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Seismic response of rotating machines—structure—-RFBI systems
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SUMMARY

The seismic response of a critical rotating machine either rigidly attached to a floor or independently
isolated housed within an initially aseismically designed or uncontrolled structure are investigated. A par-
ticular isolation system, the Resilient-Friction Base Isolator (RFBI), is employed. Finite element formula-
tions of a rotor-disk-bearing model on a rigid base are developed. The equations of motion for the combined
rotating machine-structure-RFBI systems are presented. Parametric studies are performed to investigate
the effects of variations in system physical properties including friction coefficient, mass ratio, shaft
flexibility, bearing rigidity, bearing damping and speed of rotation on the response of rotating machines for
the combined rotating machine-structure-isolator systems. Comparative studies in the peak response of the
rotating machine supported on various isolation systems and the corresponding fixed base system are
carried out. The study indicates that the Resilient-Friction Base Isolator can significantly reduce the seismic

response of rotating components to potentially damaging ground excitations. Copyright © 2000 John Wiley
& Sons, Ltd.
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INTRODUCTION

In aseismic design, it is necessary to protect not only the primary structure but also its internal
components in the event of severe ground motions. Such non-structural components may serve
a critical function, and often are more costly and valuable than the structures themselves.
Rotating machines are among the vital internal components of many modern structures. Com-
pressors in ventilation and cooling systems, pumps in power generation facilities, as well as
high-speed computers are but a few examples of rotating machinery that must remain functional
during and after a severe earthquake.
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Conventional techniques for designing structures to withstand strong earthquakes can lead to
higher floor accelerations in stiff buildings and larger interstorey drifts in flexible structures.
These two factors have caused difficulties in insuring the functionality of the building components
and equipment. Recent earthquakes have demonstrated that a structure designed in these ways
may perform well during a strong earthquake yet still become non-functional due to damages to
the critical internal components. For example, in the telephone exchange company in the Sylmar
area of California the entire stock of internal rotating equipment was destroyed during the 1971
San Fernando earthquake, but the damage to the building was minor. Another example is the
evacuation of several hospitals during the recent Northridge earthquake in the Los Angeles, CA,
area which were not caused by structural failure but resulted from the failure of the rotating
components described above [1]. Another difficult issue to address from a conventional design
viewpoint is that of reducing the internal component and building-content damages. This is very
often neglected, and when addressed, can be very expensive to incorporate in conventional design.

An alternative design strategy, aseismic base isolation, is to separate a building from the
damaging horizontal components of an earthquake by a base isolation device which prevents or
reduces the transmission of horizontal acceleration into the primary structures and their internal
components. This new design methodology significantly reduces both floor acceleration and
interstorey drift and thus provides a viable economic solution to reducing internal component
earthquake damage.

A rotating machine is an inherently very complex system and its analysis for seismic response is
equally complex. The complexity of the system is due to the presence of gyroscopic terms and
other effects including non-uniform shaft with shear deformation effects. Based on past studies, it
is crucial to include the gyroscopic term as it significantly affects the response behaviour [2-6].
Furthermore, the interaction of the machine with its bearing is a complex phenomenon to model
for analysis purpose. A general and complex model for rotor-bearing system was considered by
Srinivasan and Soni [2, 3]. This analytical model was perhaps the most complete inasmuch as
they have included the effects of rotatory inertia, shear deformation, rotor-bearing interaction
and the most general description of the base motion input with three translational and three
rotational components. Gyroscopic effects and parametric terms caused by the rotation of the
base were also included in the formulation. A finite element formulation of the shaft with linear
interpolation functions was developed to analyse the response of the rotor. Suarez et al. [4]
extended the work of Srinivasan and Soni by using non-linear interpolation functions to predict
some important dynamic characteristics including instability of the rotating system beyond
a certain rotational speed. Suarez et al. [4] also showed that several velocity-dependent forcing
function terms were neglected in the equations of motion developed by Srinivasan and Soni.
Numerical studies conducted by Su [5, 6] and Hernried [6] indicated that the effects of the
non-linear parametric terms, which arise due to the rotation of the base, and the non-linear
forcing function terms, which appear as the product of input velocities in the equations of motion
are insignificant. Su [5] and Su and Hernried [6] also developed the coupled, linear partial
differential equations of motion for a uniform symmetric rotating shaft to determine the natural
frequency and critical rotating speed analytically. They presented a concise finite element
formulation based on a more generalized rotating modal analysis approach. Su [5] also suggested
a simple and accurate formulation to modify the stiffness matrix of the rotating system using the
method of superposition to include shear-deformation effects.

Seismic base isolation is increasingly being utilized as a practical and economical means to
protect the primary structures and their internal components [7-20]. A number of seismic base
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isolation mechanisms have been described in an extensive review by Kelly [7, 8]. These devices
generally fall into two broad categories: the laminated rubber bearing systems and the frictional
types. In this study, attention is focused on a particular frictional isolation system, the Resilient-
Friction Base Isolation (RFBI) [9-17]. This isolation system, originally purposed by Mostaghel
in the early 1980s, is composed of layers of Teflon coated stainless steel plates, a central rubber
core and cover plates. For low level excitations the interfacial friction force serves as a structural
fuse, while for moderate to severe earthquakes the Teflon-steel layers dissipate energy and limit
the force transmitted to the superstructure. The rubber provides a restoring force for the system
to limit the relative displacement. Preliminary laboratory tests [18, 19] of the RFBI system
together with computer experiments and analytical results have been implemented at University
of California, Berkeley. A number of the RFBI systems have been extensively tested and
employed to protect building, nuclear power plant and bridges against strong earthquakes in
Europe, Japan, New Zealand and United States.

Recent studies [21, 22] have shown that the RFBI is effective in reducing seismic response in
lightweight lump-mass internal components from the corresponding fixed-base case. However,
systems containing rotating machines in general cannot be accurately modelled using lump-mass
representation due to coupled interaction between the rotating machine, the structure and the
base isolator. In this study, the seismic response behaviour of rotating machines supported under
various isolated configurations (rotor-structure-RFBI, rotor-RFBI-structure and rotor-
RFBI-structure-RFBI) and the corresponding fixed-base ones (rotor-structure) is examined
using finite-element modelling of the rotating machines. Sensitivity studies of the peak response of
rotating machine to variations in friction coefficient, mass ratio, as well as shaft flexibility, bearing
rigidity, bearing damping and speed of rotation are investigated. Of particular interest is whether
an isolated structure using the RFBI system would protect critical rotating machines housed
within. Should this be the case, then additional aseismic protection for critical rotating machines
located in a base-isolated structure may not be necessary.

FINITE ELEMENT FORMULATION OF FLEXIBLE ROTATING MACHINE ON
A RIGID BASE

The rotating machine to be considered is the rotor-disk-bearing model of Suarez et al. [4]. Finite
element equations of motion for the flexible rotating shaft located on the rigid base can be derived
using energy methods. The shaft is model as a Bernoulli-Euler beam with a circular cross-section
which may vary along the length. It is assumed that the shaft is axially inextensible and shear
deformation is negligible. The shaft is spinning with a constant angular velocity about the axial
direction. In this study, the non-linear parametric terms in the equations of motion, developed by
Suarez et al. [4] are neglected, but the gyroscopic term is retained.

To obtain the system equations of motion for the rotating machine, the finite element equations
of motion for the flexible shaft, rigid disk and bearing system must be developed. In the following
sections, finite element formulations for flexible rotating machines on a rigid base will be presented.

Flexible rotating shaft

The schematic of a rotating shaft mounted on the rigid base is shown in Figure 1. Consider
a typical finite element of the flexible rotating shaft of length I The vectors of displacements
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Figure 1. Rotor-bearing system showing nodal co-ordinates and system axes.

and rotations for a typical element and uw® and ¢°. In the finite-element formulation,

these variables can be expressed in terms of the nodal displacements through interpolation
functions as

u* = [u(s), uj(s), 01" = N¢°
¢° = [63(s), 63(s), 0]" = N'¢® 1)
where q° is a vector of nodal displacements; s is a local co-ordinate measured along the length of

a finite element; N is the matrix of interpolation functions; N’ is the first derivation of N with
respect to s.

By direct application of the energy method (Lagrange formulation), the finite-element equa-
tions of motion for the flexible rotating shaft can be obtained as

M§® + Cq° + Kiq® = £7(%,(0), 7(1) @

where the element mass, damping, stiffness and applied force matrices are defined by

1 1
M¢ = J pANTNds + J pI,N'TN'ds (3a)
0 0
!
Ce = Qf I,N'"(e e} —e,e])N'ds ‘ (3b)
0
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]
K; = J EILLN"TN"ds (3¢)
0
1
fﬂawg=—[JpANwﬂ%m (3d)
0
The operational vectors e; and e, are defined as
1 0
€ = 0 , €3 = 1
0 0

and p = mass density; A = cross-sectional area; I, and I, = moments of inertia of shaft about the
transverse and normal axes, respectively; Q = constant speed of rotation; E = Young’s modulus;
X, and j, are horizontal and vertical components of the ground excitation, respectively; and
a,(t) = [X,, Jg, 0]". Note the presence of the gyroscopic term of the flexible rotating shaft (the
second term in Equation (3a)).

To satisfy continuity requirements, the interpolation functions in the above equations must be
assumed continuous in displacement and slope on the element boundaries. i.e. C’ continuity. Thus
appropriate nodal quantities are displacements and rotations at each end of the element. The
cubic beam (Hermite) polynomials satisfy C’' continuity and are an appropriate one for the
interpolation function N. The matrix of the cubic interpolation function N is given by

ny 0 Ny 0 ni 0 Ny 0
N=|0 n, 0 n, 0 ny; 0 ny (4)
O 0 0 0 0 0 0 O

where
352 2s 352 283
mEl=E A BEE T
()
252 §3 s §?
Ny =5 —

TrtE mMTETT

Each element has two nodes, one at each end of the element. As shown in Figure 2, there are
four degrees of freedom at each node, two transitional degrees of freedom (u7, ) and two
rotational degrees of freedom (6%, 65) in the x- and y-directions. Therefore, q° in Equation (2) is
a 8§ x 1 vector of nodal displacements and rotations given by

e e T
qe = [uily ufrla 0?:19 9515 ugZ? u;Z: 0x2’ 0y2] (6)

where the second subscripts 1 and 2 on the nodal displacement variable pertain to the left and
right ends of the elements, respectively.

Rigid disk

The rotating machine considered may contain several rigid disks along the shaft. To include the
effects of these disks on the response of the flexible shaft, they can be modelled as thin rigid disks
with concentrated mass attached at the finite-element nodes.
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Figure 2. Schematic diagrams of the combined rotor-structure-RFBI systems.

The displacements and rotations at an arbitrary point in a typical element of the shaft are given
in Equation (1). Without loss of generality, assume a rigid disk is attached at the left end (s = 0
location) of a typical element. Since the disk is attached to only one end of the element, the
quantities of Equation (6) can be rewritten as

ug =u’(s = 0) = Aqg (M
where
1 00
A=|0 1 0}, qi=[(u,u,0,,6]" (8)
0 00

The internal bending strain energy associated with the rigid disk is zero. Neglecting the
potential energy term in the Lagrange formulation, the equations of motion for a rigid disk can be
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obtained directly in a manner similar to those for the flexible shaft, resulting in

ad° + C3q° + Kaq® = £3(%,, J,) &)
In the above equation, the mass, damping, stiffness and applied force matrices are
§=mgAT + A + LATA’ (10a)
C = QI,A[e e} —e,el]A (10b)
Ki=0 (10c)
f5(%g, V) = — maATa (1) (10d)

where my is the mass of disk; I, and I, are the mass moments of inertia of disk about transverse
and normal axes, respectively. Note the presence of the gyroscopic term of the rigid disk (the
second term in Equation (10a)).

Journal-fluid-bearing system

The bearing system provides stiffness as well as desirable damping for the rotating machine. The
stiffness and damping properties of the bearing directly affect the critical speeds and the stability
of the rotor. Fluid-film bearings are generally modelled by two orthogonal (linear elastic and
damping) forces. These forces depend on the displacements and velocities at the bearing location,
respectively [23]. The damping forces in the transverse directions are coupled and the elements of
the damping matrix are symmetric; while the elastic forces in the transverse directions are coupled
but the elements of the stiffness matrix are asymmetric. Several references in the literature
[23-27] provide methods to obtain the coefficients of the damping and stiffness matrices. These
coeflicients depend upon the type of bearing, its physical dimension, the viscosity of the fluid and
the rotating speed of the rotor. In this study, the stiffness and damping characteristics of the
bearing with L/D = 1 are provided by Earles and Palazzolo [24].

Ch = Wcyj/h, K% = Wki;/h (11)

where W, h, D and L are the weight on bearing, radial clearance, journal diameter and bearing

length, respectively; the subscripts i and j correspond to directions x and y, respectively; k;; and ¢;;
are

kyw = 1512 — 32185, + 0.8895%, k,, = — 0.73 + 182175, + 1.67s2

(12a)
ky. = —2.677 — 8.675s; — 3.658s7, k,, = 3.61 + 15.962s; + 5.87s;
and
Cxx = 0.822 + 13.051s, — 0.528s%, ¢y, = — 2.764 + 23.949s, — 1.755s% (12b)
Gy = — 2.764 + 239495, — 1.755s7, ¢,y = 4.31 + 43.087s, + 6.18s7
where s; is the Summerfield number defined as
pQDL [ R\?
Sy = 7 <Z (120)
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where p and R are lubricant viscosity and journal radius, respectively. Therefore, the fluid-film
reaction force, damping and stiffness matrices of the bearing, corresponding to the displacement
and velocity vectors of a node, can be expressed in the following form:

kxx kxy 0 cxx ny 0
Ki=|ky k, O|; Ci=|cn ¢, O (13)
0 0 0 0 0 0

System equations of motion

In order to obtain the system equations of motion, a direct stiffness method to assemble the
element mass, damping, stiffness and applied forces matrices will be used. The system matrices are
constructed simply by adding terms from the individual element matrices into their correspond-

ing locations in the global matrices. The system mass, damping, stiffness and applied force
matrices are

MR=M:+M CR=C:+C5+CE

(14)
K* =K+ K§ + K, fR() =1R() + £5(0)
and the generalized coordinates q for the system are
q = (U1, Uy1, Os1, Oy, - Unan— 1) Uyan—1)> Oxaga— 1), 0y4(n—1)]T (15)

where n is the total number of nodes in the system

EQUATIONS OF MOTION OF COMBINED ROTATING
MACHINE-STRUCTURE-ISOLATOR SYSTEMS

In this section, the governing equations of motion for the rotating machine either rigidly attached
to a floor level or independently isolated within an aseismically designed or uncontrolled
structure are presented. To determine the efficiency and economy of the isolated systems in
protecting the internal rotating components, four combined rotating machine—structure-isolator
models are examined. The schematic diagrams of these models are shown in Figure 2 and
discussed below. A flexible rotating machine is assumed to be:

(1) rigidly attached to a floor level in a non-isolated multistorey building (rotor-structure),

(2) rigidly attached to a floor level in a base-isolated multistorey building (rotor-struc-
ture-RFBI),

(3) supported on isolators which are rigidly attached to a floor level in a non-isolated
multistorey building (rotor-RFBI-structure), and

(4) supported on isolators which are rigidly attached to a floor level in a base-isolated
multistorey building (rotor-RFBI-structure-~RFBI).

By applying Newton’s Law, the governing equations of motion for a flexible rotating machine
supported on a RFBI system which are rigidly attached to a floor level in a base isolated
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multistorey building (rotor-RFBI-structure- RFBI) are governed by

n—-2 n
Sk + 2E R WprSR + WPRSR = — (Xg + 8 + iiy) — g sgn(S'R)<g + Y + Z Z ﬂﬁ%)

i=4k—-2 j=1

n—3 n
- X X vl (16a)
i=4k—3 j=1
n—2 n
:§s + 261,5601,55.5 + (l)kz,sSS = - -*g — Hs sgn(ss)<g + ..).’g + Z z BS‘L)
i=4k—-2 j=1
n—3 n p
- Y Y vNa - Y ot — oliiy + ) (16b)
i=4k-3 j=1 i=1

n—3 n
Msi + SiNCsl.l + EiNKsu = — Msr(iég + Ss) — 6iNMsl'<ll/§R Z Z )’,f}ql> (160)

i=ak~3j=1
MRq + CRq + qu = - fR(jég’ .Y)ga §R’ gs, uN) (16d)
where the functions ¢;y and d;y are defined as
1 (i #N), .
el o e
W (i=N), =

mg + Mg + my

The symbols sg and s, are the relative sliding displacements of the rotating system base mat relative
to the floor level and building base mat relative to the ground, respectively; g is the gravitational
acceleration; r is a unit vector; u is the relative displacement vector between a floor level and the
building base mat; ug and p, are the friction coefficients of the isolators of the rotating machine and
building, respectively. The mass, damping and stiffness matrices of the rotating machine are
expressed as MR, C® and K®, respectively, while the mass, damping and stiffness matrices of the
multistorey building are M®, C* and K, respectively. The applied forcing function f® is slightly
modified, because the element vector of transitional base acceleration a,(t) in Equations (3d) and
(10d) is replaced by [(%g + Sg + 3 + iin), Vg, 0]". The subscript k and the upper limit of the
summation n are the total number of nodes and the total degrees of freedom of the rotating shaft.
The subscript N and the upper limit of the summation p indicate the specified floor of the
multistorey building where the rotating machine is located, and the total number of floors in the
multistorey building, respectively. According to the definition of the generalized coordinates q in
Equation (15), the mass of the kth rotating shaft element corresponding to coordinate x- and
y-directions due to acceleration of co-ordinate j can be expressed as mﬁ;k_w and m}lk_z) js
respectively. The coefficients y§;, £3;, of, o, ¥ are the sign functions sgn(sg), sgn(s,) are defined as

P
M, = mg + myg + My + Zmi
i=1

R R R
s Mak-3) 5 Mak-3)) s _ Mak-2); 17)
Y M, 7 mg mgg +my Y M,
R
0= O__mR+mbR W= My - 3)j
! Mt’ Ml ’ mg + Mpr + My
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and
+1 $g >0
R ..
sgn() = { _ Set ¥ty + OFRSR + Y ak—atj=1Yid; S = §e = 0 (18a)
HR(G + Ve + X024, i= 1,311‘11)
-1 Sg <0
+1 S >0
sgn(s’s) — xg + wbss + 21 4k—3 ;' 1??1211 + Zf:l ‘xiﬁi + O'(ilN + sR)

Hs(g + Vg + X de—2 Xi=1 Biid))
—1 S <0

where myg, myg, my, and m; are the masses of the rotating machine, rotating-system base mat,
building base mat and the mass of ith floor, respectively. The natural circular frequencies of the
rotating system base and building base, and their effective damping ratios are defined as

Cor 2 kwr Cps 2 ks
———, O =, 250 =, W= (19)
Mg + Mg mg + Mpr M, M,

28R Wor =
where ¢y, Cps, kug and ky, are the damping and the horizontal stiffness coefficients of the isolators
of the rotating machine and multistorey building, respectively.

Deformations of the structure and the rotating machine are governed by Equations (16c) and
(16d), respectively. These equations are coupled with Equations (16a) and (16b) through the
inertial forces. Equation (16a) governs both the sliding and non-sliding phases of the RFBI of the
rotating system. A similar criterion of transition has been described earlier. The non-sliding phase
of the rotating system continues as long as

n—3 n—2
X+ 5+ iy + sk + Z Z y,,q, < ug<g + P + Z Z ﬂ,,q,) (20a)
i=4k—-3 j=1 i=4k—-2 j=1
As soon as the condition,
n—3 n
Xg + 5 +ily + ofrse + Y, Y Vil ug<g + g + Z Z ﬂ.,%) (20b)
i=4k-3 j=1 i=4k-2 j=1

is satisfied, sliding motion of the rotating system starts and the direction of sliding is given by
Equation (19a) with sg = §g = 0. When the rotating machine is not sliding, 5g = $g =0, the
motion is governed by Equations (16b)-(16d) with 5z = §g = sg = 0, which is the case rotor-
structure-RFBI.

Similarly, Equation (16b) governs both the sliding and non-sliding phases of the building. The
non-sliding phase of the building continues as long as

n—3

Xg + WpsSe + Y, Z Vijd; + Z a;it; + o(ity + 5r)
i=4k—-3 j=1 i=1

n—2
<un<g+y + ) Z ﬁuq,> (21a)

i=4k—2 j=1
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As soon as the condition,

n—3 n

14
Xe+ 0kss+ Y Y yid;+ Y il + oy + Sr)
i=1

i=4k—-3j=1 i

n—2 n
—u(o+r S5 ) e
i=ak-2 j=1

is satisfied, sliding motion of the building starts and the direction of sliding is given by
Equation (18b) with s, =3, =0. When the structural system is not sliding, §, = $; =0, the
motion is governed by Equations (16a), (16c) and (16d) with §, =0, which is the case of
rotor-RFBI-structure.

When the rotating machine and the structural system both are not sliding, i.e., g = sg = 0 and
8, = $; = 0, the motion is governed by Equations (16¢) and (16d) with §, = 0 and $g = $g = sg = 0,
which is the case of the rotor-structure.

PARAMETRIC STUDY

As an example of the seismic analysis of the machine, structure and RFBI system, a stable
rotating machine is shown in Figure 3. The physical properties of this model are provided in
Table 1. The rotor is modelled using 14 infinite elements with a total of 60 degrees of freedom. The
bearing system has stiffness and damping coefficients given by Lund and Tomsen [26] for
elliptical bearings with L/D = 1. A simple linear three-storey building with identical mass,
column damping and column stiffness at various storeys is employed as the structural model. The
schematic diagrams of the combined rotating machine-structure-isolator systems are shown in
Figure 2.

584m

0519m 0428 m 0428 m 0519m

0260 m 0260 m

I |

—

0229 m
0.394m
0.532m
M

1973 m 1973 m

7777, 777777

Bearing 1 Bearing 2
Figure 3. Schematic of a rotor-disk-bearing model on rigid base considered for seismic study.
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Table I. Physical and mechanical properties of the rotating machine.

Shaft Rotor disk

Modulus of elasticity, E = 2.078 x 10'! N/m? Disk mass myq = 5670 kg

Mass density, p = 7806 kg/m? Transverse moment of inertia, I, = 3550 kg m?
Poisson’s ratio, v = 0.3 Polar moment of inertia, I, = 7100 kgm®

Revolutions per minute, Q = 880 rpm

Bearing system

Viscosity u = 0.14839 N's/m? Clearance, C = 3.8x 1074
Diameter of journal, D = 0.229 m Weight on bearing W = 67120 N
Length of journal, L = 0.229 m L/D ratio = 1.0

In order to predict the absolute maximum response of the rotating machine in the combined
rotating machine-structure-isolator systems, the rotating machine is assumed to be located at
the top floor of the structure. The response of the rigid disk corresponding to the sliding direction
is calculated to represent the response of the complete rotating system. The first 20 s of the N-S
and the vertical components of the El Centro 1940 earthquake are used simultaneously as the
ground-excitation input in the sensitivity study presented below.

A numerical step-by-step time integration scheme, the Newmark-f [28] method, is employed
in this parametric study. The response of the RFBI system is found to be sensitive to the times of
transition between the sliding and non-sliding phases. Precise evaluation of the time of phase
transitions is crucial to accurate prediction of the response. To assure convergence of the
predictions, a time step of At = 2 x 107 *s is used during the continuous phases of motion away
from the phase transitions; and At = 2 x 107> s is employed near the times of phase transition
and the times when sliding changes direction [9]. In the computations, sliding velocities of the
RFBI system less than 0.01 mm/s are assumed to be zero. Based on the numerical study
conducted here, using these time steps and transition criterion is sufficient to achieve convergence
in the prediction of the non-linear dynamic response.

In the subsequent analysis, the rotating machine is operated at a constant angular velocity of
880 rpm. The structural period T, is varied between 0.1 and 2.0 s to cover the range of stiff to
flexible structures. The recommended natural period T, of 4.0 s is used for the RFBI system. The
damping ratios of the structure, &, and the base for the rotating machine and structure Eyg, &ps
are 0.04, 0.08 and 0.08, respectively. The mass ratios of the rotating-machine mat, floor and
structural mat to the rotating machine, myg/mg, m;/mg, my/mg, of 1, 2 and 3 are specified,
respectively. Unless stated otherwise these values are employed throughout the parametric study.

Effects of varying friction coefficient

The effect of variations in the friction coefficient of the various base-isolated systems on the peak
absolute disk acceleration response (X, + it3 + § + 5, + 5g)Jmax and the peak sliding displacement
of the machine base mat (sg)max are investigated. The peak acceleration and peak sliding
displacement responses with respect to the friction coefficient are plotted against the structural
period T, and shown in Figures 4 and 5, respectively. Corresponding responses of the fixed-base

systems are also plotted in the figures for comparison. A range of friction coefficients y; and pg,
from 0.01 to 0.2 is used.
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Figures 4(a)-(c) show that the level of peak disk acceleration responses of the combined
rotor-structure-RFBI systems (rotor-structure-RFBI, rotor-RFBI-structure and rotor-
RFBI-structure-RFBI) are, in general, considerably lower than those of the corresponding
fixed-base ones. The smaller the friction coefficient, the great the reduction in the disk responses.

1.6

(a) Rotor-Structure-RFBI

Peak absolute disk acceleration (g)

0 02 0.4 0.6 08 1 12 14 1.6 18 2
Structural period T, (sec)

(b) Rotor-RFBI-Structure

Peak absolute disk acceleration (g)

0 02 04 06 08 1 - 12 14 16 1.8 2
Structural period T, (sec)

Figure 4. Effect of friction coefficient on disk acceleration response.
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Figure 4. Continued.

In addition, the spectral response of the base-isolated systems appears to be almost independent
of the frequency of excitation, especially for the smaller friction coefficients of the RFBI system.
The response spectra of the fixed-base cases contain several dominate peaks that indicate
significant energy transmitted into the rotating machine at these particular frequencies. When the
dominant frequencies of the rotating machine are tuned to the structural natural frequency, large
amplification in the disk response occurs due to the resonant effect. In the large amplitude region
(tuning region), the various isolated systems, especially the rotor—-RFBI-structure system, are
extremely effective in reducing the response of the rotating machine when the systems are
subjected to strong ground motions such as the El Centro record. In the higher structural period
region (T; > 1.0 s), there is relatively little change in the response of the rotating machine in the
isolated systems as compared to the fixed-base case.

From Figure 4, it is observed that there are several exceptions where the disk acceleration
responses in the isolated systems exceed those in their corresponding fixed-base ones, especially in
the relatively large friction coefficient case. These occur at g = 0.20 and T, = 0.45-0.55,0.8-1.2 s;
p#g = 0.15 and T; = 0.6, 1.0-1.3 s for the rotor-RFBI-structure model. Similar exceptions occur
at ug = ps = 0.20 and 0.15 for the rotor—-RFBI-structure-RFBI models. This is due to the
non-linear stick-slip and slip-reversal transitions (i.e., stick-slip friction action) of the RFBI
system imparting significant energy into the rotating machine. In addition, the interaction
between the rotating machine and its isolator contributes significantly to the amplifications in the
disk response if the masses of the rotating machine and its base are relatively large. However,
amplifications in these particular ranges could be reduced as the friction coefficient is decreased,
but it should be chosen such that it could prevent any sliding under low level excitations.
Furthermore, the rotor-RFBI-structure-RFBI system has better performance in reducing the
peak disk response than the others in the high amplification period range (T, < 0.5 s).
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Figure 5. Effect of friction coefficient on sliding displacement response of rotating system.

Figures 5(a) and (b) show the peak sliding displacement response spectra of the rotating
machine for the rotor-RFBI-structure and rotor-RFBI-structure-RFBI models, respectively.
For the spectra of the rotor—-RFBI-structure model, in general, the maximum response of the
sliding displacement of the rotating machine decreases with increasing friction coefficient. This
observation is consistent with that of a multistorey building supported on an RFBI subjected to
harmonic excitation as reported by Mostaghel et al. [29]. This is due to the fact that the input
motion at the support of the RFBI of the rotating machine resembles that of a harmonic
excitation because the structure serves as a narrow-band linear filter to the random earthquake
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excitations. However, for the peak sliding displacement response of the rotating machine of the
rotor-RFBI-structure-RFBI model, the maximum response appears to vary randomly, i.e. no
systematic trend can be observed. This high degree of randomness may be caused by the
non-linear stick-slip friction action, which has significant energy at the high frequency range,
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Figure 6. Effect of mass ratio on disk acceleration response.
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Figure 6. Continued.

for the structural base isolator. In addition, the sliding displacement, which may result in
a permanent offset between the sliding parts after an earthquake, is a possible major disadvantage
for the most frictional type base isolation. However, it can be observed that the sliding displace-
ments are insignificant and may be neglected in most instances.

Effects of varying mass ratio

The effect of variations in the structure/rotating machine mass ratio ((mys + Y.;m;)/mg)) on the
peak disk acceleration response for the combined rotating machine-structure-RFBI systems is
shown in Figures 6(a)-(c). In each figure, the rotating machine/structure mass ratio varies
between 5 and 200 to cover relatively light and heavy weights of the machine. The mass ratio of
the machine base mat and the rotating machine (myg/mg), and the mass ratio of the floor and
building base mat (m;/my,) are both specified to be unity. These natural periods of the structure,
0.2, 1.0 and 2.0 s, are employed to cover the range of stiff and flexible structures. In addition, two
friction coefficients, 0.20 and 0.01, are considered in this study.

Based on an extensive numerical study, in general, there are no noticeable changes in the
peak disk response of various isolated systems as the mass ratios vary, except for a few cases of
the rotor-RFBI-structure and the rotor-RFBI-structure-RFBI systems. Figure 6(a) shows
that the disk acceleration responses of rotor-structure-RFBI remain roughly constant for the
entire range of the mass ratio considered. From Figure 6(b), it is noticed that the peak disk
response of the rotor-RFBI-structure system (pg = 0.2; T, = 0.2 s) fluctuates slightly as the mass
ratio increases. The peak disk responses of the rotor-RFBI-structure system (ug = 0.01;
T, = 1.0 s) have a dominant peak at mass ratio of 50 as well as a discrete upward jump at mass
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ratio of 110 and leading to an almost constant peak response in mass ratio > 110 region. This
peak response is due to resonance as the dominant frequency of the rotating machine is tuned to
the natural frequency of the rotor—-RFBI-structure system under this particular condition. From

Figure 6(c), the peak disk response
T, = 0.2 s) fluctuates in the low mass

of the rotor-RFBI-structure-RFBI system (g = ps = 0.2;
ratio region, but in general leads to an almost constant value
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Figure 7. Effect of shaft rigidity on disk acceleration response.

Copyright © 2000 John Wiley & Sons, Ltd

Earthquake Engng Struct. Dyn. 2000; 29:213-240



SEISMIC RESPONSE OF ROTATING MACHINES-STRUCTURE-RFBI SYSTEMS 231

(c) Rotor-RFBI-Structure-RFBI

2.5

FB
p=0.20 (EV100)
n=0.01

Peak absolute disk acceleration (g)
&

0.5

0 0.2 0.4 0.6 08 1 12 14 1.6 18 2
Structural period T, (sec)

Figure 7. Continued.

in the high mass ratio region. Note that the peak disk response of the rotor-RFBI-struc-
ture-RFBI system (ug = g5 = 0.2) at T, = 1.0 s has higher response than that at T, = 0.2 s in mass
ratio > 50 region. The peak disk response of the rotor-RFBI-structure system (ug = 0.01) at
= 1.0 s has larger response than that at T, = 0.2 s in the mass ratio between 45 and 55 region.
These imply that the high amplification period regions of the rotor-RFBI-structure-RFBI
system pg = g5 = 0.2) and rotor-RFBI-structure system (g = 0.01) are sensitive to variations in
the mass ratio.

Effects of varying shaft flexibility, bearing rigidity and bearing damping

The effects of variations in shaft flexibility and bearing rigidity of the rotating machine on the disk
response for the combined rotor-structure-RFBI system are shown in Figures 7 and 8, respec-
tively. The shaft flexibility (EI) and bearing rigidity (Kpcaring) are reduced by a factor of 100 to
represent a relatively flexible shaft and bearing system, respectively. In each figure, the fixed-
base case and the various isolated systems with two friction coefficients, 0.20 and 0.01, are
considered.

From Figures 7(a)-(c) it is observed that increasing the flexibility of the shaft, in general,
increases the absolute disk acceleration responses of the combined rotor—structure-RFBI
systems. At the tuning period, T, = 0.15s, the disk acceleration responses of the relatively
flexible shaft are reduced by factors of 1.33, 1.60 and 2.12 for the rotor-structure~-RFBI,
rotor-RFBI-structure and the rotor-RFBI-structure- RFBI models, respectively. This compari-
son indicates that the rotor-RFBI-structure-RFBI system is relatively very effective in reducing
the disk response when the rotating components are subjected to strong ground motions such as
the El Centro record. In the large amplification period region, T, < 0.4 s, the disk acceleration
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response spectra of the fixed-base and the various isolated systems with g = pis = 0.20 cases are
modified to a single dominant peak as the flexibility of the shaft increases. There are several
exceptions where the disk acceleration responses in the isolated system exceed those in their
corresponding fixed-base ones. This is due to the nonlinear slip-stick friction action at RFBI
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Figure 8. Effect of bearing rigidity on disk acceleration response.
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Figure 8. Continued.

system and coupled interaction forces described above. From Figures 8(a)-(c), it is noticed that
the disk acceleration responses of the combined rotor-structure-RFBI systems are not notice-
ably decreased as the rigidity of the bearing system decreases, except those for the ro-
tor-RFBI-structure model with yg = 0.01.

The effect of variations in the bearing damping on the response of the rotating machine for the
combined rotating machine-structure-RFBI systems is shown in Figure 9. Two damping values
of the bearing system, Chpearing/3 a0d Chearing (bearing damping coefficient), are specified represent-
ing light damping and relatively heavy damping, respectively. Base friction coefficients of 0.01 and
0.20 representing two extremes of small and relatively large friction coefficients are considered.

The disk acceleration responses are reduced as the bearing damping increases for the fixed-base
casc and for the base-isolated cases of both friction coefficient values. Slight reductions in the
large amplification responses occur as the bearing damping is increased. This indicates that
bearing damping in the rotating machine is a potentially effective mechanism in reducing the
peak disk response resulting from either the non-linear stick-slip friction action or the tuning
region. In the high structural period region, however, varying the bearing damping has no
noticeable effect on the disk responses in the combined rotating machine-structure-RFBI
systems. There are several exceptions where the disk acceleration responses in the isolated
systems exceed those in their corresponding fixed-base ones for both light and heavy bearing
damping cases due to non-linear stick-slip action at the base isolators.

Note that, as shown in Equations (10)-(12), the bearing stiffness and damping coefficients are
function of the speed of rotation. For certain values of speed of rotation, the real part of one of the
system eigenvalues may become positive, leading to instability (unbounded disk responses). More
insightful details of rotor stability will be discussed in the following section.
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Effects of varying rotating speed

The natural frequency of the rotating system for a given constant speed of rotation can be
obtained from the homogeneous equations of motion. An eigenvalue analysis of the equations of
motion can be used to identify the critical speed at which the motion of the rotor will become

unbounded.
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Figure 9. Effect of bearing damping on disk acceleration response.
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Figure 9. Continued.

The complex non-linear eigenvalue problem associated with the rotating machine located on
the various base isolated system is

MA2 +CA+K)'x=0 (22)

where 1 is an eigenvalue of the system and x is the corresponding eigenvector. This complex
cigenvalue problem can be converted to a real linear problem by introducing an additional
eigenvector y and solving the 2n x 2n eigensystem (where n is the total number of degrees of

freedom of the system),
0 I X X
= 2
[ ~M7K - M_lc] {y} l{y} *

where M, C and K are the mass, damping and stiffness matrices of the complete system,
respectively; and I is an identity matrix. The complex eigenvalues provide complete information
about the system frequency » and the corresponding modal damping ratio B, ie.

w=14, B=—ReW)w 4)

The primary cause of the instability of the rotor is caused by the asymmetric coefficients in the
stiffness matrix due to the presence of the fluid-film bearings, even though the bearing system also
provides desirable damping. If the motion of the rotor is stable, the real part of all eigenvalues
must be non-positive, which implies that the modal damping ratios are zero or positive. To obtain
the rotating speed at which the rotor becomes unstable, one can examine the largest real part of
the system eigenvalues against the rotating speed.
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Variations in the largest real part of the system eigenvalues with respect to rotating speed are
shown in Figure 10, which is obtained based on the assumption that the sign functions, sgng(sg)
and sgn,(s,), are + 1. For the particular combination of system parameters used in this example,
the figure shows that the critical speeds of rotation for the combined rotor-structure-RFBI
systems are almost identical to that for the corresponding fixed-base system, except for the
rotor—-RFBI-structure-RFBI system.

For illustration, the rotor-structure-RFBI system with p, = 0.1 and T, = 0.2 s subjected to
the El Centro earthquake is considered. The absolute disk acceleration response with operat-
ing speeds of 1200 and 2300 rpm are shown in Figure 11. Referring to Figure 10, one can
observe a change from a negative to a positive value at the critical rotation speed of about

2150 rpm tends to be unbounded with increasing time, while the response of the system is stable
at 1200 rpm.

CONCLUSIONS

The finite-element equations of motion for the rotating machines rested on a rigid base and the
governing dynamic equations of motion for the combined rotating machine-structure—
RFBI systems have been developed. The comparative results of an in-depth parametric study
on the response of critical rotating machines located within the various isolated systems and
the corresponding fixed base ones subjected to strong ground excitations have been
presented. The influence of the isolator friction coefficient, rotating machine-to-structure mass
ratio, shaft flexibility, bearing rigidity, bearing damping and critical rotating speed has been
investigated.

Based on the numerical results presented in this study, the following general behaviours are
observed.

(1) An increase in the friction coefficient increases the peak acceleration response and lowers
the peak rotor sliding displacement for rotor-RFBI-structure model, but no systemic
trend in peak rotor sliding displacement for rotor-RFBI-structure-RFBI model is ob-
served. However, the influence of variations in the friction coefficient in the peak response
of the system is rather gradual. For small friction coefficients, the spectral responses of
the three base isolated systems appear to be almost independent frequency content of the
excitation.

{2) Variations in the mass ratio ((mys + ¥ ;m;)/mg)), in general, have no significant effect on the
peak disk response.

(3) Anincrease in the shaft flexibility (EI) or a decrease in the bearing damping (Cpearing) lead to
an increase in the peak disk response. However, variations in the rigidity (Kyearing) Of the
bearing system appear to have no significant influence on the peak disk response.

(4) Instabilities of the rotating machines resting on various isolated configurations are prim-
arily caused by the asymmetric stiffness terms of the fluid-film bearings. The coefficients of
the bearing stiffness and damping depend on the speed of rotation, which implies that
a rotating machine may become unstable at certain operating speeds. For a rotating
machine to be stable, the real parts of the system eigenvalues must be negative (or at most
zero). Conversely, the disk response becomes unbounded when the sign of the largest real
part of the eigenvalues changes from negative to positive.
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From this study, the relative performance and cost-effectiveness of the four models examined
can be summarized as follow. The critical rotating machines rigidly attached to a floor within the
structure can be protected from seismic damage by isolating the structure using the RFBI system
(rotor—structure-RFBI). Alternatively to protect the rotating machine, the RFBI system can be
directly applied to the base of the machine housed within a conventional (rotor-RFBI-structure)
or an initially isolated structure (rotor-RFBI-structure-RFBI). In addition, considerable reduc-
tions in the level of peak disk acceleration response without introducing excessive sliding
displacements at the bases of both machine and structure suggests that the RFBI system can be
an effective device in protecting internal rotating components. However, if building cost is
a major constraint in the design, additional seismic protection at the base of the rotating machine
within an initially isolated structure (rotor-RFBI-structure-RFBI) may be unnecessary. This 1s
because the rotor—structure-RFBI system already has impressive performance in reducing the
floor seismic responses, consequently the maximum internal equipment seismic response will also
be significantly reduced. For an existing conventional structure, the seismic protection of internal
rotating machine can be achieved by adding either an RFBI system to the machine base
(rotor-RFBI-structure) or retrofitting the existing structure (rotor-structure- RFBI).

APPENDIX

length of differential shaft element

mass density of flexible rotating shaft

cross-sectional area of flexible rotating shaft

mass of rigid disk

constant rotating speed of flexible rotating shaft

system eigenvalue

system frequency

modal damping ratio

Young’s modulus

gravitational acceleration

total degrees of freedom of the system

specified floor of the multistorey building where the rotating machine is located

total number of floors in the multistorey building

local co-ordinate measured along the length of a finite element

Sy Summerfield number

SR, Ss relative sliding displacements between the base mat of the rotating machine and
a floor level, and between the base mat of the building and the ground, respectively

Mur, Mops masses of the base mat of the rotating machine and structure, respectively

mg, m,, m; masses of the rotating machine, structure and ith floor, respectively

nS T

3
&

“w ZzIQAMm®E ~D

my, M, mass of the Nth floor and total mass of the system (= mg + Mg + Mys + Y1),
respectively

i, R lubricant viscosity and journal radius of the journal-fluid-bearing system, respectively

w, h, D, L weight on bearing, radial clearance, journal diameter and bearing length, respectively

Uy, Uy relative displacements of differential shaft element in the x- and y-directions,
respectively

8., 0, rotations of the differential shaft element about x- and y-axes, respectively
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Xg» ¥y horizontal and vertical components of the ground excitation, respectively

I, 1, moment of inertia of flexible rotating shaft about the transverse and normal axes,
respectively

I, 1, moment of inertia of disk about the transverse and normal axes, respectively

Eors Sbs damping ratios of the base isolator of the rotating machine and structure, respectively

WpR» Dy natural circular frequencies of the base isolator of the rotating machine and struc-
ture, respectively

Urs s friction cocfficients of the base isolator of the rotating machine and structure,
respectively

A element matrix of rigid disk

1 identity matrix

q vector of relative displacements of flexible rotating shaft with respect to its rigid base

q° element vector of nodal displacements of flexible rotating shaft

r unit vector

u vector of relative displacements between a floor level and the building base mat

y additional eigenvector

u’, ¢° vectors of relative displacements an rotations for a typical shaft element, respectively

N, N matrices of interpolation function and its first derivation with respect to s,
respectively

e, e, operational vectors

M, M®, M? mass matrices of the isolated system, structure and rotating machine, respectively

M, Mj§ element mass matrices of flexible rotating shaft and rigid disk, respectively

C, (s, C*  damping matrices of the isolated system, structure and rotating machine, respectively
C¢, C5, C:  element damping matrices of flexible rotating shaft, rigid disk and bearing system,

respectively

K, K* K®  stiffness matrices of the isolated system, structure and the rotating machine,
respectively

K¢, K, K¢ element stiffness matrices of flexible rotating shaft, rigid disk and bearing system,
respectively

R applied force vectors of the rotating machine

fo(1), f5(t)  element applied force vectors of flexible rotating shaft and rigid disk, respectively

() vector of transitional base accelerations
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