STOCHASTIC RESPONSE OF OFFSHORE STRUCTURES
EXCITED BY DRAG FORCES

By Arvid Naess' and Solomon C. S. Yim,” Members, ASCE

ABSTRACT: This paper describes a new method for representing hydrodynamic drag forces on a marine struc-
ture subjected to random waves. It is shown that the obtained force representation has the correct statistical
properties to good approximation. A fair agreement can also be obtained between the spectral density of the
force representation and that of the original drag force. The distinct advantage of the proposed representation is
that it becomes possible to carry out a dynamic analysis of a linear structure in the frequency domain using
available techniques, which are part of a larger packet that includes efficient tools for providing detailed statistical
information about the response process. This has implications toward more efficient analyses of, for example,

long-term fatigue of offshore structures.

INTRODUCTION

A new method for representing the drag forces on a marine
structure in random waves has recently been proposed (Naess
1993). The reason for seeking a new way of representing the
drag forces is that the traditional representation of such forces
makes it difficult to develop efficient response analysis meth-
ods for dynamically sensitive structures subjected to random
drag forces. Today, the only practical way to carry out a sto-
chastic dynamic analysis of a drag-dominated structure with-
out linearizing the drag force is to apply the technique of time
domain Monte Carlo simulation. This entails an integration in
time of the equation of motion for each realization of the force
in the generated sample of force time histories. By this, a
sample of response time histories is obtained, and various sta-
tistical descriptors may be estimated depending on the specific
purpose of the analysis. However, the computational burden
involved in application of this procedure for the estimation of,
for example, long-term fatigue is almost prohibitive at present
for a detailed analysis. Even though the computational capac-
ity of computers is increasing at a rapid pace, it is still con-
sidered to be of interest to investigate the possibility of de-
veloping a more efficient method of analysis.

The most extensively used representation of drag forces on
structures is obtained by linearization. For structures modeled
by linear equations of motion it is then possible to carry out
the dynamic analysis in the frequency domain, which is com-
putationally much more efficient than having to solve the prob-
lem in the time domain. A serious drawback of the lineariza-
tion approach is that the statistics of the linear force term
deviates substantially from that of the standard drag force
model (Pierson and Holmes 1965; Tickell 1977). This devia-
tion propagates through to the calculated dynamic response,
but it is usually somewhat reduced. The extent of the reduction
depends on the dynamic properties of the structure. Broadly
speaking, the lower the damping the more Gaussian the dy-
namic response. However, extensive Monte Carlo simulations
have shown that the dynamic responses of drag-dominated
structures like offshore jacket platforms are distinctly non-
Gaussian (Karunakaran et al. 1992). This may have significant
implications for the estimation of extreme responses and fa-
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tigue life predictions. Some recent efforts to investigate pur-
pose-specific linearization procedures with a potential to im-
prove linearization-based predictions of extremes and fatigue
may be noted (Naess et al. 1992; Naess and Winterstein 1993).

Another technique that has been proposed recently is the
method of statistical quadratization (Donley and Spanos 1990;
Spanos and Donley 1991), which includes terms up to second
order in a Volterra series expansion of the drag force. In its
standard form, it reduces to the method of statistical lineari-
zation when the current speed is zero. The method will also
miss third (and higher) harmonics of wave frequencies present
in the drag force spectrum. To improve bn these aspects, it
was suggested by Spanos and Donley (1991) to extend their
methodology to include a statistical cubicization method. This
approach has been implemented by Kareem and Zhao (1994).

The statistical cubicization approach has certain similarities
with previous efforts directed toward developing a higher or-
der representation theory for the drag force based on a simple
polynomial expansion [cf., e.g., Hu and Lutes (1987)]. In its
simplest form, this theory leads to estimates of the spectral
density of the drag force that contains spectral components at
higher harmonics of the frequencies in the wave spectrum.
This feature is clearly important in cases where eigenfrequen-
cies of a dynamic structure may fall within the range of these
higher harmonics. The main drawback of such higher order
representations of the drag force is that dynamic analyses be-
yond the spectral level becomes rather complicated, and the
accuracy of the analyses have not been satisfactorily verified.

In the present paper an alternative approach is presented.
For the case of zero current, it will be shown that it is possible
to construct a genuinely quadratic representation of the drag
force that reproduces the statistical properties of the standard
formulation of the drag force very closely, and which has a
spectral density that approximates the desired force spectrum
reasonably well. As is demonstrated, a distinct advantage of
this representation is that it can bring dynamic analysis back
into the frequency domain, as was also achieved for the line-
arized force representation. As could be expected, the calcu-
lations required when applying the quadratic force represen-
tation are more extensive than for the linearized force.
However, the analysis is still much more efficient than a time
domain solution.

A considerable amount of work has already been devoted
to the development of statistical analyses of quadratic systems,
and it is shown that the frequency domain analysis related to
the quadratic representation of the drag force essentially re-
duces to the solution of an eigenvalue problem. It is then
straightforward to calculate detailed statistical information re-
lated to the dynamic response like the probability density func-
tion of the response quantity in question, as well as an estimate
of its extreme value distribution. The requirement for appli-




cation of a frequency domain analysis is that the equations of
motion of the structure are time invariant and linear.

DRAG FORCE AND DYNAMIC MODEL

For the subsequent developments it is expedient to adopt
the following simple single-degree-of-freedom (SDOF) equa-
tion of motion describing the displacement response of an off-
shore structure or structural element

MX(@®) + CX(t) + KX(t) = F(£) 1)

where M = total mass, including added mass effects; C and K
= damping and stiffness parameters, respectively; F(#) = hy-
drodynamic loading; and X(7) = the corresponding displace-
ment response.

In the context of offshore structures, a frequently used en-
vironmental force model that includes the drag force is the
Morison type wave loading, which is adopted here. In accor-
dance with this model, the external force F(¢f) is assumed to
be of the form

F(1) = kU() + kU@ — X01|1UG) — X)) €))

where k, and k, = appropriate constants; and U(f) = water
particle velocity in the given direction at a specified location.
Since the purpose of the present paper is to study dynamic
structures, the relative velocity U(f) — X(¥) has been used in
the formulation of the drag force. The effect of relative ac-
celeration has been accounted for in the mass term M. It is
assumed that for most wave loading conditions, the water par-
ticle velocity will substantially exceed the displacement veloc-
ity of the structure. Hence the following approximation is
adopted:

U@ — XOIlU@ — XOo| ~ U0|U| - 2{Uum|X®)  3)

The term 2| U(#)| X(f) can be viewed as a time variant damping
contribution. Since it can contribute substantially to the overall
damping, it cannot in general be neglected. For practical cal-
culations, it is advantageous to replace this damping with a
time invariant term. This can be achieved in various ways.
The simplest procedure is to replace |U(f)| by its mean value
E[|U(®|] (Penzien 1976). In the case of prediction of extreme
responses, a different choice would in general be appropriate.
Strategies for such replacement are not pursued here; it is as-
sumed that such a choice has been made. In the subsequent

developments, the equation of motion is therefore expressed -

by (1), where the hydrodynamic loading is of the form

F(0) = kU@ + kU@ U@ @

In the present paper the focus is on slender, drag-dominated
structures and the effect of the inertia force is neglected, leav-
ing the drag force F,(f) = k,U(t)|U(t)| as the loading process
to be considered.

The ocean surface elevation at a specified reference point is
assumed to be well represented by a zero-mean, stationary
Gaussian process, 1(f) say. The water particle velocity U(z) is
assumed to be linearly related to m(r). U(?) is therefore also
stationary and Gaussian. It will also be assumed that E[U(#)]
= (, that is, no current is present.

DRAG FORCE REPRESENTATION

The task still ahead is to formulate the drag force represen-
tation. For this purpose we shall introduce an auxiliary, zero-
mean Gaussian process P(f), corresponding in a sense to the
water particle velocity process U(¢). P(f) can be assumed given
in discretized form as follows:

PO = D VS(@)Awe™B, 5)

J=-n

where the two-sided spectral density S(®) is as yet unknown;
the index zero on the summation sign indicates that the sum-
mation index omits zero; 0 =< ®, < W, < ... < w, is a dis-
cretization, assumed equidistant for simplicity, of a pertinent
part of the positive frequency axis; w_, = —w; and Aw = w;,,
— w;; and {B,} is a set of independent, complex Gaussian N(O,
1)-variables with independent, identically distributed real and
imaginary parts (j = 1, ..., n), B_; = Bff (where the asterisk
signifies complex conjugation).

To achieve the desired representation, a process N(¢) asso-
ciated with P(7) is required. It is defined as follows:

N@) = 2, VE(@)BoR(w)e B, )
J=—n
where the transfer function ¥(w) = —i for ® > 0, X(0) = 0;

and X(w) = i for ® < 0. That is, X(w) is the transfer function
for the Hilbert transform (Cramér and Leadbetter 1967). Hence
the process N(f) becomes the Hilbert transform of P(f). We are
now in a position to formulate the representation of the drag
force FAt) = k,U@®)|U®)|. To this end, the process ®(z) is
defined by the following equation:

D) = k[P(t)* — N(@)’] )

An underlying assumption in this paper is that there is no
current. This limitation had to be imposed lere due to the
symmetric character of representation process ®(z) as defined
by (7). To lift the restriction of zero current, the force repre-
sentation has to be made nonsymmetrical. The best way to
achieve this is not clear at present.

Before we enter a discussion of the statistical properties of
®(»), it is convenient to make a few comments on the spectral
properties of the obtained force representation. By substituting
into (7) from (5) and (6), it can be shown that

DO =ky Dy Do VS@IS(@PAw[l — R(w)R(w;)*1e*“ "B, B}
ija—p j=—n
®)

Hence, ®(?) is obtained as a quadratic transformation of the
Gaussian process P(f). The quadratic transfer function K(w,
w") of the force representation ®(¢) can be identified from this
equation. It takes the form

Ryo, 0") = k1 — g@)i(@"] ®

Invoking the definition of the transfer function X(w) of the
Hilbert transform, it is recognized from (8) and (9) that the
frequency content of the force representation ®(r) consists of
precisely those frequencies that can be expressed as the sum
of two frequencies in the spectrum of P(f), that is, in S(w). It
is shown in Appendix I that the (two-sided) spectral density
Se(w) of ®(r) is given as follows:

So(w) = k,’,f 25(0")S(w — 0')|1 — )@ — o’)|* do’

lw}
= 8k§f S(0)S(|o| - o) do’
o (10)
A problem we have to address in the following is how to
determine S(w) so that the resulting spectral density Sg(w)
given by (10) is a good approximation to the desired spectrum
of the drag force. However, before embarking on this problem,
we demonstrate the most important advantage of the proposed
drag force representation. It will be shown that the probability
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distribution as well as the mean level-crossing rates of ®(r)
closely follow those of the drag force F,(f). This is a strong
indication that ®(¢) has the correct statistical properties; hence,
the proposed method is a substantial improvement compared
to other available representation strategies.

By straightforward calculations from the givcn expressions,
it follows that E[F,(f)] = E[®()] = 0, of = Var[F, ()] =
3kiot, and o} = Var[®(f)] = 4k’0*, where oy denotes the
standard deviation of U(r) and ¢ that of P(f). By requiring that
04 = Of, a relation is established between o, and o. The
expression for the probability density function (PDF) fr,( ) of
F,(?) can be gleaned from the literature (Borgman 1967a; Gri-
goriu 1984)

-2
. 1 o] ) ( |&] )
= -}
Ied®) = ke’ (k.,az P\ Tokey) P
To calculate the PDF of ®(z), it is first noted that (s > 0)

1
Jo(s) = furs) = m exp { —ﬁ} 12)

It is easily verified that P(f) and N(f) as random variables are
uncorrelated. Since they are Gaussian variables, they are there-
fore statistically independent. Hence, it follows that

Fold) = ki fponfon| b)) = f !

2
Lol 2wk,o

00

1 1
VT | o o]

= ! exp 4] ) 1 exp —M)I u) du
2mk,0? 2k 0 1 Vuu — 1) k,o?

i (sl
2wk, 7 \2k,0° (13)

where K,() denotes a Bessel function of imaginary argument
[cf. Gradshteyn and Ryzhik (1965)]. From the asymptotic be-
haviour of this Bessel function, it can be shown that

I S LQL)-M <__N>_|_)
So(d) o 2\/%/(,,0‘2 <kd°'2 exp 2k,0° (14)

This expression clearly bears a close resemblance with fr ().
For a more detailed comparison, we have plotted both PDFs
as given by (11) and (13) in Figs. 1 and 2 under the condition
that o4, = o, Since the PDFs are symmetrical, they are plotted
only for positive values of the arguments. It is seen that the
agreement between the two PDFs is indeed very good.

To be able to assert practical equivalence for our purposes
between (1) and F(2), it is in addition necessary to compare
the level-crossing rates of the two processes. Agreement also
between these quantities indicates very similar range distri-
butions and extreme values provided that the spectral densities
of the two processes are approximately equal. The mean level-
upcrossing rate vg.( ) for the drag force F,(¢) is given by (Moe
and Crandall 1977)

Vi(d) = ﬁ exp (—2,'("’(1) » a5)

where ¢} = Var[U].

It can be shown (Naess 1992) that the corresponding mean
upcrossing rate vg( ) of $(2) is given to good approximation
by

o-Zon()
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FIG. 2. Logarithmic Plots of PDFs of F,(t) and ®(t) foro,, = 0,
= V3 (oy=1) and k, = 1[— for . (d); — — —— for fo(d)]

In this equation, p = E[P()N(1))/(¢0), where ¢ = Var[P(r)).
Since N(#) is the Hilbert transform of P(¢), it is in general a
very good approximation to assume that p = 1. Within this
approximation, obviously 2v;(0) = v3(0). For a reasonable
agreement between the spectral densities of ®(r) and F,(2), it
also follows that v3(0) ~ v7,(0) = v{(0). From this it can now
be concluded by comparing (15) and (16) that there is also
good agreement between the mean level-upcrossing rates of
®(2) and F,(t). Hence, from a practical statistical point of view,
the two processes are almost identical. The remaining problem
is therefore to investigate to what extent it is possible to ap-
proximate the spectral density of the drag force F(2).

SPECTRAL DENSITY APPROXIMATIONS

The mathematical problem of determining a spectral density
S(w) so that S¢(w) given by (10) is equal to Sy (w) does not
have an exact solution in general. This is demonstrated in Ap-
pendix II. However, it is shown that a fairly good approxi-
mation can be obtained by a rather simple procedure. To this
end it is convenient to rewrite (10) in terms of one-sided spec-
tra. The generic definition is as follows: S*(w) = 25(w) for w
= 0, and S*(w) = 0 for ® < 0. The superscript + is used to
indicate that the spectral density is one-sided. Eq. (10) can
then be rewritten in integral form as

0

SHw) = 4k2 f S*H0)ST (0 — ') do' = 42STRSHw)  (17)

~0

where the asterisk signifies convolution. Hence, a genuine con-




volution equation is obtained, which is mathematically advan-
tageous.

The approach to the stated problem chosen here should be
considered as a preliminary procedure adopted mainly to dem-
onstrate the feasibility of obtaining a practical solution. The
method of approach is based on the underlying property of
infinitely decomposable distribution laws (Log¢ve 1977), of
which the Gaussian law is a special case, which assures in
particular that the sum of two independent Gaussian variables
is again a Gaussian variable (Cramér 1946; Papoulis 1965).
An alternative way of stating this property is that the convo-
lution of two Gaussian densities is again a Gaussian density.
The idea behind our procedure is to exploit this fact and ap-
proximate the given spectral density Sz (w) by a sum of suit-
ably chosen Gaussian densities. The objective then becomes
that of representing S*(w) by a sum of suitably chosen Gauss-
ian densities so that the autoconvolution of this sum, that is
S+(w), approximates the sum previously obtained for S5, ().
Strictly speaking, no Gaussian density belongs to the space of
one-sided spectral densities. But from a practical point of view,
by choosing the right balance between the mean value and
standard deviation, the values of the PDF for negative values
of the argument can be neglected. For the sake of the discus-
sion, it is convenient to start with the representation of $*(w).

It is accordingly assumed that
» ~ @)
[“(—2;—)} a®

The corresponding expression for the spectrum of the force
representation then becomes

S(w)—z\/—o_

St(w) = 4k35* xS (w)

(S S e P

exp
-l jul V21T(0', + 0'])

It is in the interplay between these two equations that the
desired approximation is worked out. Given a representation
of S;d(m) as a sum of Gaussian PDFs consisting of say m
terms, it is recognized from (18) and (19) that the number of
terms n in the representation of S*(w) should be around m/2.
This clearly shows that in general, only an approximate so-
lution can be obtained.

A way of increasing the accuracy of the spectral represen-
tation S¢(w), is to augment the force representation model it-
self. This is done by introducing a force process ®(t) = ®,(0)
+ -+« + @), where the Py(1), j = 1, ..., I are independent
processes similar to that defined by (7). By choosing [ large
enough, the corresponding spectral representation can be made
as accurate as desired. The drawback of this approach is that
the statistics of the obtained force representation may deteri-
orate somewhat relative to the target statistics. Also, part of
the dynamic analysis has to be carried out [ times.

We shall not embark on a detailed study of the approxi-
mation process here, mainly because this has to be done only
once. To each wave condition, that is, to each particular (nor-
malized) drag force spectrum, a corresponding spectral density
S*(w) can be specified. For a given model of the spectral den-
sity, a more systematic procedure can be developed using the
system identification methodology proposed by Bendat et al.
(1992) in conjunction with standard optimization techniques.
In this paper we shall limit ourselves to illustrate the relation
between (18) and (19) for the specific case of a wave force
spectrum reported by Borgman (1967b), indicating the possi-
bility of reproducing a reasonably accurate force spectrum.
Strictly speaking, the reported force spectrum also contains an
inertia force term, but that is not important for our discussion
here. Plots of $*(w) and the corresponding S§(w) are presented

w—m+wﬂ
2Ao? + o)) (19)

0.35
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FIG. 3. Plots of Spectral Density: (a) S*(w) and Resulting (b)
Si(w) [¢ = Experimental Drag Force Spectrum (Borgman
1967b)]

in Fig. 3. It is seen that a fair agreement has been obtained
between the spectrum S3(w) and the obtained wave force spec-
trum presented by Borgman (1967b).

Itis emphasxzed however, that in a practical application the
starting point is a model wave spectrum, for example, a JON-
SWAP spectrum (Sarpkaya and Isaacson 1981), from which
an appropriate water particle velocity spectrum is derived. The
drag force spectrum is then calculated by invoking the stan-
dard drag force model. Depending on the dynamic character-
istics of the structure to be analyzed, this may lead to either a
linearized force spectrum or a more complete expression con-
taining self-convolutions of the water particle velocity spec-
trum in addition to the linearized term (Borgman 1967b).

To make practical applications to extensive structures sim-
ple, an issue that has to be addressed is the problem of trans-
formation of the fitted spectrum S*(w) of the auxiliary velocity
process P(t) for different locations on the structure relative to
a reference point. The brute force method is simply to deter-
mine the drag force spectrum for each location according to
standard transformation rules of the water particle velocity
spectrum (Sarpakaya and Isaacson 1981), and then do the fit-
ting of the spectral density of the auxiliary velocity process
for each separate location, and at the same time introduce an
appropriate correlation structure between the location specific
auxiliary velocity processes. Clearly, a preferable procedure is
a direct transformation of the auxiliary velocity process asso-
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ciated with a chosen reference point. This approach is pursued
in subsequent work.

DYNAMIC RESPONSE

From (1) it is found that the linear transfer function £,(w)
of the dynamic model is given by

Liw) = (oM + iwC + K)! (20)

Adopting the approximation ®(z) = F,(#), and invoking (8),
it can then be shown that the dynamic response X,(r) to the
drag force can be represented by the equation (Naess and Ness
1992)

n n

X)) = Dy Do Que BB} @1

m—n fm-—n

where

Qs = kiVS@IS@ILy(w — @)1 — R(wIR(W)*]  (22)

This shows that the dynamic response is given by a quadratic
transformation of the underlying auxiliary process P(r). The
corresponding quadratic transfer function H,(w, ') is identi-
fied as

Ay, o) = klo + o)1 - K@REO)]  @3)

Following the developments in Naess and Ness (1992), it
can now be shown’that the dynamic response can be expressed
by the relation

X0 = D0 MW@ — W] 24)
j=1

where the A, = the positive eigenvalues of the matrix Q = (Q,).
For each positive eigenvalue there is a corresponding negative
eigenvalue of equal magnitude. The Wy(r) are real, Gaussian
N(0, 1)-processes defined as follows:

Wit) = Do use™B; @5)

i=—n

where the v, = (y,—,, . .., y,)" are the orthonormal eigenvec-
tors corresponding to the A;. It can be shown (Naess and Ness
1992) that W_,r) is the Hilbert transform of Wi(f) for every j.

The representation given by (24) is very convenient for cal-
culating the statistics of the dynamic response. The first four

cumulants, k,, j =1, ..., 4, are given by (Naess 1987)
EX.N]l=k =0 (26)
VarlX ()] = ka =4 O N @D
=0
ky =0 (28)
ke=96 D M 29)
=0

No closed-form expression for the PDF of X,(¢) is known,
but an accurate numerical method for calculating this PDF has
been developed. This method is described in detail by Naess
and Ness (1992). Calculation of upcrossing rates can be car-
ried out as shown by Naess (1987). This is exemplified in the
next section by calculation of statistical moments and PDF of
the dynamic response of a compliant drag-dominated structure
subjected to random waves.

NUMERICAL EXAMPLE

To illustrate the results of a dynamic analysis, we calculate
the statistics of the displacement response of a slender drag-
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dominated offshore structure subjected to random waves. Spe-
cifically, it is assumed that the drag force is characterized by
the spectral density described previously in this paper. This
corresponds to the numerical value k, = 170. Further, it is
assumed that the structure can be represented as a linear SDOF
dynamical system with the following parameters: structural
and added mass M = 500 kg/m; total damping ratio § = 0.10;
natural period T, = 5 s. ’

By this, all the required information to determine the matrix
Q = (Q,) is available. A standard library routine is used to
calculate the positive eigenvalues of the obtained matrix, and
the first four cumulants of the displacement response are found
to be k; = k3 = 0, k; = 0.2827-10° mm® and k, = 0.3322-10°
mm*. This leads to a kurtosis y, = 7.16, indicating that the
response statistics deviate significantly from the Gaussian case,
which has vy, = 3.

The PDF of the displacement response is shown in Figs. 4
and 5. The corresponding Gaussian PDF with the same mean
value and standard deviation is also shown. As expected, the
Gaussian response assumption leads to a substantial underes-
timation of large responses.

To verify the general features of the calculated response
statistics, we have plotted the results of Monte Carlo simula-
tions in Fig. 5. The plotted simulation results have been ob-
tained for a nodal displacement response of a jack-up structure



specified by a linear dynamic model having a damping ratio
of 10%, as in our example, which was subjected to pure drag
forces with zero current. The kurtosis of the empirical distri-
bution was found to be 7.26, which is indeed very close to
the theoretical value obtained earlier. By scaling the PDF de-
rived from the simulation results to have the same standard
deviation as in our example, one would expect the two PDFs
to agree. This is clearly borne out by Fig. S.

CONCLUSIONS

A new representation of the drag forces on an offshore
structure in the absence of current is proposed. It is demon-
strated that the proposed force representation to a large extent
has the same statistical properties as the original drag force.
The spectral density of the force representation can be made
to fit that of the drag force reasonably well.

The main advantage of the proposed force representation is
that it becomes possible to carry out a dynamic analysis in the
frequency domain without having to linearize the drag force.
The only limitation that has to be imposed, consistent with
other state-of-the-art nonlinear second-order stochastic analy-
sis methods, is that the equations of motion are linear, or have
been linearized. This ensures that the response process can be
expressed as quadratic transformations of Gaussian processes.
The techniques for the frequency domain analysis of such
transformations have been developed extensively over the last
few years, and are fairly well established. For example, both
PDFs and extreme value distributions can be calculated.
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APPENDIX|. SPECTRAL DENSITY OF &(t)

To determine the spectral density of the drag force repre-
sentation P(r), we start by finding the autocorrelation function
Ro(7) = E[D()P(t + 1)]. From (8) it follows that

Rom) = k3 Dog 0 Do VE(@)S(w0)S(@nS(an k(e —aw;)
m—n I=—n

‘Koo, —0,)- X e XD B BX B, B¥)(Aw)? 30)

Taking advantage of a well-known result from the theory of
Gaussian variables (Lin 1967), it is found that

E[B;B}*B,Bf] = E[B:B}E[B,B}] + E[B;B,JE[B}Bt]
+ E[BiBI*]E[Bj*Bk] = 5.;/8::,1 + 8.’.—1:5—11 + Sl.tsj.k (€2}

Substituting this expression into (30), we get

n 2
Ry(1) = {kd > o S(@Ry(w, —w.-)Aw}

in—n
n n

+ kDD 25(@)S() | Raw, —w) | (Aw) 2
im—n f=-n

The first term on the right-hand side of this equation is zero
since Ky(w, —w) = 0.

Writing (32) in integral form leads to the following equa-
tion:

Ro(T) = kﬁf f 25(w)S(@")| Ko, —0")[%e“™" do do’

= k,’,f {f 25(w)S(Q — w)|Kxw, @ — w)|? dw} e dg)3)
o U (

where the variable substitution (w, w') = (0, ) = (v, @ —
") has been implemented.

From (33) we can now identify the spectral density S¢(w)
of ®(¢) as

Se(Q) = k3 f 28(w)S(Q — w)lkz(w, Q- wl|do (34)

Invoking (9) and using the properties of {(w), the validity
of (10) follows immediately.

APPENDIX ll. SPECTRAL DENSITY INEXACTITUDE

It is shown that the problem of finding a one-sided spectral
density whose autoconvolution equals a given one-sided spec-
trum cannot in general be solved exactly.

To this end, assume that a one-sided spectrum Sg(w) is
given. We want to find a one-sided spectrum S*(w) that sat-
isfies the equation

S5 (w) = 5" +5"(w) (35)

The (inverse) Fourier transform, denoted by a tilde, of a
spectral density is defined by '

St = f SH(w)e™ dw 36)

By application of the (inverse) Fourier transform to (35), it
is found that

HOERNOS 37
which leads to the equation

FAGERVAND) (38)

If (35) has a solution, it is given by the direct Fourier trans-
form

S*(w) = L f S*(O)e ™™ dt 39)
2w J_.

From (36) it can be seen that S ()* = S§(—1), and (38) then
implies that the same relation is satisfied by S$*(#). Taking ac-
count of this, it follows from (39) that S*(w) is a real function.
However, it is not in general nonnegative. In addition, it may
even be nonzero for negative values of the argument.
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