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A path integral procedure for the analysis of a noisy nonlinear system
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ABSTRACT: Evolution of the probability density (PD) of the response of a nonlinear system driven
by periodic excitation with white noise can be described by a Fokker-Planck equation (FPE). In this
study, a path integral solution procedure is employed to solve the FPE numerically to examine some
features of chaotic and extreme behavior of a stochastic nonlinear system. The evolution path of the
PD is discretized in probability space. For infinitesimally small time segments, the short-time
propagator is characterized analytically by a multi-variate Gaussian distribution. In the numerical
implementation, the short-time propagator is converted into a transition tensor, which is applied
iteratively to obtain the PD at a desired time. Evolution of the PD is examined by sampling the
probability density recurrently. The steady-state PD on the Poincaré section is used to portray the
periodic and chaotic response attractors. With time-averaged PD as an invariant measure, the
probability of large excursions is also examined.

INTRODUCTION

Probability descriptions have been introduced to
demonstrate the stochastic properties of noisy
nonlinear system responses recently. Meunier
and Verga (1988) investigated the behavior of a
first order nonlinear system driven by Gaussian
white noise. The Fokker-Planck equation (FPE)
was derived and solved for the stationary
probability density (PD). They concluded that in
noisy systems topological concepts become
meaningless and the bifurcation phenomenon
should be delineated by stochastic
representations. Kapitaniak (1988) also solved
the FPE to demonstrate the characteristics of
marginal PD of nonlinear systems driven by
periodic and random excitation. Numerical
results show that the marginal PD associated
with noisy chaos is governed by a time-varying
multi-maxima curve (thus non-stationary).
Bulsara et al. (1990) investigated the noise effect
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on the behavior of nonlinear systems through the
Lyapunov exponent and PD. Their numerical
results demonstrate that the presence of random
noise smooths the PD and noise-induced chaos
can be also observed. Kunert and Pfeiffer
(1991) employed a finite difference procedure to
solve the FPE. They used the steady-state joint
PD on the Poincaré section to portray the
existence of chaotic attractors. Kifer (1989)
provided mathematical background for the
existence of invariant measure of weakly
perturbed attractors. Jung and Hinggi (1990)
proposed a time-averaged PD as the invariant
measure for deterministic and noisy chaos.

In this paper a detailed derivation of a path
integral numerical procedure to solve the FPE
associated to a periodically driven nonlinear
stochastic system for joint PD is demonstrated.
The chaotic and extreme behaviors of this
system are examined via the time-varying and
steady states of the PD.



GOVERNING EQUATION

The system considered has linear damping and a
cubic nonlinear component in the restoring force
(Duffing system). The response of this system
subjected to a (deterministic) periodic excitation
with additive white noise is governed by the
following equation

X+ax+bx+cx®=Acoswt +4(t) (M

where A and  are the amplitude and frequency
of the periodic excitation, respectively, and n(2)
represents a zero-mean, delta-correlated white
noise with intensity «:

{n@)=0; {n")n(@®)=xd('-1) 2

Standard Form

Equation (1) denotes a system with a time-
explicit deterministic driving term in the
excitation. This system can be converted into a
standard form with explicit stochastic excitation
only by introducing two additional state variables
to describe the periodic forcing term
(Kapitaniak, 1988). Equation (1) thus can be
rewritten in a generalized vector form as

X = F0) + G () 3
with

X =[x x, % x]" (@)
= [x % Acoswt -Awsinw]T

x’l
_ _ _ 3
Fxp =] e ®)
'x4
~wix,
G(X) =[0100] (©)

Equation (3) is in a standard form that the
associated FPE can be derived explicitly.

FOKKER-PLANCK EQUATION

Under the assumption of a Markov process, the
evolution of the PD of the system response is
characterized by a FPE. A general form of the
FPE associated to equation (3) is given by

YED - prxn ™
at

with
1@ _ 9 :
_5—316,31“ 0, —aZK,(X, 3] ®)

v,u = 1,2,3,4
and
K =F(X); 0, =«G,G, ®

where filX,1) represents the PD, K, (=x,), K, (=-
ax,-bx,-cx,’+x;), K; (=x,) and K, (=-w’x;) are
the 4 entries in the drift vector K, and Q,, (=«)
is the only non-zero entry in the 4 X4 diffusion
matrix Q. Note that periodicity in state
variables x; and x, is implied by equation (4),
thus the PD is periodic in time with period 27/w
(thus non-stationary) according to Floquet
theorem (Stratonovich, 1967).

PATH INTEGRAL SOLUTION

The path integral solution for solving the
response of nonlinear stochastic system has been
shown to be systematic and computationally
efficient (Naess and Johnsen, 1992). In this
section, the solution incorporating the time-
explicit periodic excitation is derived in detail.

Short-Time Propagator

A short-time transition from time ¢ to t+7 can
be described by a short-time propagator. The
short-time transition can be obtained analytically
using a first order approximation to equation (7)
fX,t+7) =(1 + 7L+ O(?) fX,1) (10)
thus the probability density at the N* step is
represented by
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SX,t,+Nr) =(1 + L) f(X,, 1,)

an
=exp|(NDL] f(X,,1,)

The convergence of equation (11) has been
demonstrated by Wissel (1979), and the short-
time propagator (Green’s function) is given by

P (X'|X)=[1+7L+O0(]6 (X' -X)
62 X’ -

3x,x, (12)
-X1}
where subscripts » and p denote the

differentiations with respect to x, and x,
(v,u=1,2). A coordinate transformation (U=X"-
X; V=V(X'X)) is introduced to manage the
Dirac delta functions, and the short-time
propagator can be converted into a Fourier
representation

dQ
P, (U= Q
AU = [ S el a3)
XPI,‘I(Q’V)
where
P (@, V)= [ exp(-iQ) U)P (U,ndu
kM, Tomw, T &
17K, _Q 26x6x T ax. o (14)
Q T—a—;K

By adopting the approximation described in
equation (11), equation (14) becomes

3
P' e(’nv)~exp{'ia %m B a
x"

+7K -U] +TK(")+_Q‘"“’

Q(M)
15)

Inserting equation (15) into equation (13) and
integrating over { with the help of quadratic
completion (Wissel, 1979), the short-time
propagator is then given by
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_n 1
P, (X'|X)=(Q277) 2Q 7exp{ -Z10R

/ /
. -x
+K I Ceh s B
T
+ TK,(')+_2_ ";“)}
Thus, the general expression of short-time

propagator is in a form of multi-variate Gaussian
distribution. However, as implied by equation
(6), the only source of randomness, (,,, appears
in the second expression. Thus, for equation
(3), the multi-variate Gaussian form for the
short-time  propagator in equation (16)
degenerates to a product of one-dimensional
Gaussian distribution and Dirac delta functions
which denote the statistical dependency between
x; and X,, and x; and x,:

P, (X'|X) =/277Q,, exp{-j(—ax
22

-bx, = cx; +x, - % _xz)z}
x| -x x4 =X a7
8, - ——) 80k + =)
o(x, - i xs)
Numerical Procedure
Using a multi-dimensional histogram

representation for the probability density, the
path sum (equation (10)) can be implemented
numerically. The probability domain at time 7 is
discretized into a finite number of elements
represented by function

N
PX,1)= E 1r(x x1,)7r(x2 x2j) (18)
ij.k,i=1
wx,—x,) 7(x,-x, ) f(X, 0)
where
m(x,—x,,) =1 for xN—% =xy
19)

NS .
S.XN(J)+ 5 5

with N=1,234; J=ijk,l

0 otherwise




Thus, the short-time propagator is also
discretized into a short-time transition tensor
Tt mne(T) - Subscripts i,j,k,l and m,n,0,p
represent the signatures of the elements of the 4-
D probability domain at the pre- and post-state,
respectively. Note again that the last two Dirac
delta functions of the short-time propagator
(equation (17)) implies that state variables x; and
x, are statistically independent of the
randomness, denoted by Q,,. The independence
can be used to reduce the dimension of the
transition tensor from 4x4 to 2X2 (Tj;4(7).
Subscripts i,j and k,/ of the dimension-reduced
transition tensor (7}, ;) represent the signatures of
the elements of the pre- and post- x;,-x,
probability domains, respectively. The
corresponding dimension-reduced short-time
propagator is given by

P (X'|X)=y271Q,, exp{—%(-axz

x; —xz)z} 20)

T

3
-bx, —cx; +x; -

/
Xy -

x
1
)
T

o(x, -

and the relationship between state variables x;
and x, can be expressed explicitly as
/
X3 = X, +7TX,
3 4 (21)

/ 2
Xy = X, -wTX,

Thus a short-time propagation for each element
at the pre-state can be numerically implemented
by determining the associated most probable
position in the phase space and, with which as
the mean, the random response following a
Gaussian distribution. The most probable phase
position after a short-time propagation for each
element is deterministically computed from the
drift coefficients, and the random response is
Gaussian distributed and outstretched in x,
direction. Thus the PD at time r+7 can be
obtained by summing all the probability mass
propagated from time ¢ (and normalizing
afterward):

P,(t+7) =T, (1) Py (1) @2)

where repeat indices indicate summation, and the
transition tensor is given by
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The PD at the desired time can be obtained by
applying the short-time transition in equation
(22) iteratively. Note that, because of the
smooth nature of the PD for purely random
response, a B-spline smoothing technique was
applied by Johnsen and Naess (1991) to save
computational time. However, due to the fact
that the marginal PD of a chaotic response is
governed by a jagged curve (Kapitaniak, 1988),
to preserve the fractal nature of the chaotic
response, no smoothing techniques are employed
in this study.

To obtain accurate numerical results, the grid
size of the discretized probability domain has to
be sufficient small. On the other hand, the
computational time will increase geometrically
with the number of elements. To improve
numerical accuracy and reduce computational
efforts, the concept of moving boundary is
employed. For the numerical results presented
in this study, the initial conditions are assumed
deterministic. = They are represented by a
product of two Dirac delta functions

P(X,t)) = 8(x, ~X,4)8(x, ~X,0) (24)

which resembles a dot with virtually zero area in
the phase space (see Fig. la). Thus the
probability domain (pre-state) is set just large
enough to enclose this dot, and the domain (post-
state) after a short-time propagation is pre-set by
the spreading behavior indicated by Q,, in
equation (20). With the adjustment of the
boundary for the probability domain, the
numerical procedure for the path integral
solution is computationally efficient.



Error Reduction

Discretization-induced errors in the numerical
procedure are closely related to the size of time
segment and the grid size of probability
domains, and they can be minimized by
normalizing both the short-time propagator and
the PD at each time step:

1 \ 1
,Z 'iTij(T)(A}(i +AX, ) = i(AXj +AX, )

o 25)

TNIIBW_‘>

XA (AX,7); Ty
J

and

Y P(X,0)AX, = 1 + e(AX,,7)

' 26)
1
1+e(AX,7)
where subscripts i,j indicate the pre- and post-

state, respectively.

= P(X,t) = P(X,1)

RESPONSE DENSITY EVOLUTION

Evolution of the PD can be illustrated by
sampling the density recurrently. The slightly
disturbed chaotic system is excited with
deterministic initial condition at (0,0) (Fig. la).
The PD starts spreading and tends to cover the
chaotic domain after two cycles of the forcing
period (Fig. 1b). The PD becomes invariant
with time after about 20 cycles (Fig. Ic), and
the chaotic attractor is clearly portrayed.

COEXISTING ATTRACTORS

The PD describes the global behavior of the
system, hence coexisting response attractors and
their relative strengths can be demonstrated by
the steady-state PD. As shown in Fig. 2b, the
PD is considerably concentrated in the periodic
domain. Thus, the periodic attractor is relatively
stronger compared to the chaotic attractor.

INVARIANT MEASURE

Periodicity in the PD can be removed by time
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Fig. 1 Evolution of probability density

averaging to form a time-averaged density. This
density can serve as an invariant measure for
both deterministic and noisy chaos (Jung and
Hinggi, 1990)

!

n

P (x,x, =tl 1P(x1,x2,t)dt 27



where 1,2 0. The invariant measure on x; can
be defined similarly as

-4

Pav(xl) = [ Pav(xl"xZ)dXZ

“oo

(28

The accuracy of this measure is calibrated by
analytical solutions to purely random responses
(no periodic excitation component) (Johnsen and
Naess, 1991). Thus, the time-average PD is
then used as an invariant measure for the chaotic
response to estimate the probability of large
excursions (extreme behavior).

EXTREME ESTIMATES

The presence of random noise causes smoothness
and out-stretched tails in PD, which imply that,
although at low probability level, large excursion
could occur in the response. As stated, the
time-average PD is used as a measure for
extreme estimates.

By employing Rice’s formula (Spanos and
Roberts, 1990) the mean up-crossing frequency
can be evaluated:

prx, =x,) = 1x2Pav(x X)dx, 29
Adopting the assumption of statistically
independent up-crossings (which leads to Poisson
distributed crossing events), the asymptotic
approximation of probability for x, exceeding
displacement x; during time z, is given by:

Px,,t)=1-exp[-p*(x,)1,] (30)

Figure 3a shows the time-averaged PD for the
noisy chaotic attractors with noise intensity at
0.02 (dashed line) and 0.07 (solid line). The
corresponding probability of large excursions (z,
= 10) is shown in Fig. 3b. With this measure,
the design incorporating extreme excursion
induced failure in a noisy chaotic system may be
derived. Figures 3a and b demonstrate that the
probability of large excursions is increased as
the noise intensity increases.

CONCLUDING REMARKS

A stochastic nonlinear system may exhibit noisy
chaotic response.  The evolution of the
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probability density (PD) of the response is
governed by the Fokker-Planck equation (FPE).
The path integral algorithm is used in this study
to numerically solve the FPE. This numerical
procedure is systematic and computationally
efficient. The resulting steady-state PD can
portray the (co-) existing response attractors, and
govern their relative strengths. Using the time-
averaged PD as an invariant measure, the
probability of large excursions for a noisy
chaotic system is estimated. Numerical results
show that the probability of large excursions is
increased as the noise intensity increases.
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