given as follows:

H(xg)=(1+ %"= {1+[xo+ B sgn(x0)]*} .
(7b)

Performing a Fourier series expansion on H produces a gen-
eralized Hill’s equation®® of the form

€+ yé+ yH[ 0]e=0, (8a)
for
H[0]= % +3 a4, cos(nf). (8b)

Note that Egs. (8a)—(8b) define parametric excitation and
resonant interaction, where harmonics of all orders are pos-
sible. The use of Floquet theory (described in detail in Ref.
23) gives the particular solution to the variational equation as

e(t)=exp({1) Z(1), ©9)

where the real part of the constant { determines the stability
of the approximate solution, and the complex part of { cor-
responds to the natural frequency of the periodic response.
The function Z is periodic in T, i.e., Z(t)=Z(t+T).

By investigating the order of the harmonic part of the
solution the sub- and superharmonic solutions can be deter-
mined. The procedure is conducted by examining the sym-
metric solution Z(¢)=Z(t+ T/2) or the period-doubled solu-
tion Z(¢)=Z(t+2T). The boundaries of the stability regions
can be obtained by performing a harmonic-balance approxi-
mation to the Hill’s variational equation (8a) at the stability
limits, where d{/dt=0. (Specific details of the solution pro-
cedure can be found in Ref. 2, while a description of the
general procedure can be found in Ref. 23.) For the fluid-
structure interaction systems of interest to the U. S. Navy
and the U. S. Bureau of Mines, preliminary experimental
results have indicated that the primary resonance is of major
concern.> Although, the analysis procedures described in this
study are equally applicable to higher-order resonances, pri-
mary resonance will be employed for demonstration pur-
poses.

The above analysis yields the frequency response curve
of the primary resonance, Z(t)=Z(t+T), given by

1
. 2 2
wz——zao [¢(ai—a?)— Y*ao

+ v ad+ 24y (a—ad) + ¢*(ai—apa,)*]. (10)

Note that in Eq. (10), y<1. For the undamped system, vy
=0, and o=~ (¢ay/2). The distribution of the a;’s and their
influence on system behavior had been examined.!?

Similarly, the stability boundaries for the 1 subharmonic
can also be obtained by inserting the period-doubled solution
x12()=by;, cos(82) [corresponding to Z(1)=Z(t+2T)]
into Eq. (8a). This yields the frequency response curve

w?=2(gao— Y=y —2¢y*a,+ ¢ra}). (11)

Now, the regions of bifurcations can be approximated by
observing that the intersections of the frequency response
curves obtained from Eq. (6) and the investigations of the
stability regions that lead to the frequency response curves
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FIG. 4. Stability diagrams of the system with linearized excitation for (a)
current and wave excitation (y=0.01, ¥=100, =00, f,=001, it
=0.1) and (b) wave excitation alone (y=0.01, ¢=10.0, B=1.0, f;=00,
f1=2.0).

given by Egs. (10)—(11), as shown in Fig. 4. From this analy-
sis, obviously the strength of the geometric nonlinearity (as
evidenced by fB) plays an important role in the ultimate re-
sponse of the system. In fact, by examining the frequency
response characteristics and equating them with the stability
regions a period-doubling bifurcation structure is obtained.

IV. NUMERICAL INVESTIGATIONS

The analytical investigations above provide a guide fora
numerical search in parameter space for various types of re-
sponses including the existence and coexistence of periodic
solutions, period-doubling bifurcations, and chaos. Extensive
numerical investigations and many examples as presented in
Ref. 2, show that Eqs. (2a)—(2c) exhibit periodic, quasiperi-
odic, and chaotic motions. These motions were verified
through the analytical predictions discussed above. As a
demonstration, Fig. 5 shows one of the many possible cha-
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FIG. 5. Chaotic response of the nonlinear system with parameter values @
=0.335, y=0.01, ¢=4.0, =00, fo=0.0, and f1=2.0 exhibiting the (a}
chaotic attractor, (b) Poincaré section, (c) power spectrum, ~d (d) time
history of the (surge) position.

otic responses of the system, where the parameter values
used were w=0.335, y=0.01, ¢y=4.0, =00, f0=0.0,
and f,;=2.0. In the chaotic regime, this system exhibits both
steady-state chaos and transient chaos, where the system un-
dergoes a transient chaotic response before it settles into pe-
riodic or quasiperiodic oscillations.” Figures 5(a)-5(d) show
the phase space portrait, Poincaré section, frequency spec-
trum, and a typical time series, respectively, of a chaotic
response. The Poincaré sections are obtained by stroboscopi-
cally sampling the time series every 24/T" and plotting the
points sequentially, i.e. by plotting x(t) vs x(¢+T) for I the
sampling period. One can notice the fractal structure of the
Poincaré section. The presence of an abundance of these
complex harmonic responses predicted by the analytical and
numerical results indicate that their influence on extreme and
fatigue designs of the fluid—structure interaction systems
may need to be included in the future.

V. UNSTABLE PERIODIC ORBITS

The numerical simulations together with the analytical
results show that the oscillatory nature of Eqgs. (2a)—(2c) ex-
hibit a range of modes, including periodic, sub- and super-
harmonics and chaotic motions. A means of analyzing the
chaotic motion by using the time series alone has been intro-
duced by Refs. 6 and 7. The procedure utilizes the unstable
periodic orbits of a system. Since a chaotic attractor contains
a multitude of UPOs of varying periodicities, much of the
nonlinear characteristics can be identified through these spe-
cial cycles. It is well known that UPOs are dense in a chaotic
attractor,g'“ and, in fact, this is a necessary condition for
chaos to exist.2® This fact is exploited in the following dis-
cussions.

The basic idea behind the use of an UPO is that if the
chaotic system is allowed to evolve long enough, then a tra-
jectory will return arbitrarily close to a given unstable cycle,
arbitrarily often. This is because these cycles are dense on
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the attractor and that they are periodic and yet unstable.
Thus, if the system is on a cycle it will remain on it for all
time. However, if there is any minute deviation from the
cycle, then the chaotic trajectory will diverge from this un-
stable cycle. Because of the ‘‘mixing’’ property of the cha-
otic attractor, some time later the trajectory will again come
arbitrarily close to this UPO.

In other words, suppose that a chaotic time series x(r) is
availabie. Let >0 be given, then at some time ¢ in the time
series |x,—x,|<7, that is the chaotic trajectory has come
arbitrarily close to the UPO, x,,, of period p. At some time I
later |x,— x| <% and the trajectory has come close to the
UPO again. To identify the unstable cycle of period p, a
search through the dataset for all points separated by I' time
steps that are a distance of 7 apart is performed. To ensure
that the points obtained by this search correspond to a par-
ticular unstable cycle and not another nearby unstable cycle;
not only are the points that are identified used but also their
images under integration (or iteration for discrete systems).
This is done by restricting the points of interest to those with
iterates of which are within 6> 7 of each other, |xp+1
—X,41|< 8. That is, all points such that |x,—x]<7 and
|x, = x,.r|<7 are considered and that |x,;—x,+1|<& to
ensure that only one cycle is included and not several nearby
cycles.

In practice, this is typically performed on a Poincaré
section where the continuous flow is mapped to a discrete
iterative dynamical system of one less degree of freedom.
Let Z; be a point on the Poincaré section and suppose Z,is
an unstable periodic point on the section representing the
UPO of period p. Then, the algorithm for calculating the
UPO consists of searching the dataset on the section,
{zAN.., for all points that are within 7 of Z, the set
{&::1Z,—Z;|<n}. Once these points have been identified,
their corresponding image, or next iterate, is investigated.
The set of points whose images (i.e., the next iterates) are
within &, |Z,—Z;, ,|< 8, for some 6> 7, are considered to
correspond to that UPO, otherwise they correspond to a dif-
ferent UPO and are not further examined.

The last step is to identify the stability characteristics of
the UPO, which is performed by using a least-squares pro-
cedure to calculate a linear map, A, which maps Z; to
Ziyp, where Z; and Z;,, correspond to the periodic point
Z,. This is accomplished by creating the vectors D={d;}
and E={e;}, where the d;’s are the deviations of the points
from the UPO under consideration, d,-=Z,-—Zp, and the
e;’s are the deviations of the iterates from the image of the
UPO, e¢;=Z;;r~Z,.r. The point corresponding to the
UPO, Z*, is taken as the centroid of points under consider-
ation.

The linear map A (an nXrn matrix, where n is the di-
mension of the Poincaré section, usually taken as 2) is cal-
culated by a least-squares method that minimizes the error
orthogonal to the approximate solution of the matrix equa-
tion ||DA —E||?, which, since D and E are vectors, has a
solution given by A=inv(DTD)DTE.? The stability charac-
teristics of the UPO are governed by the eigenvalues of the
map A

FIG. 6. Schematic of the action of the controller on a point. The control law
pushes the point Z; ., towards the stable eigenvector of Z; .

VL. CONTROL OF CHAOTIC SYSTEM RESPONSES

Once a periodic cycle has been selected for control and
the corresponding linear map A has been calculated, control
of the system about an unstable cycle can be maintained by
applying a small perturbation to the chaotic trajectory about
the UPO on the Poincaré plan. That is, the system is allowed
to oscillate chaotically until the first time the trajectory enters
within the 7 ball of the chosen UPO. Once within this ball, a
small perturbation in the direction of the stable eigenvector
of the linear map can be applied to ensure that upon the next
return to the Poincaré section the trajectory is still within 7
of the UPO. Figure 6 is a schematic of this operation in
which the point Z;,, is perturbed toward the stable eigen-
vector of the UPO.

A means of finding the magnitude and direction of the
perturbation is obtained by employing the pole placement
method,”’28 which is a state feedback rule devised to render
the eigenvalues of the controlled system stable. A linear map
describing the evolution of a trajectory from a point close to
a periodic point on the Poincaré section to its next iterate is
calculated as before. It remains to find a feedback rule,
which, when added to the linearized system, renders the non-
linear system stable.

Consider the dynamical system (linearized within the %
ball as in Sec. V) represented by the state-space system,

(12a)

where x is the response of the system, y is the external forc-
ing, A is the linear mapping, and B is a column vector.
Suppose that the external forcing can be written as y=y,
+y,, where y, describes a control input and y, is the usual
external excitation. Next, consider a feedback law of the
form y,= — K7x, then Eq. (12a) can be rewritten as

i=(A—BK")x+By,.

x=Ax+By,

(12b)
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Now, the homogeneous portion of Eq. (12b) determines the
linear systems natural behavior, hence if the external excita-
tion is ignored and the subscript from y, is dropped, then a
feedback of the form y=—K7x can be considered and Eq.
(12b) takes the form

x=(A—BK")x. (13)

The goal is to find a vector K T such that the eigenvalues
of the matrix (A—BK7) are asymptotically stable?®? (i.e.,
IN;|<1 for i=1---n). This ensures that the fixed points of
the associated system, Eq. (12b), are stable. The eigenvalues
of the matrix (A — BKT) are called the regulator poles while
the problem of placing these poles in an appropriate spot on
the complex plane is called the pole placement problem.30
The solution to this problem lies in the fact that one is free to
choose K7 in an advantageous way, as long as the eigenval-
ues have the appropriate characteristics. If the system given
by the pair (4,B) is controllable, then a solution to the pole
placement problem always exists.?’” It can be shown that
(A,B) is controllable when the nXn controllability matrix,
C, has full rank, for the controllability matrix defined by

C=[B|AB|A%B|---|A""'B], (14)

and where the columns of C are made up of the column
vectors B,AB,A’B,...,.A"” 1B, The control law then consists
of picking the entries in the vector K7, called gains, so that
the roots of the characteristic equation [Eq. (15)] are in pre-
scribed positions. Since the \;’s are known, this amounts to
choosing the c;’s in the characteristic polynomial 7(\):

1, _ger(N)=det{A\/—(A—BK")]
:()\"')\1)()\_)\2)"'()\_)\")
:Cn'+'Cn_1)\+"'+)\". (15)

A general method for calculating the ¢;’s is given by Acker-
man’s formula for pole placement in Ref. 30. The idea is to
transform the pair (A,B) into controllable canonical form?’
by constructing a particular transformation matrix, solving
for the gains in terms of the controllable canonical form and
then transforming back. The result yields the choice of gains
as K'=(~o,+c,,....,—0;+c;)G™!, where G=CA is
the transformation matrix, C is the controllability matrix, and
A has the form?"?%%

Opoy Opy v o 1]
On-y Op3 ' 1 0

A=| I (16)
o 1 - 0 0
1 0 - 0 o]

The ¢;’s are the coefficients of the characteristic polynomial
7 4.gxT(N) and the ¢;’s are the coefficients of the character-
istic polynomial 74 ()). For the case where A is 2 X2, it can
be shown that an optimal choice (in the sense of time to
control) for the gain vector is KT=[\,,—\,\,], where \,, is
the1 llélzstable eigenvalue and \, is the stable eigenvalue of
A

One can now formulate an algorithm to control a chaotic
system utilizing this control law on a Poincaré section. First,
the linear map, A, of an unstable cycle is constructed as
before and its eigenvalues identified. Then, setting x=2Z2;
—Z* and ¥=Z;,,—Z* in Eq. (13) yields the control law for
the discrete UPOs on the Poincaré section as

Zi1=(A—BK"(Z,—Z*)+Z*. a7

Then, calculating the eigenvalues of A, \,, and A, choos-
ing KT=[\,,—\,\,], and applying Eq. (17) whenever the
trajectory comes within # of Z* on the Poincaré section
yields the desired stable characteristics. The final point left to
consider is a relative distance on the Poincaré section a tra-
jectory can be from Z* and still be able to guarantee that the
controller will perform adequately. The answer to this lies in
the fact that since it was required that |Z*—Z,,;|<& by
construction then, combining this with Eq. (17) yields

8
- i~ Z¥ <=7 - 1
Since KT was constructed to render the eigenvalues of the
matrix A —BK7 stable, and (A—BK7) ™! exists, this defines
an area of width 2 6/|A — BK| about Z*, for which the con-
trol should be applied.

VH. APPLICATION OF CONTROL TO A MOORED
STRUCTURE

Consider the chaotic oscillations of Egs. (2a)—(2c) for
the parameter values given as before (w=0.335, y=0.01,
y=4.0, B=0.0, f,=0.0, and f,=2.0) exhibited in Figs.
5(a)-5(d). A search was done on the Poincaré data exhibited
in Fig. 5(b) to obtain all points that were near a period-1
orbit. This is done by comparing all points Z; that are close
and whose next iterate Z;,, are also close (where the Z;’s
are taken by stroboscopically sampling the position, x).
Then, the UPO of period 1 is estimated as the mean of the set
of points found to correspond to it (cf. Sec. V). Utilizing this
method, the system structural response data found a UPO of
period 1 at the values Z*=[x,x]7, where x=0.2623 and x
= —0.0677. A linear map is constructed that maps the points
near the UPO Z* toward Z* along the direction of the stable
eigenvector, as seen in Fig. 6. In this case the linear map is
given by

t0.8793

(19)

0.4553

0.2766 ]
~0.0729)

which has a practically neutrally stable eigenvalue A,
=0.9970 and a stable eigenvalue A= —0.1906. If the feed-
back control is applied only to the position x, this gives

1

B=O.

(20)

Choosing the gain vector KT=[X\,,—\,\,] yields the
control poles at p;,=[—0.2951,0.1044]. Thus, each time
the system trajectory crosses the Poincaré section near Z*
the controller affects this point by applying the control law,
Eq. (17), ensuring that the trajectory returns near the point
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FIG. 7. Example of controlling the system about a period-1 cycle showing
the Poincaré points versus time before and after control is applied.

Z* on the next return to the Poincaré section. The results of
this application are shown in Fig. 7, which is a plot of the
Poincaré points versus time, exhibiting the controlled peri-
odic oscillation after an arbitrary duration of chaotic oscilla-
tions.

To further demonstrate the effectiveness of this strategy,
a higher-order periodicity is identified and the controller is
again applied. Analysis of the higher-order motions, and in
particular period-3 motion, is very similar to that of the pri-
mary resonance case treated in Sec. III (and has been exam-
ined in detail in Refs. 1 and 2 and, hence, is not reported
here). Figure 8 shows the results of this calculation for a
period-3 orbit identified at the point Z*=[x,x]7 for x
= —0.3609 and x=0.0359. The linear map obtained for this
case is given by

l 0.9904 —0.1 13J

|-0.097 -0.45] @
0.6 - . v : ; .
O, o ; 1
0.2f D .

X 0OF _ . : . L - 1
0.2+ i T E
-044—: " . 3 B 1
0% 00 200 800 400 500 600 700 800 900

Time

FIG. 8. Example of controlling the system about a period-3 cycle.

. 0
(b) Noise Level = 2.7%

0
Noise Level = 5.5%

-0. 0 3
(C) Noise Level = 4.15% (d)

FIG. 9. Effects of increasing noise on the Poincaré portraits.

which has neutrally stable and stable eigenvalues A,
=1.000 and A,=—0.1544, respectively. The controller
poles are placed at p, ,=[—0.6177,0.2068] and the control-
ler, Eq. (17), is again applied to initiate control each time the
system trajectory intersects the Poincaré section near the
UPO at Z* with period 3. The system oscillates chaotically
until the trajectory comes close to the period-3 UPO, at
which time the controller is applied and subsequently the
system oscillates between the period-3 points.

Observe that, despite the complexity of the dynamics
between points in time where control is applied, the method
produces a desired periodic motion through small adjust-
ments. This method works well for arbitrary chaotic time
series. The algorithm to control this chaotic system is to first
obtain enough Poincaré points to be able to characterize an
unstable periodic orbit, typically a minimum of 20 points.
Once the unstable orbit is identified, a linear map is obtained
by a least-squares minimization of the matrix equation in-
volving the points near the UPO and their iterates. Given this
map, a feedback law is postulated that places the control
poles in a stable operating regime. Finally, the system is
allowed to oscillate until the trajectory enters within % of the
UPO. At this time, control is applied to produce the desired
periodic orbit.

VHil. CONTROL OF SYSTEM WITH NOISE

The benefit of using small perturbations to control a de-
terministic nonlinear dynamical system within the chaotic
operating regime has been presented above. However, for a
typical real physical system such as a moored fluid-structure
system, there will be noise added to the system through mea-
surement errors as well as a random component in the exci-
tation. For example, Fig. 9 shows the Poincaré map of the
noisy chaotic response obtained by adding (band-limited)
white noise of finite variance to the excitation term in the
deterministic case [as shown in Fig. 5(b)]. Here, the noise
energy content is increased from 1.4% [Fig. 9(a)] to 5.5%
[Fig. 9(d)] of the forcing energy. In this case a series of
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FIG. 10. Effects of increasing noise on the controller in Fig. 7.

Poincaré sections about the chaotic attractor can be con-
structed by stroboscopically sampling every 2 #/rl’, where
r is the number of sections desired. This yields r separate
controllers evenly distributed throughout the cycle, thus de-
creasing the long term effects of the noise with respect to an
individual controller. By applying the above control scheme
on each Poincaré section, the UPO can be targeted from one
section to the next. If these sections are selected appropri-
ately, then the effects of noise can be minimized.

Figure 10 shows the results of adding the white noise to
the excitation term in the period-1 example above. Here, the
noise energy level is increased from 1.4% to 5.5% of the
forcing energy to exhibit the effects of the noise on the con-
troller without making any modifications to the control
scheme. Figures 10(a)-10(d) are the Poincaré points from
the controlled system as the noise is increased. Observe that,
as the noise level is increased from 0% to 5.5%, the system

0.6 " : 0.6
02k : o2f, " .
o of s e
—o2f 707 ' 02t
—oa4b - cet —0af . e
0 50 100 150 200 [} 50 100 150 200
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(©
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FIG. 11. Control of noisy chaos when control is applied on four control
sections, and the noise levels go from 1.4%-5.5%.
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FIG. 12. Effects of the increasing number of control sections on the increas-
ing amounts of controllable noise for several control tolerances.

goes from being completely controlled, to a mode where the
controller appears to be effective only during limited dura-
tions, and finally to the point where the effects of noise over-
powers the influence of the controller. For the system and
example considered, the controller appears to have an ac-
ceptable performance with no modifications for up to 2.7%
noise energy.

A simple modification to the control scheme can dra-
matically increase the controllability of the system. By tak-
ing several Poincaré sections around a single cycle, and then
building a feedback controller on each section, the effects of
the noise are reduced proportionally to the number of sec-
tions the controller is applied on per cycle.

Figure 11 shows the results of the previous example with
four control sections. Each of the four sections has been
created by sampling the same time series dataset at four
times the rate of that in Fig. 10, r=4. Then, using the
scheme outlined above, a linear map on each section is con-
structed, finally, each time a trajectory crosses a section
within the control tolerance, Eq. (17) is applied for that sec-
tion. Figure 11 shows the results for one of the sections and
the varying noise levels. With four control sections, an in-
crease from 2.7% to 4.15% noise can be acceptably con-
trolled.

The number of control sections versus the amount of
noise that the system controller is able to handle are shown
in Fig. 12. Here, two levels of control influence, i.e. two
different values of 7 (0.05 and 0.1), are employed. It is as-
sumed that the system is fully controlled if it can be con-
trolled for 100 Poincaré points (or about 85 000 time series
data points). Figure 12 indicates an approximately linear re-
lationship between the controllable level of the energy of the
noise versus.the number of sections required for complete
control.

IX. CONCLUDING REMARKS

In this study we examine control of the chaotic oscilla-
tions of a fluid—structure interaction system. The system un-
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der consideration, although of fluid origin, is modeled as a
low degree of freedom system by considering cases for
which the small-body theory applies. This assumes that the
structure does not influence the wave field, allowing for the
nonlinear fluid loads to be approximated in terms of an
added inertia and a nonlinear coupling. This, together with
restraints on vertical and rotational motion and, by approxi-
mating the nonlinear mooring resistance with a low-order
polynomial, yields the desired low-order system.

The nonlinear dynamics of the fluid—structure interac-
tion system have been demonstrated to exhibit chaotic oscil-
lations under certain environmental conditions and verified
on data obtained from experiments. This fact is used to an
advantage in the design of a controller. This study outlines a
method for controlling chaotic systems, in general, with the
use of the systems dynamics and small perturbations. The
method uses a chaotic time series to categorize unstable pe-
riodic orbits. This is done by mapping the time series to a
Poincaré section and then obtaining the unstable periodic
orbits through an exhaustive search of the Poincaré points.
This produces a linear map for which the pole placement
method of feedback control can be applied. The method was
first applied to the model to verify control. Then, the method
was applied to the model in the case that band-limited white
noise of finite variation was added to.the excitation term,
producing the first indications that (stochastic) control of
moored systems is possible.

An unstable periodic point can be identified by realizing
that after p iterations (where p is the periodicity of the
cycle), a trajectory will return to a neighborhood of its cor-
responding unstable cycle. By investigating all of the points
that are a small distance apart after every p iterates the set of
UPOs of period p can be obtained.

Given an UPO of period p, control can be applied by
taking advantage of the local linearity of the UPO. A linear
map is constructed from the set of points about the periodic
cycle and then the stability of this map is investigated. The
controller uses the pole placement procedure to perturb a
trajectory toward the periodic cycle along the stable direction
of the linear map. This ensures that the linear system dynam-
ics are locally stable and system control is achieved. This
control amounts to small perturbations to the system trajec-
tory at prescribed times to maintain the desired oscillatory
characteristics. The control algorithm is then applied to the
fluid—structure interaction system. The controller was able to
stabilize the chaotic oscillations of the system about periodic
orbits of arbitrary periodicity. As examples, the control of a
period-1 orbit and a period-3 orbit were demonstrated.

An extension of the system was investigated to achieve a
more robust controller under the circumstances that additive
noise is present in the excitation force. This extension ap-
plies the same algorithm of control design to a series of
Poincaré sections produced by stroboscopically sampling ev-
ery 27/rl’, where r is the number of sections desired. This
yields r separate controllers evenly distributed, thus decreas-
ing the long term effects of the noise with respect to an
individual controller. This method appears to yield a linear
growth in the amount of noise that the system is able to

handle. More robust control schemes will be examined in the
near future.

Finally, should the responses of the prototypes corre-
sponding to the model tests mentioned in the beginning of
this study confirm the existence of chaotic motions in the
(noisy) field environments, the analysis and control method
presented in this study can be applied to suppress these mo-
tions if desired. Extensions of this study to the multi-degree-
of-freedom physical models and subsequent design of prac-
tical controllers for experimental tests are being examined.

ACKNOWLEDGMENTS

The authors wish to acknowledge the financial support
of the U.S. Bureau of Mines process control-program (AL-
92-A-001) and the United States Office of Naval Research
(Grant No. N0001-92-J-1221).

'0. Gottlieb and S. C. S. Yim, “‘Deterministic motions of nonlinear moor-
ing systems. Part I: analysis and predictions,”” Ocean Engineering Report
No. OE-93-02, Oregon State University, Corvallis, OR, 1993.

20. Gottlieb and S. C. S. Yim, “‘Onset of chaos in a multi-point mooring
system,”” Proceedings of the Ist (1990) European Offshore Mechanics
Symposium, Trondheim, Norway, 20-22 August 1990, pp. 6-12.

3S.C. S. Yim, M. A. Myrum, O. Gottlieb, H. Lin, and 1. M. Shih, *‘Sum-
mary and preliminary analysis of nonlinear oscillations in a submerged
mooring system experiment,”” Ocean Engineering Report No. OE-93-03,
Oregon State University, Corvallis, OR, 1993.

4S. C.S. Yim and H. Lin, *‘Chaotic behavior and stability of free standing
offshore equipment,”’ Ocean Eng. 18, 225-250 (1991).

3S. C. S. Yim and H. Lin, “‘Nonlinear impact and chaotic response of
slender rocking objects,” J. Eng. Mech. 117, 20792100 (1991).

¢D. P. Lathrop and E. J. Kostelich, *‘Characterization of an experimental
strange attractor by periodic orbits,”” Phys. Rev. A 40, 4028-31 (1989).

"D. Auerbach, P. Cvitanovic, J.-P. Eckmann, G. Gunaratne, and 1. Procac-
cia, ‘‘Exploring chaotic motion through periodic orbits,”” Phys. Rev. Lett.
58, 2387-2389 (1987).

8P. Cvitanovic, “Invariant measurement of strange sets in terms of
cycles,”” Phys. Rev. Lett. 61, 27292732 (1988).

‘C. Grebogi, E. Ott, and J. A. Yorke, ‘“Unstable periodic orbits and the
dimensions of multifractal chaotic attractors,” Phys. Rev. A 37, 1711-
1724 (1988).

M. Sano and Y. Sawada, ‘“Measurement of the Lyapunov spectrum from
a chaotic time series,’’” Phys. Rev. Lett. 55, 1082—-1085 (1985).

ME o, C. Grebogi, and J. A. Yorke, ‘‘Controlling chaos,”” Phys. Rev.
Lett. 64, 1196-1199 (1990).

123, Singer, Y.-Z. Wang, and H. H. Bau, ‘‘Controlling a chaotic system,”’
Phys. Rev. Lett. 66, 1123-1125 (1991).

Y. Wang, J. Singer, and H. H. Bau, ‘‘Controlling chaos in a thermal
convection loop,”” J. Fluid Mech. 237, 479-498 (1992).

14y, Petrov, V. Gaspar, J. Masere, and K. Showalter, ‘‘Controlling chaos in
the Belousov—-Zhabotinsky reaction,”” Nature, 361, 240-243 (1993).

15C. 1. Einerson, H. B. Smartt, K. L. Moore, and P. E. King, ‘‘Modeling and
control of nonlinear chaotic systems using a feedforward neural network,”
Intelligent Engineering Systems Through Artificial Neural Networks, ed-
ited by C. H. Dagli, L. I. Burke, and Y. C. Shin (ASME, New York,
1992), Vol. 2.

16p, E. King, T. L. Ochs, and A. D. Hartman, *‘Chaotic responses in electric
arc furnaces,”” J. Appl. Phys. 76, 2059-2065 (1994).

7p E. King, A. D. Nyman, T. L. Ochs, and C. J. Einerson, ‘‘Modeling for
control of an electric arc furnace using a feedforward artificial neural
network,”” in Intelligent Engineering Systems Through Artificial Neura!
Networks, edited by C. H. Dagli, L. 1. Burke, B. R. Femandez, and J.
Ghosh (ASME, New York, 1992), Vol. 3.

38 D. 0. Anderson and J. B. Moore, Optimal Filtering (Prentice—Hall,
Englewood Cliffs, NJ, 1979), p. 357.

%], B. Roberts and P. D. Spanos, Random Vibration and Statistical Linear-
ization (Wiley, New York, 1990), p. 407.

CHAOS, Vol. 7, No. 2, 1997



300 P. E. King and S. C. S. Yim: Contro! of motion

R, Cawley and G.-H. Hsu, *‘Noise reduction for chaotic data by geometric
projection,”” in Applications of Digital Image Processing XV, edited by A.
G. Tescher, Proc. SPIE 1771, 368-376 (1993).

2IR. Cawley and G.-H. Hsu, ‘‘Another new noise reduction method for
chaotic time series,’’ in Proceedings of the 1st Experimental Chaos Con-
ference, 1-3 October 1993, edited by V. Arlington, S. Vohra, M. Spano,
M. Shlesinger, L. Pecora, and W. Ditto (World Scientific, Singapore,
1992), pp. 38-46.

22D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations,
2nd ed. (Clarendon, Oxford, 1987), p. 381.

2 A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley, New York,
1979), p. 704.

8. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and
Chaos (Springer-Verlag, Berlin, 1990), p. 672.

5G. Strang, Introduction to Applied Mathematics (Wellesley—Cambridge
Press, Wellesley, MA, 1986), pp. 37-38.

%R, Devaney, An Introduction to Chaotic Dynamical Systems (Addison—
Wesley, Reading, MA, 1987), p. 320.

2R. A. DeCarlo, Linear Systems, A State Variable Approach with Numeri-
cal Implementation, Prentice-Hall, (Englewood Cliffs, NJ, 1989), pp.
335-345.

2E. J. Romeiras, C. Grebogi, E. Ott, and W. P. Dayawansa, ‘‘Controlling
chaotic dynamical systems,”” Physica D 58, 165-192 (1992).

2 G. Nitsche and U. Dressler, *“Controlling chaotic dynamical systems using
time delay coordinates,”” Physica D 58, 153-164 (1992).

30G. F. Franklin, J. D. Powell, and A. Emami-Naeimi, Feedback Control of
Dynamic Systems, 2nd ed. (Addison-Wesley, New York, 1991), pp.
377-396.

CHAOQS, Vol. 7, No. 2, 1997



