NONLINEAR ROCKING MOTIONS.
II: OVERTURNING UNDER RANDOM EXCITATIONS

By H. Lin' and S. C. S. Yim,” Member, ASCE

ABSTRACT: Rocking responses of rigid objects under combined deterministic and stochastic excitations of
arbitrary relative intensities are examined from a fully probabilistic perspective. The associated Fokker-Planck
equation is derived and numerically solved by a path-integral solution procedure to obtain the joint probability
density functions (JPDFs). The evolutions and the steady states of the JPDFs are employed to elucidate the
global behavior of the rocking responses. As found in the companion paper, numerical results confirm that the
presence of stochastic excitation bridges the domains of attraction of coexisting responses, and that overturning
attractors are of the greatest relative stability. Thus, all rocking response trajectories that visit near the heteroclinic
orbit will eventually lead to overturning under the influence of stochastic excitation. A rapid leakage of the
probability (mass) out of the ‘‘safe’’ (bounded, chaotic) domain to the overturning regime implies weak stability
of the chaotic attractor. Using mean first-passage time as a performance index, sensitivity of rocking responses
to system parameters and (non)stationarity of the stochastic excitation is also investigated.

INTRODUCTION

Rigid rocking object models incorporating the effects of en-
vironmental random disturbances in their response behavior
have been of great interest to engineers. As shown in Lin and
Yim (1996), the behaviors of periodically excited rocking re-
sponse can be highly nonlinear. Addition of small amount of
stochasticity in the excitation further complicates the analyses.

Several analytical studies of the stochastic response of rigid
rocking blocks have appeared in the literature. Spanos and
Koh (1986) employed a statistical linearization technique to
examine the stochastic rocking of a rigid rectangular block on
Winkler’s foundation due to nonstationary foundation shaking.
Koh (1986) further studied this problem through simulation
and estimated the probability of no toppling. Iyengar and Ma-
nohar (1991) investigated the stochastic rocking behavior un-
der simultaneous horizontal and vertical white noise excita-
tions. By approximating the impact-induced energy dissipation
by viscous damping, the corresponding Fokker-Planck equa-
tion was developed. Further assuming that the rigid object
does not overturn under weak noise disturbance, an approxi-
mate stationary solution of the probability density function
(PDF) was obtained. Overturning of the object was examined
via first-passage failure. In another probabilistic analysis on
the stochastic rocking response carried out by Dimentberg et
al. (1993), the base excitations were modeled as white noise
in both horizontal and vertical directions, and both freestand-
ing and anchored objects were considered. By applying a
quasi-conservative averaging technique, stochastic equations
governing the motion were solved using a semianalytical pro-
cedure. They showed that the presence of vertical excitation,
with intensity about one-half of that of the horizontal excita-
tion, may increase the probability of toppling by 30-40%. In
addition, they also found that, similar to the statistical results
obtained by Yim et al. (1980), larger blocks are more stable
than smaller ones of identical geometric proportion.

In Lin and Yim (1996), an investigation on a periodically
excited rocking system with small random perturbations was
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conducted to demonstrate the intrinsic properties of various
types of rocking responses (e.g., periodic, chaotic, and noisy
chaotic) based on an analytical approach using the stochastic
Melnikov process and average flux. In this paper, the limita-
tions on small random perturbation intensity, large slenderness
ratio of the rigid object, determinism of initial conditions, and
stationarity of the excitation required in the companion paper
are relaxed. The rocking behaviors of rigid objects subjected
to combined deterministic and (not necessarily small) stochas-
tic excitations are studied from a fully stochastic perspective.
In particular, the large slenderness ratio (piecewise linear) con-
straint of the rigid object is removed here, and a fully nonlin-
ear rocking model is employed to examine the sensitivity of
the stochastic rocking response to the slenderness ratio. A uni-
fied mathematical representation of rocking behaviors sub-
jected to combined deterministic and stochastic excitations is
formulated by introducing an excitation parameter  with the
total input energy fixed. By varying this parameter from zero
to one, various degrees of determinicity/stochasticity of the
excitations can be performed, and their effects on rocking re-
sponses are examined. The Fokker-Planck equation corre-
sponding to the rocking system is derived and solved semian-
alytically using a path-integral solution procedure. Global
information of the system behavior is demonstrated via the
evolution of the resulting joint probability density functions
(JPDFs, or simply PDFs for simplicity). Stability of the sto-
chastic rocking response is evaluated by estimating the mean
first-passage time. Using this performance index, a sensitivity
study is conducted on system parameters as well as the
(non)stationarity of stochastic excitation.

PHYSICAL MODEL

The rocking response of a rigid object with arbitrary slen-
derness ratio subjected to combined deterministic and sto-
chastic excitations can be formulated as in Yim et al. (1980)

1,0 + MRa,, + MgR sin(®,, — 8) =0, 6 >0 (1
and

1,6 + MRa, — MgR sin®,, + ) =0, 0<0 @

Egs. (1) and (2), respectively, represent nonslipping positive
and negative rocking angles about the centers of rotation O
and O'. Note that [, = moment of inertia about O or O’; M =
mass; a,, = horizontal base acceleration; R = distance from O
to the center of mass; and 8, = cot™'(H/B) = critical (static
overturning) angle, where H and B = height and width of the
object. Impact-induced energy loss (or damping) is accounted




for by restitution coefficient, e, which relates the angular ve-
locities before and after impact (Yim et al. 1980)

0t ) =eb(t”), 0se=1 3)

where ¢t~ (t7) = time just before (after) impact. In this study,
a general form of the horizontal base excitation including both
deterministic and stochastic components is given by

ag(t) = va cos(wt + &) + IOV — yf(t) )]

where a, ©, and ¢ = amplitude, frequency, and phase shift of
the periodic excitation, respectively. I(¢) represents an inten-
sity-time function that characterizes the time-dependent vari-
ation (thus nonstationary) of the intensity of stochastic exci-
tation. In the limit as I(¢) approaches a constant, stationary
stochastic excitation is recovered. Stochastic excitation f(t)
describes a band-limited noise disturbance, which can be ob-
tained by linearly filtering a white noise process

F+Bf+Qif=E0) 5)

where B and (), = bandwidth parameter and natural frequency
of the filter; and £ = a zero-mean delta-correlated white noise
with noise intensity K

E[gmM]=0 (6a)
E[E(TE()] = ¥(T — 7') (6b)
the spectrum associated to the filter [(5)] is given by
S
S, (w) = - M

@ — @) + p’

It is seen that the degree of stochasticity of the rocking exci-
tation (hence the response) is completely governed by <,
which may vary from O to 1. In the limit y = O or 1, the
systern becomes purely deterministic or stochastic, respec-
tively. For convenience of analysis, (1) and (2) are normalized
by Iy, and (1) and (2) can be rewritten as

”

8 +9Lg—a“+onz sin@,, — ) =0, 6>0 1))

and

2

é+%—a3x—a2 sin(8, + 8)=0, 8<0 ©)

where o = MgR/I;.

PROBABILISTIC ANALYSIS

A probability-domain approach is introduced in this section
to demonstrate the stochastic behaviors of the rocking re-
sponse. An analysis will be conducted via the Fokker-Planck
equation and its semianalytical path-integral solution. The re-
sulting joint probability density function (JPDF) is used to
compute the mean first-passage time for system performance
evaluation.

Fokker-Planck Equation

Probabilistic aspect of rocking responses under combined
deterministic and stochastic excitations can be examined via
the solutions to a partial differential equation called the Fok-
ker-Planck equation (FPE). As shown in the previous section,
response behaviors of the rocking system are characterized by
two equations governing the motion and one equation govern-
ing the impacts at zero crossings. Thus, the corresponding FPE
in state space can be obtained by setting four state variables

X=[nonxnxl =001 (10)

and the associated FPEs for x, > 0 and x, < 0, are given by

ar

o’va

-2 {x,PX, )} — —a'—{[—a’ sin(@,, — x;) —
ax, ax,

-cos(wt + &) — oL;I(t) V1-—- 'sz:;] P(X,t)} - 36; {x PX, 1)}
3

~ 2 ((~Br - Q2P :)}+56—2P(X £
o, %o~ 2hoks ’ 2058 an
and
2
PXD __ 0 (P, 1)) - -a—{[oﬁ Sin8,, + x,) —
a7 axy 0x;

2
-cos(wt + &) — i—l(t) V11— ‘YZX3] PX, t)} - :f\:— {x. P(X, 1)}
3

d 2 K az

ax4{( Bxs oxs)P(x»t)}“'zax%P(x,f) a2)
respectively. Note that P(X, 1) denotes the PDF at position X
at time ¢, [x;, —o? sin(8, — x;) — (a*va/g)cos(wt + b), x4,
—Bx, — Qix;]" and [x, a® sin(8,, + x,) — (a’ya/g)cos(wt +
&), xs, —PBxs — Q2x;]" are the drift vectors. Coefficient k/2 is
the only nonzero entry in the four-by-four diffusion matrix
(Risken 1984). Note that transition of PDF from the positive
displacement subdomain to the negative displacement subdo-
main, and vice versa, is accompanied by a reduction of the
velocity magnitude [(3)]. Thus, the PDF of the rocking re-
sponse is fully characterized by (11) and (12), together with
the impact governed by (3).

Egs. (11) and (12) are second-order partial differential equa-
tions of the hyperbolic type. Closed form solutions do not exist
in general. To demonstrate the evolution of the PDF, a path-
integral solution procedure is employed in this study to nu-
merically solve the FPE.

Path-integral Solution

In the path-integral solution procedure, the traveling path of
the PDF in the probability space is discretized into a large
number of infinitesimal segments. Each segment represents an
elemental time propagation between two consecutive states in
the corresponding Markov process. The short-time propagation
is approximated by a time-dependent Gaussian distribution
called the short-time PDF, and the mean and variance of which
are determined by the drift vector and the diffusion matrix,
respectively. The PDF at the succeeding state can be obtained
through the propagation, and the PDF at a desired state can
be obtained by applying the short-time propagation iteratively.

The short-time probability density functions, G(X', X, 7
dr), for corresponding probability subdomains of (11) and (12)
are given by Wissel (1979)

GX', X, 5, dt) = Quw dt)™ # exp

2
dt ) X5 = X X3 — X
[ 2K< B = Qoxs dt ) ] ® <x‘ dt )

2,
X 8 [—az sin(@,, — x;) — %— cos(wt + &)

ol - x
- ; I(t)\/l_—7x3 5ix, — a , >0

(13)
and
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GX', X, t,d)=_2mwdn™* —-\}—_— exp
K

2
dt X; — x X3 - X
[ - 555 - 52
2
X 3 l:az sin(@,, + x,) — 2yd

cos(wt + @)

2 [
- 0‘; V1 = 'yzxg] 5 <x2 -4 x‘), X <0

dt (14)

where X' and X = poststate and prestate, respectively. Egs.
(13) and (14) are in the form of a degenerate Gaussian distri-
bution. The degeneracy is caused by the complete correlation
between x; and x, and x; and x, (Stratonovich 1967), which is
represented by the Dirac delta functions in (13) and (14). The
PDF at a desired state is given by

N—1
PX, 1) = lim Hff
0
Ny
Ndt—t—1,

N~1
“exp [~d: > 6Ky, X, 13 dOP(X,, ro)] dX,
0 (15)

where P(X,, t,) = initial probability distribution

P(Xox to) = P(x10$ X255 Xio» an) (16)

in which x,, and x,, = initial displacement and velocity of the
rocking model; and x, and x,, = initial conditions for the linear
filter, respectively. If the initial conditions for the system are
deterministic, (16) can be specified as

P(X,, 1) =8(x; = X10)8(xs = %2, )8(x3 — X30)8(xs — xs0)  (17)

The path-integral solution procedure converges to the exact
solution in the limit N — « and df — 0 in (15).

Based on the path sum (or discrete lattice representation) of
the path integral, this procedure can be numerically evaluated
(Wehner and Wolfer 1983). Propagation of the PDF between
consecutive states is described by the corresponding segment
in the discretized mean path in probability space. The proba-
bility domains at the ends of the segments, i.e., prestate and
poststate, are discretized into N, X N, X N, X N, elements.
Accordingly, the short-time PDF corresponding to the transi-
tions between consecutive states, G(X', X, t; dt), can be dis-
cretized in to a transition tensor, I'(s; dt)

L maop(t; dt) = 24/{[Axf(i—n + Axipl[Bxy oy + Axapl

XhayH (A x10/2)

CAX gy + Axe][Axi—y T Axip]) f dx;

X~ {8xi-n/2]

i+ B /2] Tt {8x540/21 Lant[Bx4n/2]
’ ’ !
‘ j dx; dx; f dx;
T~ (Axig-0/2) x.

T~ [Axi-0/2} = [B8xl-n/2]
T F {8 X1 /2] Lo+ (A %0/ 2] Ko+ {4 Xxey/ 2}
‘ f dx, dx, f dx,
Xy~ {8 Krgm-11/2) I~ {85 /2] Ty~ B Xy y/2]

Zupy ¥ B2y /2)
: f dx,G(X', X, t; dp)

Supi~ {B2up-n/2]

(18)

where the subscripts ijkl and mnop = signature of each element
in the discretized probability domain at the poststate and pre-
state, respectively. Eq. (18) indicates that the transition tensor
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is an explicit time function that needs to be updated continu-
ously with time.

Each element of PDF at the prestate propagates through the
transition tensor, and the PDF at the poststate is represented
by the accumulation of all contributions from the prestate, i.e.

Ng Ng Nf Nf
Pu(t + dt) = 20 2 D D Tintmop(ts dDPrp 1) (19)
mml =]  omi  pml

Recall that there exists a reduction of velocity magnitude if
PDF crosses the boundary of zero displacement (x, = 0) be-
tween the positive and negative displacement subdomains.
This local velocity reduction is implemented numerically by
shifting the locations of the trajectories in the probability do-
main. The zero crossing for a trajectory that has potential of
crossing the boundary can be determined via the technique
described by Yim and Lin (1991). After impact, the location
of the trajectory is shifted by (1 — e)x, along x, axis. The
angular displacement and velocity corresponding to the shifted
location are then used as the initial conditions for the trajectory
for the next propagation. The desired PDF is obtained by it-
erating (19).

Mean First-Passage Time

System performance can be evaluated by its reliability,
which measures the probability of system response contained
within the desired (safe) domain for a given period of time.
In this case it is equal to the survival probability given by
Soong and Grigoriu (1992)

Pty =P(Tp > 1} (20)

where T, = a random variable denoting the time of first-
domain—outcrossing system response exceeding a given du-
ration t. The system performance can alternatively be repre-
sented by probabilistic properties (e.g., moments) of 7, the
first-passage time, giving the time to the first exit of response
out of a desired (safe) domain. Moments of any order of the
first-passage time can be directly calculated as

E{Th} = kf PP dt 21
0

provided that

lim 7*P, () = 0 22)

The mean (first-order moment, k = 1) of the first-passage time,
i.e., the averaged time of response escaping out of the desired
domain, is used to demonstrate the system performance in this
study. The survival probability P, in (20) and (21) is obtained
by numerically solving the FPE using the path-integral solu-
tion with given initial conditions and the following boundary
conditions:

P, x, t)=0 (23)

forx, > +x1,, %, >0, = —x, 5, >0, x, = +x,,, x, < O
and x, < —x;,, x; < 0. Variables *x,, define the upper/lower
bounds of the safe (bounded) domain for the rocking response.
The bounds are closely related to the pseudo-separatrix, which
is a function of damping mechanism and excitation details
(Jordan and Smith 1987). For simplicity of calculation and
consistency with time-domain simulations and histogram com-
putations in Lin and Yim (1996), x,; is chosen to be ©/2, i.e.,
the rigid object is in a horizontal (overturned) position, and
the resulting estimate can provide an upper bound for the mean
of the first-passage time.

With the availability of survival probability (or reliability)
P,, the duration of rocking response to stochastic excitation
remaining within safe domain can be estimated and demon-
strated. With P, and E{T,} as performance indices, sensitiv-




ity of the system response behaviors to excitation randomness
parameter v, slenderness ratio r, velocity restitution coefficient
e, uncertainties in initial conditions, as well as the effects of
(non)stationarity of stochastic excitation can be conducted and
demonstrated in later sections.

NUMERICAL SIMULATION

Sample paths of the rocking response in a stochastic state
can be obtained by directly integrating the stochastic differ-
ential equations [(5), (8), and (9)] using a fourth-order Runge-
Kutta integration algorithm.

The numerical representation of the narrow-band noise se-
lected in this study is based on Shinozuka’s approach (Shi-
nozuka 1971). The frequency range is equally divided into
small segments and the corresponding strips are formed in the
spectrum. The area of each strip denotes the input energy,
which is equivalent to a sinusoidal excitation with a random
phase shift and a random frequency with mean located at the
center of the frequency segment. The total energy due to a
narrow-band excitation imposed on the rocking system is
equivalent to the sum of all the sinusoidal excitations. The
number of sinusoidal functions is chosen 100 in this study to
ensure sufficiently accurate description.

PROBABILISTIC BEHAVIORS OF ROCKING
RESPONSE

The PDFs obtained by solving the FPE using the path-in-
tegral solution can provide the global information about the
response behaviors. They are used in this section to examine
the influence of the presence of random noise and the sensi-
tivities of the rocking motions to various system and excitation
paramieters.

Finite-Amplitude and Overturning Responses

The external random noise plays a role in bridging all co-
existing attracting domains. The corresponding PDFs portray
these attractors on a Poincaré map and indicate their relative
strengths. Fig. 1 shows the evolution of the PDFs in the first
few cycles of the excitation period. The PDF is concentrated
in the safe region for the first two cycles [Figs. 1(a) and (b)],
and then spreads widely over the phase space after two and a
half cycles [Fig. 1(c)]. As observed in Lin and Yim (1996),
this behavior indicates that the domains of attractions of all
coexisting attractors are bridged by the external noise. Spread-
ing of the PDF implies that the overturning regime (diverging
to *w/2 displacements) is a much stronger attractor compared
to the other coexisting attracting domains of bounded re-
sponses (including periodic and chaotic). Thus, all the re-
sponse trajectories will eventually converge to the overturning
regime due to the presence of stochastic excitation.

Response Sensitivity to System Parameter Variations

The weak stability of the chaotic rocking response has been
qualitatively demonstrated by the evolution of the PDF shown
in the previous section. Alternatively, the stability of the sto-
chastic rocking response can be quantitatively elucidated by
its mean first-passage time, which estimates the averaged es-
cape time of stochastic rocking responses out of the bounded
domain. With this quantity as an indicator of response stability,
sensitivity studies on excitation randomness parameter v, slen-
derness ratio r(H/B), velocity restitution coefficient e, as well
as the uncertainty in the initial conditions are conducted in the
following sections. Results from the following sections pro-
vide an analytical interpretation of the response stability from
a reliability perspective. They also serve to qualitatively cali-
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FIG. 1. Evolution of PDF: (a) Initial Probability Concentrated at
(0.0, 0.0); (b) Probability Density at First Cycle of Forcing Pe-
riod; {c) Probability Density after 2.5 Cycles of Forcing Period
(Overturning Occurs) [(a, w, 1, &, a, v, ) = (14.7, 2.7, 10, 0.5, 1.0,
0.95, 0.0)]

brate experimental and numerical simulation results obtained
by previous researchers (Aslam et al. 1980; Yim et al. 1980).

Excitation Randomness Parameter v

Sensitivity of the rocking response to the degree of random-
ness in excitation can be examined by varying the randomness
parameter vy in the range of [0 1] (from purely random to
purely deterministic). The total energy, due to combined de-
terministic and stochastic components, injected into the system
remains constant and is equal to the level that could cause
chaotic response in the deterministic setting. In this manner,
close relationships between chaotic and overturning responses
can be demonstrated. The system performance is evaluated and
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FIG. 2. Sensitlvity of Rocking Response to Various Degree of
Stochasticity of Excitation: (a) Survival Probability versus Time
(Solid, Short-Dashed, and Long-Dashed Lines for Cases with v
= 0.125, 0.375, and 0.75, Respectively); (b) Mean First-Passage
Time versus Excitation Parameter v [(a, w, 1, e, «, ¢b)=(14.7,2.7,
10, 0.5, 1.0, 0.0)]

illustrated by the corresponding survival probability (or reli-
ability) and mean first-passage time.

Fig. 2(a) shows the survival probabilities as a function of
time for rocking response with various degrees of stochasticity
in the excitation (y = 0.125, 0.375, and 0.75). It indicates that
the stability of the response decreases when parameter vy in-
creases. This is caused by the fact that, with the same energy
level, the response trajectories in the safe domain can be easily
driven toward the safe/overturning boundary by a large-am-
plitude periodic component in the excitation, thus overturning
may follow.

A more detailed sensitivity study of response to randomness
parameter is presented in Fig. 2(b), which shows the mean
first-passage time as a function of randomness parameter +. In
the range of between O and 0.4, Fig. 2(b) shows that mean
first-passage time is relatively constant as vy increases. How-
ever, there is a drop at about 0.45 as vy increases, which may
indicate that when the periodic excitation amplitude reaches
such a level (y = 0.45), it promptly drives the response out of
the safe domain. The mean first-passage time again state at a
relatively constant level between v = 0.5 to 0.76. An increase
is also observed for v above 0.8. This is likely caused by the
phenomenon called ‘‘noise-induced chaos.”” In this region, the
stable and unstable manifolds intersect and the domain of
bounded response is expanded 1.55 times of the static critical
angle [see Lin and Yim (1996)]. Moreover, because of such
an expansion of safe domain, the duration of response trajec-
tories staying the expanded domain increases, so does the
mean first-passage time. This increasing trend will continue as
randomness parameter vy approaches 1.0. At this limit, the
rocking response falls into a stable deterministic chaotic at-
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FIG. 3. Sensitivity of Rocking Response to Various Slender-
ness Ratios (H/B): (a) Survival Probability versus Time; (b)
Mean First-Passage Time versus A [(a/8.,, o, &, A, v, &) = (147,
2.7, 0.5, 290, 0.0, 0.0)]

tractor, and the corresponding mean first-passage time be-
comes infinite.

Slenderness Ratio r

The geometry as well as physical dimension of the rigid
block for a given base width are characterized by the slender-
ness ratio r and radius of gyration R. It has been observed that
for a given geometric portion, larger blocks are more stable
than smaller ones (Aslam et al. 1980; Yim et al. 1980). In this
section, rocking responses of various geometric portions (vary-
ing slenderness ratio with base width fixed) to combined de-
terministic and stochastic excitations (y = 0.5, total input
energy normalized with respect to the critical angle) are ex-
amined.

Fig. 3(a) shows the reliability of rocking responses with
slenderness ratios r = 20, 40, and 100, respectively. It is ob-
served that even though the mass and dimension of the rigid
block increase with increasing slenderness ratio r, the corre-
sponding response reliability decreases. A more detailed ex-
amination of the response sensitivity to slenderness ratio is
demonstrated in Fig. 3(b). Dots in Fig. 3(b) are actual numer-
ical results (varying r from 2 to 200) and the solid line is the
corresponding polynomial interpolation to illustrate a trend. A
drastic drop for r within the range of 2—4 and almost flat for
r larger than 10 are observed. This indicates that, in the study
of response reliability, slenderness (piecewise linear) assump-
tion is adequate when r is larger than 10. It is also demon-
strated that the mean first passage time of rocking response
subjected to combined deterministic and stochastic excitations
decreases with increasing mass and dimension of the object
(width fixed), which is in line with experimental results ob-
served by Aslam et al. (1980).

Velocity Restitution Coefficient e

The energy dissipation mechanism of the rocking system is
governed by impact at zero angular displacement, which is
characterized by the velocity restitution coefficient e. Chaotic
response has only been observed with high energy dissipation
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(e = (.5) (Hogan 1989; Yim and Lin 1992). Such energy dis-
sipation is probably higher than those identified in practice.
Such a high velocity reduction does provide strong enough
nonlinearity (together with large periodic excitation) for cha-
otic response. On the other hand, as indicated among the ex-
isting literature, the restitution coefficient is within the range
around 0.925 (Aslam et al. 1980). Nevertheless, in this study,
a wide range of e is studied, i.e., from 0.5 to 1.0, to examine
its effects on the rocking response subjected to purely sto-
chastic excitation (y = 0.0).

Fig. 4(a) shows the associated reliability of rocking re-
sponses subjected to stochastic excitation with various velocity
restitution coefficients (e = 0.5, 0.75, and 0.95). It is obvious
that response reliability decreases with increasing e. Sensitivity
of rocking responses to various degrees of damping dissipation
is demonstrated in Fig. 4(b) by plotting the mean first-passage
time as a function of restitution coefficient ¢ from 0.5 to 1.0.
As anucipated, numerical results show that the survival time
decreases with increasing value of e.

Initial Conditions

So far all the rocking responses examined are with the qui-
escent initial conditions. Exactness of such initial conditions
cannot be realized in practice. Imperfections in prescribing in-
itial position can be approximated by random state variables
(i.e., x, and x,,). A Gaussian distribution is assumed here to
describe the initial randomness. Sensitivity to such disturbance
is examined by varying the variance of initial distribution, for
fixed slenderness ratio (r = 10) and degree of stochasticity of
excitation (y = 0.5).

Fig. 5(a) shows examples of survival probabilities with var-
lous randomness in the initial conditions. It shows that stability
of rocking response decreases with increasing initial uncer-
tainties. A more detailed study of the sensitivity of the re-
sponse to variations in initial conditions is carried out through
averaged survival time [Fig. 5(b)] over the range of [0.0 0.17].
A significant drop in the mean first-passage time is observed
when the variance increases from 0 to 0.02% The effects of
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initial randomness on response stability in the range of [0.02°
0.10%] are observed to be much less significant.

Response Sensitivity to (Non)Stationarity of
Stochastic Excitation

So far, the stochastic excitation exerted on the rocking ob-
ject has been assumed stationary. The influence of nonstation-
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anty of the stochastic excitation on the rocking response can
also be examined by a systematic analysis procedure demon-
strated in this section. Among natural hazards, earthquakes are
one of the most prominent nonstationary loading on structures
that is of great interest to civil engineers. Thus, earthquake-
type excitations are employed here to demonstrate the appli-
cability of the analysis procedure to identify the influence of
nonstationarity on rocking response behaviors.

Fig. 6(a) shows a typical intensity-time function character-
izing acceleration of ground motion during earthquakes (Yim
et al. 1980). The solid line represents the ground acceleration
intensity, which increases quadratically for the first 4 s, reaches
a steady state for 11 s, and finally dies out exponentially. An
equivalent stationary excitation over 40 s ground motion is
shown by the dashed flat line. The intensity of the equivalent
stationary excitation is obtained by averaging the total area
under the intensity-time function over a 40 s duration. Cor-
responding mean first-passage times of rocking responses sub-
jected to nonstationary excitation and to equivalent stationary
excitation are shown in Fig. 6(b). It is observed that nonsta-
tionarity of the stochastic excitation has significant influence
on the response stability. Compared to the response to nonsta-
tionary excitation with the same total input energy, rocking
responses are less stable under equivalent stationary excitation,
thus stationary results are generally (except in the tail) more
conservative.

CONCLUDING REMARKS

The rocking behaviors of rigid objects have been examined
to gain a better understanding of the sensitivity and stability
of the response behavior. Rocking responses of fully nonlinear
rocking systems subjected to combined deterministic and sto-
chastic excitations of arbitrary relative intensity ratios have
been demonstrated from a probabilistic perspective. Based on
the observed semianalytical solutions of the FPE and numer-
ical simulation results, the following concluding remarks are
offered:

I The Fokker-Planck equation and its semianalytical solver
(path-integral solution) can provide a probabilistic de-
scription of the rocking response behaviors to combined
deterministic and stochastic excitations. Impact-induced
energy loss is numerically implemented by incorporating
a reduction in the rotational velocity when response tra-
jectories cross zero angular displacement.

2. The resulting probability density functions provide
global information about the response behaviors and the
relative strengths of various attractors. The fast-spreading
probability density function to overturning (=m/2 an-
gular displacements) being observed indicates that over-
turning response is the attractor with greatest relative
stability compared to the other bounded (periodic and
chaotic) responses. Thus, the long-term rocking response
behavior is inherently unstable when stochastic excita-
tion is present.

. Domains of attraction of all coexisting responses are
bridged by the presence of stochastic excitations. Among
coexisting response attractors, the overturning attractor
is of the greatest strength. Hence, as observed in Lin and
Yim (1996), semianalytical results obtained in this study
demonstrate that a rocking object will overturn eventu-
ally with stochastic excitation present. Thus, it may be
difficult to identify the existence of transient chaotic
rocking response in a stochastic state by examining time
histories alone.

4. Rocking system performance in terms of reliability have

been examined and demonstrated by the mean first-pas-
sage time, which provides a quantitative representation

w
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of the response stability. For a given rocking system, a
more stable response is indicated by a larger value of
mean first-passage time. This systematic analysis proce-
dure can also be applied to rocking responses subjected
to nonstationary excitation.

5. Sensitivity studies of the response to relative randomness
parameter vy, system slenderness ratio r, velocity resti-
tution coefficient e, as well as uncertainties in initial con-
ditions have been conducted using the mean first-passage
time as a performance index. It is observed that the
reliability of rocking response decreases with increasing
randomness, however, when vy approaches unity (near
chaotic domain), because of expansion of the safe region,
the reliability increase rapidly. It is also observed that the
reliability of rocking response decreases with increasing
slenderness ratio r even with the associated increases in
mass and physical dimension of the block. The system
behavior becomes less reliable with the increase of res-
titution coefficient ¢ or uncertainties in initial conditions.

6. The effects of nonstationarity is shown to be significant.
Compared to the response of nonstationary excitation
with the same total input energy, rocking responses are
less stable under equivalent stationary excitation.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

T Qw0 Wa

(LI T || T TN TR

f
1)

PX, 1)
P)

periodic excitation amplitude (Ib-in.);
object width (in.);

velocity restitution coefficient;
filtered white noise;

short-time probability density function;
object height (in.);

mass moment of inertia (Ib-in.-sec?);
intensity-time function;

object mass (slug);

probability density function;

survival probability or reliability;

o MM,

@
3

€ Powmx

L O L O {1 T T [ T T}

radius of rotation;

slenderness ratio;

time (s);

first-passage time (s);

state vector;

linear filter bandwidth parameter;
short-time transition tensor;

excitation parameter;

angular displacement (rad);

critical (static overturning) angle (rad);
noise intensity;

ideal white noise;

phase shift of periodic excitation;
linear filter natural frequency (rad/s); and
periodic excitation frequency (rad/s).
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