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ABSTRACT:

An intricate universal superstructure in bifurcation sets and routes to chaos of a nonlinear moored

ocean system subjected to monochromatic wave excitations are investigated analytically and demonstrated nu-
merically in detail herein. System nonlinearities include complex geometric restoring force and coupled fluid-
system exciting forces. Primary and secondary resonance regions are identified by employing variational analysis
techniques for local stability. Tangent and periodic doubling bifurcations are examined to reveal the underlying
intricate superstructure. Numerical results of this complex system uncover a steady-state superstructure in the
bifurcation sets that exhibit a similar bifurcation pattern of coexisting solutions in the subharmonic, ultrahar-
monic, and ultrasubharmonic domains. Within this superstructure it is illustrated that strange attractors appear
when a period doubling sequence is infinite, and when abrupt changes in the size of an attractor occur near

tangent bifurcations.

INTRODUCTION

Highly nonlinear (including chaotic) responses have re-
cently been observed in various numerical and approximate
semianalytical models of compliant ocean systems (e.g., Ber-
nitsas and Chung 1990; Gottlieb and Yim 1992). (To avoid
confusion the word ‘“‘system’’ is used exclusively to refer to
the physical structural assembly considered. The word *‘struc-
ture’’ refers to the organization of the bifurcation sets and
routes to chaos, which is the focus of this study.) Nonlinear-
ities of these models include restoring force (induced by ge-
ometry or discontinuity) and coupled hydrodynamic effects in-
troduced by quadratic fluid-system interaction viscous drag.
The inertial component may include a bias external excitation
that for certain structural configurations is complemented by
an additional coupled nonlinear convective excitation. More-
over, complex and sensitive transverse dynamical responses in
low-tensioned, small-sag, inelastic (hysteretic) mooring cables
have been identified and observed (Triantafyllou and Yue
1995). The system response behavior may become further
complicated when the effects of the nonlinear structure-cable
interaction become significant.

Numerical investigations of simple systems that exhibit sim-
ilar nonlinear properties have revealed intricate behavior in-
cluding coexisting periodic (harmonic, subharmonic, ultrahar-
monic, and ultrasubharmonic) and aperiodic (quasiperiodic
and chaotic) solutions defined by initial conditions. Stability
of each type of system responses is governed by complicated
phenomena near resonance and sensitivity to initial conditions.
The behavior of nonlinear dissipative dynamical systems sub-
jected to deterministic excitation has been studied extensively
by both classical and modern techniques. Classical techniques
have concentrated on obtaining closed form periodic solutions
of integrable or weakly nonlinear systems and analyzing their
stability (Nayfeh and Mook 1979). Modern techniques con-
centrate on global bifurcations and address the existence of
chaotic responses and global system behavior (Guckenheimer
and Holmes 1986).

It is well known that chaotic behavior is inherent in a gen-
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eral class of nonlinear systems (e.g., Thompson and Stewart
1986). Its existence can be identified by the application of
modern quantitative measures. Examples of such measures are
Lyapunov exponents, and fractal or multifractal dimensions.

A less-recognized aspect of the global nonlinear behavior
of these systems is the existence of an elaborate ‘‘superstruc-
ture,”’ including crisis and intermittent phenomena (Grebogi
et al. 1983) that organizes the bifurcation sets (Ueda et al.
1990). The presence of a superstructure in the bifurcation sets
of a nonlinear system enables a comprehendive overview of
its global behavior. Although no methodology has been de-
veloped at this point, the precise nature of the superstructure
and its sensitivity to small changes in numerical values of
system parameters may potentially be employed in the future
to provide an excellent tool for identification of highly non-
linear systems when experimental measurements are available.

While a large number of dynamical systems exhibit at first
glance a nonlinear structure similar to that of one-dimensional
(1D) maps (e.g., Simoyi et al. 1982), detailed numerical anal-
ysis of continuous dynamical systems reveals that at least a
codimension two bifurcation analysis is needed to adequately
describe a nonlinear system behavior. Parlitz and Lauterborn
(1985) demonstrated numerically the existence of a superstruc-
ture in the bifurcation sets of a system with simple nonlinearity
idealized by a Duffing equation with a single-well potential.
They related their findings to ultraharmonic and ultrasubhar-
monic resonant properties of the system and conjectured that
the superstructure is universal to a large class of nonlinear
oscillators with simple or complex nonlinearities.

Recently Ueda et al. (1990) demonstrated the global bifur-
cation organizing behavior of another simple system repre-
sented by a Duffing equation with a double-well potential.
Grebogi et al. (1987) and Thompson and Soliman (1990) nu-
merically investigated fractal basin boundary bifurcations and
determined the corresponding generic codimension-two pat-
terns. They also conjectured the behavior to be universal in
all forced dissipative systems.

Motivated by the potential practical applications of the su-
perstructure to analyze the global behavior and to identify par-
ameters of highly nonlinear systems, the present study nu-
merically examines in detail the underlying patterns of the
nonlinear motions of the moored ocean system with complex
stiffness and forcing nonlinearities considered by Gottlieb and
Yim (1992). We first summarize a local stability analysis for
the development of bifurcation criteria of the various nonlinear
responses, including resonance, subharmonic, ultraharmonic,
ultrasubharmonic, and chaotic motions. Guided by the stability
regions delineated by the bifurcation criteria, the existence of
the periodic recurrence of a superstructure in the bifurcation
sets is then demonstrated by carefully examining the numerical




results documented in Gottlieb and Yim (1992) and additional
ones presented here. The superstructure underlying the bifur-
cation sets illustrates an intricate universal bifurcation pattern
of coexisting solutions in the subharmonic, ultraharmonic, and
ultrasubharmonic domains. Within this superstructure strange
attractors appear when a period doubling bifurcation sequence
is infinite (Feigenbaum 1980) and when an abrupt change in
the size of a unique attractor (Ueda 1981) occurs near a tan-
gent bifurcation value. The superstructure is closely related to
the nonlinear resonances of the system and enables identifi-
cation of routes to chaos and their relationship with other in-
stabilities for given environmental conditions.

SYSTEM CONSIDERED

A submerged, neutrally buoyant multipoint moored ocean
system shown in Fig. 1 is modeled as a single degree of free-
dom (SDOF, x, = x5 = 0) rigid body in surge, hydrodynami-
cally damped, and excited nonlinear oscillator. The equation
of motion is derived based on equilibrium of geometric re-
storing forces and dynamic forces induced by body motion
under monochromatic wave and uniform current excitation.
The governing equation is given by (Gottlieb and Yim 1992)

_ L B+x _ B—x
taK {x‘ 2d [\/1 +@B+x) VI+@- xl)’]}

= Fn‘ + F, = % CDA,(uI - x',)lu, el xll

a d
+pV {1+ C) [—;—‘ + (uy — %) a—}‘:] e

where M = body mass; C = system damping coefficient; K =
elastic coefficient of mooring line; 8 denotes the degree of
geometric nonlinearity; /. = initial length of mooring lines (see
Fig. 1 for d); Cp and C, = hydrodynamic viscous drag and
added mass coefficients, respectively; A, = projected drag area;
V = displace volume; p = water mass density; x, represents
the surge displacement; and u, = fluid particle velocity. More-
over, u, and B are given by

cosh kh 2b— L
Sinhkhcos(k;r,,——mt), g= >d

uy=U, + wa (1d)
where U, denotes colinear current magnitude; a, w, and k =
wave amplitude, frequency, and number, respectively; L = di-
ameter of the sphere (see Fig. 1 for b); and h = water depth.
After normalization with respect to the total mass (M +
p V C,) and distance d, and introducing time as an additional
variable, (1a) can be rewritten as an autonomous system

0f=zow
(2a,b,c)

where x and y = normalized surge displacement and velocity,
respectively; R(x) denotes the normalized restoring force; Fp
= normalized drag force; F; = normalized initial force; and vy
= normalized system damping coefficient (see Appendix I for
expressions).

As shown in (1) the complex nature of the moored ocean
system results from the highly nonlinear relationships between
the stiffness, coupled drag, and inertia excitation forces and
the (large) displacement and velocity responses. The stiffness
nonlinearity is due to the mooring angle (geometry), which
can vary from a highly nonlinear two-point system (b = 0) to
an almost linear four-point system (b >> d). The mooring lines
considered in this study are assumed to be linear, elastic, and
taut {I./2d = v = 1/22/(1 + B3], and do not vibrate trans-

=y, y=—R® — vy + Fp(x,y, 0) + Fix, y, 8);

springs

1

FIG. 1. Multi-Point Moored Ocean System: () Plan View; (b)
Profile View

versely. These simple assumptions are in direct contrast to the
nonlinear, inelastic (hysteretic), and low-tensioned cables ex-
amined by Triantafyllou and Yue (1995), where the cable prop-
erties and sag were the major sources of the nonlinear dynam-
ical phenomena of the system response. Because of the
complexity of (1), exact solutions of the response are imprac-
tical; approximate solutions need to be developed.

APPROXIMATE SOLUTION

As in Gottlieb and Yim (1992), the method of harmonic
balance is chosen here for approximate system solutions to
account for the even harmonics that are induced by the bias
due to the nonlinear viscous drag and convective inertial
forces. The following approximate solution form is assumed:

I
.n
Xouimy = Aom + 2 Ajum COS [‘ ; 0+ ‘I’-'(n/m)] Ba)

!
n . '
Yomy = —@ ™ z iA;(,,/,,.) sin [l —0 + ‘I,l(nlm)] (3b)
m < m

where Aowmy Aiwmy Yiwm = solution amplitudes and phases;
I = order of approximation (i = 1, 2, 3, ..., I); and n/m =
order of ultrasubharmonics.

The unknown amplitudes and phases can be derived by sub-
stituting the approximate solution [(3)] into the system {(2)],
squaring the resulting equation, and comparing terms of equal
harmonic order. Thus, the system is transferred into a finite
nonlinear set of algebraic equations

SJ[AO’ Aiumys Wi(n/m)] =0 (C))

wherej=1,2,3,...,2I + 1.

Solutions of this set for the unknown amplitudes and phases
are obtained by using an iterative Newton-Raphson procedure
(Gottlieb and Yim 1992). The frequency response (backbone)
curve of the Hamiltonian system, which characterizes the de-
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gree of nonlinearity of the system, can then be generated nu-
merically by varying the excitation frequency.

STABILITY ANALYSIS
Local stability of the approximate solution can be deter- 0.8a ,l ”
mined by considering a perturbed solution, x(f) = xo(t) + €(0), r
that on substitution in (2) results in a nonlinear variational Iy
equation. Linearizing the variational equation yields a set of 0.60 'y
. /

linear ordinary differential equations with periodic coefficient
functions {H 1[xo(8), yo(8)] = Hy[xe(8 + 2m), yo(6 + 2m)]} p:

¢=m; N =Hix, yom + Hailxo, Yo)€ (5a)
where
H,:—'y—-Z&B- U L +uw2K|:—— 1 +(uo—!£>:|uo
W [0)] (O]
(5b)
and
H,=—a(l — 7{[1 + B + xo)1™**
+[1+ B — x) 17D — 28k [up — % uj
2.2 _ _1_ _ _ "2
+ po'K {(uo Jo) [K (4o yo)] + uo} 0)

In (5b) and (5¢), uo = fy + fi cos(kx, — 0); and a, B, v, §,
K, b T, for f1» and B’ are system and excitation parameters (see
Appendix I for expressions). Substituting the approximate so-
lution [(3)] into (5b) and (5c) and expanding H,(xo, yo) in
Fourier series, [H,(8)], a generalized Hill’s variational equa-
tion is obtained

t=m; W=H@Om+ H@®)k (6a)

where H,, are given by
. n . . n
H, = Eoum + 2 Ecjoum €OS (J; 9) + Egum SiN (] p” 0) (6b)
]

and

. n . ,n
H = Logum + E Lcym) COS (J ™ 9) + Lsgoum SIN (J m 9) (6¢)
7

with (¢ {¢) and (Eg, {s) the Fourier coefficients calculated
from H, ,. The particular solution to (6a), € = exp(v)Z(f), with
the Floquet theory (Ioos and Joseph 1981) can be used to
identify the stability regions for symmetric and unsymmetric
responses.

A low order (I = 1)2w periodic two-term unsymmetric so-
lution x,(8) = Ay + A, cos(® + ¥,) corresponding to excitation
of small amplitude waves and weak current depicts both tan-
gent and period double bifurcations [Fig. 2(a)]. The primary
resonance [originating from (0, 0) in Fig. 2(a)] is obtained by
applying harmonic balance method to (6) at the stability limit
v=0

Y
v Sy e [(BY _ z’g’_g’}
\/” * 2ay [(§> 1} o (c) co] (Ta)

where {, = V({& + $); and § = V/({&; + £5). The second-
ary stability region [to the right of the primary resonance in

Fig. 2(a)] is obtained by solving (6) inserting the period dou-
bled £(t) = by, cos(8)
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FIG. 2. Stability Diagram of Nonlinear Restoring Force with
Linearized Excitation: (a) Wave and Current; (b) Wave

@' =2l — ¥ = V™ = 20y + &)

where y' =y + (8/3mudV(fi + fD.

A low order one-term symmetric solution such as xo(0) =
A, cos(® + W), corresponding to the response of small am-
plitude wave excitation (fo = 0, f; # 0), does not exhibit a
period doubling phenomenon but determines a pitchfork bi-
furcation in which the Z(8) = Z(8 + 1) solution loses its sta-
bility [Fig. 2(b)]. This approximate order two ultraharmonic
stability region boundaries are obtained by solving (6) insert-
ing &) = by + b, cos(20)

bl
e - <[]
Lo e Lo ®)

Stability loss of both symmetric and unsymmetric solutions

(7b)




are demonstrated above, and period doubling is indicated (in-
tersections of the frequency curves and stability regions in Fig.
2) and numerically verified. A similar analysis procedure can
also apply to identify higher order subharmonic and ultrasub-
harmonic resonances. Cascades of period doubling bifurca-
tions predicted by the analysis have been numerically con-
firmed (Gottlieb and Yim 1992).

In the absence of knowledge of the possible existence of an
intricate superstructure (see following section), Gottlieb and
Yim (1992) conducted a comprehensive numerical study and
presented examples of various types of nonlinear responses
collaborating the stability regions delineated by (7) and (8).
These examples include pitchfork bifurcation, dynamic sym-
metry breaking, multiple occurrence of unsymmetric subhar-
monics, period doubling in subharmonic domains, period dou-
bling in ultraharmonic domains, and coexistence of harmonic

107
and multiple subharmonics of different orders (Figs. 7-12,
. respectively, in Gottlieb and Yim 1992).
) IDENTIFICATION OF SUPERSTRUCTURE
As mentioned earlier, the existence of an intricate super-
< structure in an idealized, simple nonlinear system represented
'3 by the Duffing equation with a single-well potential has been
] shown numerically by Parlitz and Lauterborn (1985). The
] global behavior shown includes crisis and intermittent phe-
] nomena (Grebogi et al. 1983) and organization of the bifur-
] cation sets (Ueda et al. 1990). The superstructure is similar to
. that observed and analytically determined in codimension-two
bifurcation problems in other idealized simple systems such as
0.1 the Hénon map (Holmes and Whitley 1984) and Circle map
0.1 (Arnold 1965).
Prompted by these qualitative observations on systems with
FIG. 3. Superstructure in Bifurcation Sets simple nonlinearities and the numerical results of the system
with complex nonlinearities examined by Gottlieb and Yim
(1992), a detailed numerical investigation of the superstructure
TABLE 1. Order of Superstructure in Bifurcation Set of the moored ocean system is conducted here. The numerical
Roim 1 2 3 4 n search for the existence of various types of responses and iden-
1 i1 2/1,1 | 31,1 41,1 /1, j tifying the underlying global pattern is guided by the stability
2 12,1 | v,2 | 3/2,1 | 2/1,2 ni2, j regions in parameter space near low-order (Fig. 2) and higher-
3 /3,1 | 2/3,1 | VL3 | 43,1 n3,j order (not shown here) resonances. It is discovered that in the
4 V41 | 12,2 | 34,1 | V1,4 nl4, j region [a =1, B = (0, 1), 7= 1/24/(1 + B, ¥y <3 = 0.1, pf,
m Um,j | 2mj | 3mj | 4im,j 1, j o] a similar bifurcation pattern for subharmonic, ultrahar-
- - - - - monic, and ultrasubharmonic near resonant regions exists. This
S — symmetric
AS — asymmetric
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FIG. 4. Bifurcation Diagram
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superstructure is presented in Fig. 3. The pattern consists of
intersecting “‘resonance horns’’ that portray asymptotic behav-
ior for large excitation (uf). Intersecting resonance lines (tan-
gent and homoclinic bifurcations) describing coexisting solu-
tions are also derived for the Hénon map by a number of
investigators (e.g., Holmes and Whitley 1984). Note that bi-
furcations of equivalent periodic families (e.g., n/m = n/3) in-
tersect and possess the same slope. The width of the horn is
found to be governed by the relative damping ratio (y* « y/d).
Thus a control space defined by parameters describing a non-
dimensional relationship between excitation and system pa-
rameters [uf, w/w,, where wy = wo(a, B), ¥/8] can be derived.
Note that the codimension two bifurcations of Ueda (1980)
and Ueda et al. (1990) are defined in parameter space by
damping versus excitation amplitude whereas Patlitz and Lau-
terborn (1985) describe their ultraharmonic resonances in
terms of excitation amplitude versus frequency.

Classification of the bifurcations defining the superstructure
is typically done by a describing bifurcation number. Holmes

a)

aoe

%0 A 100 =100 00 180 280 IO
X . Xp

b)

-4.00

X , Xp

-4.00
400 =300 «~100 -I-Nx 000 100 200 .00
P

and Whitley (1984) extend the conventions of 1D maps in
their analysis of the 2D Hénon map [i.e., s/, where index m is
the period determined by Sarkovski’s theorem (Devaney 1986)
and j is the order of appearance calculated by kneading theory
(Guckenheimer and Holmes 1986)]. Ueda et al. (1990) define
suffices describing the periodicity (m) and an arbitrary index
to distinguish between types of solutions, whereas Parlitz and
Lauterborn (1985) define an ultraharmonic index (i.e., number
of maximum periodic solutions in one forcing period) com-
plemented by periodicity index to define ultrasubharmonics.
In order to classify the bifurcation pattern of the subhar-
monic, ultraharmonic, and ultrasubharmonic solutions for the
submerged moored system, the nonlinear resonance relation-
ship nw =~ m\/a, (where » = wave excitation frequency; a,
= coefficient of the linear component of the nonlinear stiffness)
is used to determine the first index [n/m] of the resonance
number. the ratio n/m (i.e., an inverse 1D winding number),
however, can be a relatively prime integer. Consequently, a
second index [j], is required to determine the order of ratios

2)

(@)
:

-1004 4 v

(2] an &0 am & o

:EJMWWWMMW

0.00 00 4.00 .00 8.00

80

200

(db)

-0

-0.0

S

=800

-0
oo 200 (Y- [ X-] &0

@

10.b0

FIG. 6. Evolution of Chaotic Attractor via Period Doubling: (a) = 1.7, (n/im, J) = (1/2, 2); (b) » = 1.68, (n/m, ]) = (1/2, 4); (c) w = 1.65,

(n/m, j) = (“1/2”, )
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with noncommon factors. Note that m denotes periodicity of
the response. Finally, a third index is required to determine
the dimension [d] of the response (i.e., integer deterministic
versus fractal chaotic). Note that the fractal dimension may
not by itself establish the chaotic nature of the motion (e.g.,
when it is close to an integer value) and a multifractal repre-
sentation (Feder 1989) is needed to quantify the ‘‘strangeness’’
of systems with two or more degrees of freedom [e.g., the
quasiperiodic response of an experimental attractor for thermal
convection (Jensen et al. 1985)]. Thus, a resonance number
R um .4y describing a repeating global bifurcation pattern is de-
fined here.

Table 1 is devised in this study to demonstrate the intricate
superstructure in the bifurcation set of the submerged moored
system. Knowledge of the intricate superstructure enables
identification of coexisting solutions and pitchfork or period
doubling bifurcations. The table displays the index of the fun-
damental resonant structure [n/m] followed by the index of
ordering [j]. Note that the upper row and the first column

a)

-080

a2 =016 =016 <008 000 &M 410 A8
x

b)

-‘w-a.n-aw-a.w-ww 200 400 803 800

Xp

'“!_un -~00 200 600 100 +.00
x ' Xp

describe the ultra [n] and sub [m] indices, respectively. The
index {j] identifies the order of equal ratios [e.g., (n/m, j) =
(1/2, 1) at (column, row) = (1, 2) versus (n/m, j) = (1/2, 2) at
(column, row) = (2, 4)]. Thus, the table diagonal divides be-
tween the ultraharmonic and subharmonic domains. Coexis-
tence found by local analysis can be determined by resonance
numbers Ry, ;, with similar n/m ratios (e.g., Ry, and Rys,y).
Also note that ultraharmonic solutions described by an even
descriptor (n or m) are unsymmetric whereas odd descriptors
describe symmetric or self-similar solutions. Numerical ex-
amples of coexisting (n/m = 1/2) and (n/m = 4/5) and singly
existing self-similar (n/m = 3/5) can be found in Figs. 12 and
9(c) in Gottlieb and Yim (1992), respectively.

The pitchfork bifurcation governed by (8) [shown here in
Fig. 2(b)] describes stability loss of a symmetric solution that
evolves in parameter space to two partner orbits (see Fig. 8,
Gottlieb and Yim 1992). This bifurcation is described by the
ordering index j: 1, 2 for n/m = 2/1 (e.g., Roan,y = Rypn2) in
the ultraharmonic domain. Similarly, the period doubling bi-

00 1.00 4.00 00 .00 10,00

[~

FIG. 6. Evolution of Chaotic Attractor via Explosion: (a) « = 3.05, (n = m = 1); (b) w = 3.10, (n/m, [} = (“1/2”, “1”); (¢) = 3.15, (n/m, |}

=(1/3,1)
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furcation (see Fig. 10, Gottlieb and Yim 1992) governed by
(7b) [shown here in Fig. 2(a)] is described by the ordering
index in the subharmonic domain j: 1, 2 for n/m = 1/2 (e.g.,
Ri2.1 = Ru22). Note that period doubling in the ultraharmonic
domain (see Fig. 11, Gottlieb and Yim 1992) is described by
j: 2, 3 for n/m = 2/1 (e.g., R2/l,2 - R2/l.3)'

Numerical simulations of system response enable construc-
tion of a schematic bifurcation diagram (Fig. 4). The simula-
tions consist of changing one control (w) for a given parameter
space under various sets of initial conditions. The diagram
depicts existence of periodic orbits throughout the domain de-
scribed by a variety of subharmonic and ultrasubharmonic so-
lutions. Solutions are separated by a common periodicity index
m. Symmetric (S) and asymmetric (AS) solutions (n/m = n/1)
describing pitchfork bifurcation transitions are also depicted.
For convenience, resonance lines (R, in dashed lines) are
added to highlight solution ordering. An example is the Ry,
ultrasubharmonic response (Fig. 4: ® = 4, n/m = 7/3) found
between the resonance lines of Ry, and R,,;. While not all of
the ultrasubharmonics predicted by the resonance number or-
dering are numerically identified, the dominant harmonic and
lower order subharmonic and ultrasubharmonic solutions are
found to be accurately described. Note that in order to obtain
the complete nonlinear steady state responses, fractal basin
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boundaries describing all possible initial conditions need to be
considered.

ROUTES TO CHAOTIC RESPONSE

Possible routes to a strange attractor can be described by
the evolution of unsymmetric and symmetric solutions as is
evident by the spectral content of the prechaotic and post-
chaotic motions. One possible route is through smooth and
continuous period multiplying. This route includes period dou-
bling (Fig. 5) and can be traced in the superstructure by the
ordering index j: 2, 4, 8- (C.g., Rl/z.l b d Rl/z'z —> R1/2_4 -
Ry..5). The period doubling route to chaotic motion is observed
with the appearance of additional even (Fig. 5) harmonics.
Similarly, a period tripling route with the appearance of ad-
ditional odd harmonics j: 3, 9 (e.g., Rys1 — Ryzs++) (not
shown here due to space limitation) has been identified and
verified numerically. Thus, the period multipling scenario de-
scribes an accumulation of internal resonance horns in the bi-
furcation sets. Note that when the multiplying sequence is in-
finite, the dimension index [d], describing the number of
systems degrees of freedom, does not retain its integer value
and is replaced by a characteristic fractal dimension
[e.g., Ruyz'-'.,"-z,gl" in Flg. 5(0)].

Based on our detailed numerical study, another route to cha-
otic motion is found in the abrupt change to and from neigh-
boring periodic motions (e.g., Rin,1 = Ris, as shown in Fig.
6). This occurs near the local tangent bifurcation values and
is associated with contraction of the 2mm/n ultrasubharmonic.
This route is found to be short lived in parameter space and
culminates in a strange attractor when a “‘collision’’ occurs
between two neighboring attractors separated by a saddle (i.e.,
bifurcation defined as a heteroclinic tangency). For the moored
ocean system strange attractors are found for odd (m and n
odd) self-similar subharmonic (e.8., Ry« 257 Fig. 6) and
ultrasubharmonic (e.g., R-y3~1,-263+» Fig. 7) scenarios while
even (m or n even) ultrasubharmonic scenarios of unsymmetric
solutions are portrayed only by transient chaotic behavior.

CONCLUDING REMARKS

A less recognized but important (and potentially beneficial)
aspect of highly nonlinear global response behavior, namely
the underlying universal pattern, of a system with complex
nonlinearities is examined here in detail. Specifically, the in-
tricate superstructure in bifurcation sets and possible routes to
chaotic response of a multipointed, submerged, moored, ocean
system with complex nonlinearities in the stiffness and excit-
ing forces subjected to monochromatic waves is investigated
analytically and demonstrated numerically. Bifurcations are
identified in parameter space by employing a local stability
analysis, and the steady-state superstructure in the bifurcation
sets is further revealed by extensive numerical simulations.

A resonance number consisting of suffices describing the
nonlinear content and dimension of solution within the bifur-
cation structure is derived. Resonance number ordering reveals
the structure near resonances and enables the prediction of
occurrence of highly nonlinear responses, e.g., subharmonics,
ultraharmonics, ultrasubharmonics, and chaos. The resulting
superstructure identifies the mechanisms governing system sta-
bility and the onset of strange attractors. In addition to a
smooth transition of infinite sequence of period multiplying
(e.g., doubling and tripling) to chaos, another possible route
to chaos via sudden explosion (collision of nearby attractors
separated by a saddle) is also observed and numerically dem-
onstrated.
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