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NONLINEAR ROCKING MOTIONS.

I: CHAOS UNDER NOISY

PERIODIC EXCITATIONS

By H. Lin' and S. C. S. Yim,” Member, ASCE

ABSTRACT:

The effects of low-intensity random perturbations on the stability of chaotic response of rocking

objects under otherwise periodic excitations are examined analytically and via simulations. A stochastic Melnikov
process is developed to identify a lower bound for the domain of possible chaos. An average phase-flux rate is
computed to demonstrate noise effects on transitions from chaos to overturning. A mean Poincaré mapping
technique is employed to reconstruct embedded chaotic attractors under random noise on Poincaré sections.
Extensive simulations are employed to examine chaotic behaviors from an ensemble perspective. Analysis pre-
dicts that the presence of random perturbations enlarges the possible chaotic domain and bridges the domains
of attraction of coexisting attractors. Numerical results indicate that overturning attractors are of the greatest
strength among coexisting ones; and, because of the weak stability of chaotic attractors, the presence of random
noise will eventually lead chaotic rocking responses to overturning. Existence of embedded strange attractors
(reconstructed using mean Poincaré maps) indicates that rocking objects may experience transient chaos prior

to overturn.

INTRODUCTION

An in-depth understanding of the rocking behavior of rigid
block-like structures is essential to mechanical and civil en-
gineers in design and maintenance of a variety of freestanding
structures, such as petroleum storage tanks, water towers, nu-
clear reactors, concrete radiation shields and equipment racks
subjected to base excitations including earthquake ground mo-
tions, and nearby machine vibrations (Yim and Lin 1991a). It
is well known that the rocking response is highly nonlinear
and can be very sensitive to small variations in system pa-
rameters and excitation details. Probabilistic trends of the re-
sponse can only be estimated with a large sample size (Aslam
et al. 1980; Yim et al. 1980). Classical analytical methods have
been developed for piecewise linear approximate models to
predict the existence and stability of harmonic and subhar-
monic responses under periodic excitation (Spanos and Koh
1984; Tso and Wong 1989).

In an experimental study, Wong and Tso (1989) found that
there were responses that could not be accounted for by clas-
sical analytical methods. These unpredicted responses were
further investigated and later identified to be chaotic (Hogan
1989; Yim and Lin 1991b). Hogan (1989) developed a discrete
mapping technique to determine the stability regions of har-
monic and subharmonic responses, and identified the regions
of possible chactic response. He also quantitatively matched
analytical predictions with Wong and Tso's experimental re-
sults. Yim and Lin (1991a,b) examined the response behavior
of both slender and nonslender rocking objects under periodic
excitations and found that, although chaotic time histories have
a periodic time dependency, time series consisting of Poincaré
points of chaotic responses possess stochastic invariant prop-
erties, indicating a strong link between deterministic and sto-
chastic behavior (Yim and Lin 1992).

Chaotic rocking responses have so far been studied under
deterministic settings by the authors cited. However, except
under artificially strict control (example, ‘‘tabletop’’ experi-
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ments), few purely deterministic environment excitations of
engineering interest (especially periodic ones) are realized in
practice. Environmental uncertainties and disturbances need to
be taken into account by incorporating stochastic components
in the system excitation model. This two-part study represents
a first attempt to expand previous deterministic stability anal-
yses of chaotic rocking responses and relationships between
bounded and overturning responses to include stochastic com-
ponents in the excitations. Specifically, models of freestanding
rigid objects, both slender and nonslender, subjected to peri-
odic excitation with random noise perturbations are consid-
ered. Part [ concentrates on applying analysis techniques to
study the relationships between chaotic and overturning re-
sponses under the influence of small random perturbations.
Part I (Lin and Yim 1996; the companion paper) provides a
detailed study of the response behaviors of randomly perturbed
rocking objects from a fully probabilistic perspective via the
evolution of the probability density governed by the associated
Fokker-Planck equation.

Among existing studies, random excitations to the rocking
system are often modeled as idealized white noise (Iyengar
and Manohar 1991; Dimentberg et al. 1993) because of its
mathematical simplicity (Soong and Grigoriu 1992). White
noise is a reasonable approximation of the random perturba-
tions when the noise correlation time is much shorter than the
system relaxation time (Stratonovich 1967). However, the in-
finite variance (energy) of idealized white noise infused into
the rocking system can not be realized in practice. In this pa-
per, instead of using the ideal white noise model, random per-
turbation in the excitation is approximated by a Shinozuka
band-limited (hence finite variance) noise (Shinozuka 1971).
Analytical and numerical techniques are used to demonstrate
the characteristics and stability of randomly perturbed rocking
responses. Relationships among periodic, chaotic, and over-
turning responses are analytically demonstrated by a criterion
based on generalized Melnikov process as well as the associ-
ated average phase flux. By applying the mean Poincaré map-
ping technique (Kapitaniak 1988), noise-induced randomness
in the chaotic responses is averaged out and embedded strange
attractors are reconstructed on Poincaré sections. Capabilities
and limitations of this mapping technique are discussed.

PHYSICAL MODEL

In this study, a freestanding object is modeled as a rectan-
gular rigid body subjected to horizontal base motion excitation
(Fig. 1). Assuming that friction at the interface between the
rigid object and the base is sufficiently large so that there is
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FIG. 1. Idealization of Freestanding Equipment as Rigid Rock-
ing Subjected to Horizontal Excitation

no slipping, depending on the support accelerations, the object
may move rigidly with the base or be set into rocking motion
(Yim et al. 1980; Yim and Lin 1991a,b). Impact occurs when
the angular rotation crosses zero approaching from the positive
or negative direction and the base surfaces re-contact. Impact-
induced energy loss (or damping) is accounted for by a res-
titution coefficient, which relates the angular velocities before
and after impact (Yim et al. 1980).

The base excitation to the rocking system is assumed to be
predominantly periodic. For simplicity, the excitation is ap-
proximated by a perturbed sinusoidal forcing. To take into ac-
count environmental disturbances, random perturbations in the
excitation are approximated by band-limited white noise.

For convenience, a slender (thus piecewise linear) rocking
object is considered in this paper, and nondimensionalized
governing equations are employed (Yim and Lin 1991a). Tak-
ing into account the presence of random perturbations, the
governing equations are given by

6 -06=-AcosQr+¥)+qm -1, 6>0 (1)

and

O—-O0=—-Acoslr+ V) +n()+1, B6<0 2)
with impact transition condition

Bt =eB(r7), 0=e=1 3)

where © = 0/8,, is the nondimensionalized angular displace-
ment; and T = ar is the nondimensionalized time (with 6 =
angular displacement, 6, = critical angle, and ¢ = time). A
=aalg), {} (=w/a), and ¥ = nondimensionalized amplitude,
frequency, and phase shift of the periodic base excitation, re-
spectively (with @ and w = amplitude and frequency of base
excitation). Parameter « is a function of object mass M, mass
moment of inertia I, gravitational acceleration g, and radius
R (Appendix II); t7(7") = time just before (after) impact; and
e = velocity restitution coefficient. The stochastic process,
m(7), employed here to represent the random perturbations, is
given by
N

%2 cos(v,t + b,) “)

n(T) = 0o
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where o = standard deviation of the noise; and {v,, d,; n =
1,2, ..., N} are independent random variables defined on a
probability space. Frequencies v, are nonnegative with a com-
mon distribution, and random phase shifts ¢, are identically,
independently, and uniformly distributed over interval [0, 2]
(Shinozuka 1971). It is seen that stochasticity in this model is
completely governed by m(7). In the limit as the noise intensity
parameter ¢ — 0, the excitation approaches purely periodic,
and the system behaves in a deterministic fashion. The system
response is governed by two linear stochastic differential equa-
tions [(1) and (2)] with a local velocity discontinuity at zero
displacement [(3)]. This discontinuity causes the rocking re-
sponse behavior to be highly nonlinear (Yim and Lin 1991a,b).
By introducing state variable vector X

<l

and including external excitation and energy dissipation as per-
turbations to (1) and (2), the rocking system can be expressed
in vector form and studied in phase space

X =f.X) +gX, 7 (6)
where
_ X2 . _ X2
£(X) = {xl _ 1}, £X) = {x1 + 1} (7a,b)
and
0
gX, 7) =

—A cos(Qdt + ®) — %xi(l — eM8(x,) + n(7)

(3)
in which the energy dissipation due to impact is represented
by the Dirac delta function (Yim and Lin 1991a). The asso-
ciated potential energy, U(x,), and phase portrait are shown in
Figs. 2(a) and 2(b), respectively. There exist three fixed points:
two saddles at (+1, 0) and (~1, 0), and a center at (0, 0). A
pair of heteroclinic orbits are represented by the solid lines in
Fig. 2(b), and dashed lines in the same figure represent sample
phase trajectories with different initial conditions.

METHODS OF ANALYSIS

A stochastic Melnikov process is derived and the associated
average phase-flux rate is computed to demonstrate analyti-
cally the relationships between periodic and chaotic, and cha-
otic and overturning responses. Numerical simulations and
mean Poincaré maps are also applied to illustrate the stochastic
properties of responses and to identify the existence of em-
bedded attractors.

Generalized Stochastic Melnikov Method

The Melnikov method has often been used to obtain a de-
terministic criterion for chaos in a nonlinear system subjected
to periodic excitation (Guckenheimer and Holmes 1983; Wig-
gins 1988, 1990). This method provides a quantitative repre-
sentation of the existence of transverse intersections of ho-
moclinic and hyperbolic periodic orbits in a two-dimensional
vector field. A generalized version of the Melnikov function
for the system subjected to excitation with multiple frequen-
cies was introduced by Wiggins (1990). It was extended to the
case of stochastic excitations by Frey and Simiu (1993). Due
to its noise-induced random nature, the resulting ensemble of
Melnikov functions is called a Melnikov process. A criterion
based on the stochastic Melnikov process is developed here to
demonstrate noise effects on the existence of chaotic response.

Assuming small perturbations, terms in (6), x3(1 — €*)8(x,)/
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FIG. 2. (a) Potential and (b) Phase Portrait of Unperturbed
(Hamiltonian, e = 1.0) Rocking System

2, A cos {1, and M(T), can be scaled by a small parameter €.
Then (6) can be rewritten as

X =f,X) + egX, 7 9

with g(X, ) as expressed in (8). The heteroclinic orbits in
regions [ and II [Fig. 2(b)] can be expressed by explicit time
functions (Yim and Lin 1991a)

gy =1 —e, e (10)
and
qu(v)=(e*— 1, ¢7) an

respectively. Because of symmetry of the heteroclinic orbits
with respect to x, in the phase plane, only the upper hetero-
clinic orbit [(10) and (11)] needs to be examined.

In addition to the periodic excitation and the energy loss
due to impact, the external random noise is also considered as
another source of perturbation to the heteroclinic orbit. The
corresponding stochastic Melnikov process is defined as

MI(T,, T2o) = J’ £lg7a(] /\ 8lq7u(T); Tios T20) AT

0
= f flgn (™) A glqa (T Tios T20) dr

-0

+ f £lgr (01 N\ glg? () Tios Tao] dT
0

24 cos 01, 1 2 . . .
T o 2 (1 =€)+ M (1) = Mj(z\,) + M- (7)
(12)

where M (1,,), due to periodic excitation and impact, repre-
sents the mean of the stochastic Melnikov process; M, (T2,),
due to random noise, denotes the random portion of the pro-
cess; and /\ denotes vector product. Note that for fixed values
of 1,,, M] = a Gaussian random variable. A (deterministic)
Melnikov criterion provides a necessary condition for chaos
(Yim and Lin 1991a), thus the noise effects on the criterion
can be demonstrated in an energy (or mean-square) represen-
tation. Such a mean-square represented criterion is given by

(1 - e2>2 _ [[24 cos@ma ]\ | <._2A cos(71,)
2 - 1+ 1+ O

2A cos(ﬂ'r,a):'2 5
PRSI R4, + M

1+ ’ (13)
where o'}, = variance of the stochastic Melnikov process. The
derivation of (13) implicitly incorporates the fact that pa-
rameters A, (), and e are deterministic and statistically inde-
pendent of M (75,). The stochastic criterion for possible cha-
otic domain in terms of parameters (4, {, e, 0y,) for chaos in
the rocking system is given by

(1 — &% - 4A*
4 T+ QY

(M (12,)) + (Mf('fza)) = [

+ ok (14)

A

The variance of M (1.,), 0% ., can be obtained by directly in-
tegrating the multiple of transfer function F2({}) and the noise
spectrum S, ({)) over the entire frequency range

oy = j FYWS, () dQ

-
B 4 a? 40 = 20
- Qi (l + 02)2 anu - Qmin - anx - Qmin
Qmax Qmin - -
-(Qz oy a—— + tan”' Q. — tan ‘Qm> (15)

where

oo 0
FQ) = f u(me " dr = J que™ ™ dr

- —a0

c L 2
+ qoe~rﬂ‘r d’T =
fo ! 1+ o (16)

Note that the random perturbations considered occupy a con-
tinuous frequency range, which may be considered a limiting
case of uniformly bounded noises. The continuum of frequen-
cies theoretically may result in unbounded noise amplitudes
and hence violate the conditions for insuring the saddle point
remaining saddle-type invariant set (Frey and Simiu 1993).
Yet, due to its mathematical simplicity, this limiting case is
employed here to exhibit asymptotic effects of random noise
on the Melnikov function.

The (mean-square represented) upper bound for p0551ble
chaotic domain can be obtained by equating the expressions
in (14). Criteria for stochastic (o # 0) and deterministic (o =
0) cases in the A-{) domain are shown by the dashed and solid
lines in Flg 3, respectively. Note that the positive correction
term, O'M , in (13) lowers the threshold for chaos and enlarges
the chaotic domain in the parameter space considered.

Average Phase-Flux Rate

As indicated in the previous section, the chaotic rocking
response may occur in the vicinity of the separatrix if the
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stable and unstable manifolds intersect. Also the presence of
random noise enlarges the possible chaotic domain in the
mean-square sense. A close relationship between the chaotic
and overturning responses, although intuitively obvious, has
not yet been analytically demonstrated in the literature. Non-
linear responses under deterministic and stochastic excitations
exiting from a chaotic attractor to the overturning regime can
be revealed by computing the average flux rate of transport in
the phase space (Hsieh et al. 1994; Frey and Simiu 1993).
Average rate of phase-space transport across the boundary of
‘‘safe’”’ domain can be computed based on the generalized
Melnikov process (Hsieh et al. 1994), and noise effects of
phase-space transport can then be demonstrated.
The average phase-flux rate is given by

-
.1 .
® = lim 3T MJ(s, T,y T20) ds

1 1
A 3)]} (17)

where @ = average rate of phase-space transport; and M . =
positive portion of the generalized Melnikov function given
by (12). Symbols o and o, represent the standard deviations
of random noise m(t) and the random portion of stochastic
Melnikov process M (t,,), respectively. Random variables Y
and y, are statistically independent; y, = a standard Gaussian
variable and y, = cos U, where U represents uniformly dis-
tributed initial conditions [i.e., U ~ (0, )] for the periodic
term [(12)] over the upper heteroclinic orbit. The temporal and
ensemble averages in (17) are identical due to the fact that
periodic excitation is asymptotic mean stationary and the ran-
dom noise is stationary and ergodic (Frey and Simiu 1993).

The integral in (17) can be carried out by applying the prob-
abulity distributions of y, and y,, and integrating over the pos-
itive portion of the Melnikov function

2A
= FE OOpm Yy + m ¥

I o0
b = f f (00w y: + Dy, — Mp(y)py2) dy: dys
-t JM-Dy,
1
= f {O'O'M,Pl(M = Dy)) + (Dy, — M)
-1

1 1 v
{5 + 7 erf(M — Dyz)J} py2) dy: (18)

with

Y2

Y

2 1 2
erf(y) =\—/—; A j,_-dy; p(y) = <\/2—‘"> exp (-yg)

(19a,b)

I
- 19
P = = (190)

where erf( ) stands for the error function and

24 . 1-2
o M=— (20a,b)

The first term in the integrand of (18), a positive quantity,
indicates that the average phase-flux rate is elevated with ran-
dom noise present. This behavior is also numerically elabo-
rated by the given system parameters in Fig. 4. As discussed
in Hsieh et al. (1994), under stochastic excitations, a positive
average phase-flux rate strongly indicates occurrences of un-
bounded response. Hence the presence of random noise in-
creases the possibility of occurrence of overturning as indi-
cated by the positive quantity in (18).
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Numerical Simulations

Sample paths of the rocking response in a stochastic state
can be obtained by directly integrating the stochastic differ-
ential equations, (1) and (2), using a fourth-order Runge-Kutta
integration algorithm (Yim et al. 1980). The numerical repre-
sentation of the band-limited noise is introduced in (4). To
reach a good approximation of the random noise, the number
of harmonics, N, must be relatively large, e.g., N > 30 (Kap-
itaniak 1988). In this study, N is chosen as 100 for an adequate
representation.

Mean Poincaré Map

It is well known that the fractal structure of a chaotic at-
tractor can be depicted on the Poincaré map (Thompson and
Stewart 1986). However, this structure may be obscured by
the presence of random noise. As proposed by Kapitaniak
(1988), the noise-induced perturbations can be reduced and the
embedded fractal structure can be identified by introducing a
mean Poincaré map defined as

M, = [(Elx\(0], Ele(ODr = kT, k=1,2,...} (@21

where T = forcing period; M, = mean Poincaré point at the kth
cycle of forcing period; x, and x, = displacement and velocity
obtained from (6); and E[x,] and E[x,] = ensemble averages
of x, and x,, respectively.




The mean Poincaré map takes the ensemble average after
each mapping (with interval of the forcing period) to average
out the noise effect to reflect the structure of embedded chaotic
attractors. In this study, a mean Poincaré point is obtained by
averaging 1,200 realizations (numerical simulations) at every
forcing period. Here, a mean Poincaré map constitutes 500
mean Poincaré points, i.e., mapping forward in time for 500
cycles of the forcing period. Note that for typical chaotic rock-
ing response, trajectories fall into the steady-state chaotic
mode about 5 cycles of the forcing period, and it is sufficient
to use 500 points for the purpose of reconstructing embedded
attractor.

NOISE-INDUCED TRANSITIONS

The behavior of the rocking system is rich in terms of di-
verse nonlinear responses (Hogan 1989; Yim and Lin 1991a,b
1992). Among them, the chaotic (long-term unpredictable) and
the overturning (unbounded) responses are of most interest.
By taking into account the presence of random noise, rela-
tionships between these two critical rocking responses are ex-
amined in this section.

Noisy Chaotic Response

The noise effects, which have been indicated via Melnikov
approach and average phase flux on the chaotic and overturn-
ing responses, are twofold. On the one hand, the criterion
based on the stochastic Melnikov process provides a necessary
condition for chaotic rocking response with the presence of
random noise (Fig. 3). The threshold for chaos is lowered by
the external random noise and chaotic response may occur in
the expanded region. Thus the presence of random noise ex-
pedites the occurrence of chaotic response. On the other hand,
the chaotic rocking response is closely related to overturning
because of the contiguous proximity of their domains of at-
traction (separated by pseudo-separatrix). The noise-induced
elevation in the average flux rate of phase-space transport in-
dicates the region of possible overturning response enlarges
with the presence of random noise (Fig. 4). The relationship
between chaotic and overturning responses can be demon-
strated by using noise intensity as a parameter in the following
numerical examples.

The transition from periodic rocking motion to chaotic re-
sponse is demonstrated in Fig. 5. Fig. 5(a) shows a sample
deterministic (o* = 0.0) periodic response. In the presence of
noise the response is chaotic for a finite duration [Fig. 5(b)].
Because of the existence of noise and the weak stability of
heteroclinic dynamics, the response trajectory eventually es-
capes out of the chaotic domain and leads to overturning after
125 cycles of forcing period (transient chaos). Moreover, if
the rocking response is chaotic without noise perturbations, it
could be brought out of the chaotic state and led to overturning
under the presence of random noise.

In summary, these numerical results indicate that the pres-
ence of random noise expedites the occurrence of chaotic rock-
ing response, which exists only for a finite duration (thus tran-
sient) prior to overturning due to the weak stability of the
chaotic attractor.

Note that the velocity restitution coefficient e is chosen 0.5
for chaotic response (Hogan 1989). It is well known that the
value of e is closely related to slenderness ratio and materials
of block and foundation (Yim et al. 1980), and that 0.5 is low
for ‘‘slender’’ blocks. A parametric study on the effects of
variations of e over a wide range (from 0.5 to 1.0) is presented
in Lin and Yim (1996). Numerical results here identify a close
relationship between chaotic rocking response and overturn-
ing. They also shed some light on experimental studies on
highly nonlinear rocking responses and their stabilities.
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Overturning (Diverges to Upper Right Corner) Responses, with
(A, Q, 8, ¥) =(4.2,2.7, 0.5, 3.14)

Noisy Chaotic and Overturning Responses

As shown in the previous section, a close relationship be-
tween noisy chaotic and overturning responses has been dem-
onstrated by examining individual realizations. As indicated
by Koh (1986), rocking responses are sensitive to excitation
details, thus it may be difficult to use time domain simulations
to describe the systermn behavior efficiently and comprehen-
sively. To study the intrinsic behaviors of the rocking response,
characteristics that are stable under small random perturbations
need to be identified and employed. In this section, the chaos-
overturning relationship is examined from a probabilistic point
of view via numerical (histogram) approximations of joint
probability density functions (JPDFs).

Specifically, large numbers of response realizations are sim-
ulated and sampled at multiples of forcing period 27/{) (Poin-
caré section), and all of the JPDFs are evaluated numerically
by counting the frequency of occurrence (histogram) of the
phase trajectories on the discretized Poincaré section. The fre-
quency of occurrence is calculated by counting the number of
sampled response realizations falling within each bin and nor-
malizing with respect to the total number of realizations. [To
avoid corruption of the histogram, individual samples are as-
signed a fixed value (1/2) after overturning.] Thus using the
resulting histograms, the joint probability of occurrence (or
JPDF) of chaotic or overturning responses can be approxi-
mately represented. In this study, 1,000 sample realizations are
used to evaluate each JPDF. As indicated in the previous sec-
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FIG. 6. Evolution of JPDF: (a) Initial Conditions at (0, 0); (b) after 2 Cycles; (c) after 4 Cycles; (d) after 10 Cycles; (e) after 20 Cycles;
(f) after 40 Cycies of Forcing Period with (4, Q, e, ¥) = (4.6, 2.7, 0.5, 3.14)

tion, chaotic attractors are of weak stability such that the noise
energy level is kept low with respect to its deterministic coun-
terpart to illustrate the transition from chaotic to overturning
response.

Fig. 6 shows the evolution of the JPDF in the first 40 cycles
of excitation period. The noise variance is chosen 0.04, which
is relatively small compared to the deterministic component
(noise energy/signal energy == 1%). Fig. 6(a) shows the JPDF
of the deterministic initial conditions, which is essentially a
dot in the Poincaré section. The JPDF starts to diffuse and
spread over the domain of the chaotic attractor after the first
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cycle of the excitation period [Fig. 6(b)]. After 4 cycles, the
JPDF can be seen to clearly portray the imprint of a chaotic
attractor [Fig. 6(c)]. It is observed that probability (mass) leaks
out of the region containing the domain of the chaotic attractor
onto the overturning region after 10 cycles [Fig. 6(d)], reflect-
ing the possibility of overturning of the rigid object. Leakage
of the probability (mass) to the overturning region becomes
more obvious as time elapses [Figs. 6(e) and 6(f)], indicating
increasing probability of overturning. Numerical results show
that after 60 cycles of the excitation period, the probability of
the response trajectories remaining within the chaotic region




becomes negligible, thus, the rocking object overturns with
practical certainty.

Evolution of the leakage as demonstrated indicates that the
domains of attraction of coexisting chaotic and overturning
attractors are bridged by the presence of random - noise.
Spreading of the JPDF to large values of rocking rotation im-
plies that overturning (diverging to *m/2 rotational displace-
ments) are much stronger attractors compared to other coex-
isting bounded chaotic attractors. Thus, chaotic response
trajectories near the heteroclinic orbit will eventually converge
to the overturning region due to the presence of small random
noise.

Leakage of the survival probability [Figs. 6(a)—(f)] depends
on the noise variance as well as the initial conditions (specified
either deterministically or by a distribution) (Soong and Gri-
goriu 1992). Related properties, such as first passage time, are
examined in detail in Lin and Yim (1996). Here, the proba-
bility distribution of a specific case of nonoverturning chaotic
response within a finite duration is demonstrated by varying
noise intensity (i.e., variance, see Fig. 7). Due to the weak
stability of the chaotic attractor, the elapsed time is chosen to
be 200 cycles of excitation period, and 1,000 sample realiza-
tions are used to compute the survival probability. The re-
sponse realizations are generated with quiescent initial condi-
tions and sampled after 200 cycles of excitation period.
Probabilities of nonoverturning chaotic response are obtained
by counting the number of trajectories staying within the cha-
otic domains right after 200 cycles and normalized with re-
spect to the total nurnber of realizations.

Survival probabilities with noise variance varying within the
range {0.0 0.04] are shown in Fig. 7. Observe that with no
noise present, the chaotic response will not lead to overturning
(PDF essentially 1). The probability of nonoverturning (cha-
otic) response decreases as the noise variance increases. When
the noise variance reaches 0.04, the noisy chaotic response will
overturn within 200 cycles of excitation period with practical
certainty.

Reconstruction of Chaotic Attractor

As demonstrated in previous sections, all chaotic (bounded)
motions are weakly stable. Due to the overwhelming strength
of the overturning attractor and the noise-induced bridging ef-
fect on domains of attraction of coexisting responses, after a
sufficiently long but finite duration, all chaotic motions will
eventually escape to the overturning region. In practice, except
when under very strict artificial control such as in tabletop
experiments, noise disturbance of a rocking system is inevi-
table. Thus, strange attractors embedded in stochastic state and
the associated transient chaotic rocking response may be dif-
ficult to detect due to the strong attraction of overturning.
However, through the mean Poincaré map, the fractal structure
of the corresponding embedded chaotic attractor can be recon-
structed.

Fig. 8(a) shows a chaotic time history which leads to over-
turning under the presence of noise disturbance [i.e., transient
chaos, also see Fig. 5(b)]. Fig. 8(b) illustrates that when the
effects of noise disturbance are averaged out through the mean
Poincaré mapping technique, the embedded chaotic attractor
can be reconstructed on the Poincaré section. Fractal details in
the reconstructed strange attractor imply the existence of hid-
den “‘order’’ in the chaotic response even with noise presence
(Kapitaniak 1988), thus transient chaotic rocking responses
may be exhibited prior to overturning [Figs. 8(a) and 5(b)].

The capability of the mean Poincaré map to reconstruct cha-
otic attractors via various noise intensities is further demon-
strated in Fig. 9. Compared to the chaotic attractor with no
noise perturbations (Fig. 9(a)], the mean Poincaré map pre-
serves the fractal characteristics with a low level noise distur-
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bance [o? = 0.05% Fig. 9(b)]. As the noise variance increases
(0.06* = o® = 0.12%), even though the mean Poincaré points
are still in the bounded region [Figs. 9(c) and 9(d)], the fractal
structure of the embedded chaotic attractor deteriorates. This
indicates that the ‘‘order’’ of the chaotic response in the sto-
chastic state diminishes as noise intensity increases. Further
increases in the noise intensity (o? = 0.13° result in over-
turning response in the mean sense [Figs. 9(e) and 9(f)]. Note
that the overturning response in the mean Poincaré is caused
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by the fact that when divergent (overturning) rocking re-
sponses occur, the ensemble average is shifted out of the safe
domain, leading to overturning.

CONCLUDING REMARKS

Rocking behaviors of slender rigid objects subjected to pe-
riodic excitations with and without noise disturbance have
been examined to gain a better understanding of their response
stability and sensitivity. Relationships between chaotic and
overturning responses in the vicinity of the heteroclinic orbits

726 / JOURNAL OF ENGINEERING MECHANICS / AUGUST 1996

have been demonstrated in both deterministic and stochastic
states with small random perturbations resulting in the foliow-
ing summary remarks:

1. Taking into account the presence of noise, a mean-square
criterion for the possible chaotic domain based on a
stochastic Melnikov process has been derived. It is found
that the presence of noise enlarges the chaotic domain
and expedites the occurrence of chaotic response in the
parameter space.

2. Relationships between chaotic and overturning responses




have been analytically examined and demonstrated via
the average phase-flux rate based on a stochastic Mel-
nikov process approach. The presence of noise elevates
the phase-flux rate and increases the likelihood of over-
turning. Numerical results also indicate that even with
the presence of very weak noise the chaotic response
trajectory will eventually be driven to overturning, thus
weak stability of deterministic chaotic rocking response
is indicated.

3. Numerical results confirm that the presence of noise can
induce a transition among diverse rocking responses,
e.g., from periodic to ‘‘noisy and chaotic,’’ then to over-
turning. Thus, ‘‘noisy and chaotic’’ response is a possi-
ble intermediate state between bounded (periodic) re-
sponse and overturning.

4. Reconstruction of embedded chaotic attractors in a noisy
environment can be accomplished by applying the mean
Poincaré map. This mapping technique is able to average
out the finite noise effects and to reflect the embedded
fractal structure of the attractors. Thus, under the pres-
ence of random noise, if the fractal details of recon-
structed strange attractors are preserved in the mean
Poincaré map, rigid objects will likely experience tran-
sient chaotic rocking responses prior to overturning.
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APPENDIX II.

NOTATION

The following symbols are used in this paper:

©
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DG,

€

aalg, nondimensionalized amplitude of periodic excita-
tion;

= amplitude of periodic excitation;

LI L T | S| VI VN | SO | S £

it

velocity restitution coefficient;
gravitational acceleration;

mass moment of inertia;

object mass;

stochastic Melnikov process;

radius of rotation;

time;

state (displacement and velocity) vector;
state variable (displacement);

state variable (velocity);

MgR/To;

Shinozuka noise;

8/6.,, nondimensionalized angular displacement;
angular displacement;

critical angle;

noise variance;

variance of stochastic Melnikov process;
at, nondimensionalized time;

average phase-flux rate;

phase shift of periodic excitation;

w/a, nondimensionalized frequency of periodic excitation;
and

frequency of periodic excitation.
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