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ABSTRACT.

We consider algorithms for estimating the expected maximum value of a time se-
ries for a period in the future given past observations. This is a “mid-range” problem
in which the long term asymptotics of extreme value theory do not apply. There are
essentially two approaches, estimating an ”extremal index” and the " Poisson clump-
ing heuristic”. Variations on these methods are tested with simulated Gauusian data.
Similarities in performance are explained rigorously.

INTRODUCTION

We consider the following problem. Given a time series from a stationary process
[X;}$2,, define the expected maximum E[Mp n+], where N' > N and

My = max  |X].
' NH1<i<N'

The problem is to find a good estimator of E[My n'] based on observations {X: .
We will alway consider Gaussian time series but it will be clear that our methods
apply more generally.

Here we describe several estimators of E[My n+], present some empirical results
and give some theoretical explanations of our results.

DESCRIPTION OF THE ESTIMATORS

Time Rescaling.

The idea is to estimate an extremal index of the process for this time scale.
We say that p is the extremal index for {X;}{2; on the scale of N if My has
approximately the same distribution as the maximum of [pN] independent random
variables with the same distribution as X, i.e Gaussian.
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There are essentially three choices to be made in approach.
The first is whether to use the time series itself or an enveloped version of it.
Given the data, {X;}{¥,; we may construct the discrete Hilbert transform {Yi},.

The process {R;}}Y, defined by
R; = \/XZ? + Yiz

is called the analytic envelope. It covers the “surface” of the time series, smoothing
out the oscillations. The maximum of the envelope is close to that of the original
process, especially in the narrow band case. It has the further computational ad-
vantage of being Rayleigh distributed. This is described in detail in [P,YBG]. We
call these choices direct and enveloped.

The second choice is how carefully to compute the expected maximum of n
independent Gaussian random variables (or Rayleigh in the enveloped case) as a
function of n. One could either use a good but computationally intensive numerical
approximation or an asymptotic formula, /2logn. We will refer to these choices
as strong and weak and call this approximation we use L(n).

The third choice is how carefully to fit the empirical expected maxima as com-
puted from the data to L(n). One possibility is to use one value of ng, say 50.
Find the average of the maximum value in the data for non-overlapping windows of
length ng. This value f;(no) is the empirical expected maximum at ny. To estimate
the extremal index then find p so that L(ng) = L(pno).

The other possibility is to compute multiple window lengths, i.e. to compute
L(n) = L(n) for various n. If we take n to be powers of 2 then the computation
time is not large because we may “nest” the computations of the maxima. We will
refer to these choices as single window and multiple window methods.

We note that the prevailing method among ocean engineers was the enveloped,
strong, single window method.

Poisson Clumping. Another possible estimator is suggested by Aldous’ use of
the Poisson clumping heuristic {A]. This heuristic assumes that the set of ¢ for
which X; > b is given by random sets distributed as a Poisson process. We make
the further assumption that these random sets are intervals.

Consider, for b relatively large

{t|X1—1 < b, X, > b}

to be distributed as a Poisson process with rate A,. The following fundamental
relation is assumed

P[X; > b] = ME[Ch),

where C} is the random length of an interval (clump) in which the time series spends
above a given value b. The event [My < b] is equivalent to

{tht—l < b,)\/rt 2 1)} = (Z)
So by the Poisson assumption,

P[My < b) = e™ MW,
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and by the fundamental identity

P[My < 1] = e~ PIX2UN/E[C],

Hence we have

E[MN]:/ (1 — e~ PIX120N/E(Ce]y gp, (1)
0

The work now reduces to estimating E[C;]. To do this we fix a value of b and
average the length of the intervals where the time series is above b. Varying b and
plotting E[C3] versus b yields data which is well fit by a curve of the form

y=b""/A.

Substituting this curve into (1) yields our estimator,

Bp(My]= [ (1= e AN g
0

As before we may use either the original or enveloped data. Note that the above
analysis assumes that the clumps are intervals so one guesses that enveloping narrow
band data would be advantageous.

EMPIRICAL RESULTS

We have described 10 possible algorithms in all.

In earlier work [BGY, YBG] we investigated several algorithms. The algorithm
used by most ocean engineers was due to Pierce [P]. In our terminology this was
an enveloped, strong, single window time rescaling method.

We proposed to modify this by removing the envelope, that is to use instead the
direct, strong single window time rescaling method, referred to in the figures as
Direct. In cases where computation ease was paramount we proposed the direct,
weak, multiple window rescaling method, here referred to as Logfit. These were
compared with the direct Poisson clumping algorithm, or Poisson. Here we describe
the results of these simluations. In a future paper we will also include study of the
enveloped Poisson clumping algorithm. Work continues on the other variations.

In this study two types of Gaussian time series are used. The first is a second
order autoregressive moving average (ARMA).

Xn = a)(n—l + bIYH-—Q + Zﬂ)

where the Z,, is are independent identically distributed Gaussian random variables.

The second type is intendend to simulate random waves in the ocean and are
obtained by superposition of sinosoids, with amplitudes specified by the Pierson-
Moskowitz and JONSWAP spectrums [SI]. One thousand cosines with unequal
frequency spacings and uniformly random phases are employed. More detail on
these processes will be given in a future paper.

In all cases we have N’ — N = 2N. For the autoregressive moving averages
N = 50000, while for the simulated ocean waves N = 20000. These time series
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are tun for various parameters and the expected maximum are estimated by the
algorithms. The mean relative errors are computed. The parameter for the ARMA
model is a damping ratio corresponding to a linear oscillator. This ratio relates
directly to the bandwidth of the excitaiton. For the simulated ocean waves we use
a dominant wave period [YBG].
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Our results are pictured in Figures 1-3. To summarize the ARMA experiments
(Figure 1), the Direct Method consistently gives the estimator with minimal relative
error, while the Poisson clumping and Log Fit methods yield estimators with rela-
tive errors under 6%. It is interesting to note that the results for Poisson Clumping
and the direct, strong, single window time rescaling method follow each other.
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For the simulated ocean waves the results are similar. In the case of the Pierson-
Moskowitz spectrum (Figure 2) the Direct Method consistently provides the best es-
timator, regardless of the dominant wave length. The JONSWAP spectrum (Figure
3) provides a narrow band case and all the techniques yield relative errors between
4% and 7%, while the Log Fit provides the best estimator in two instances.

CONCLUSION

The theoretical underpinning for these algorithms is given by theorems of O’Brien
[O’B] and independently by Rootzen [R]. There it is showed for processes satisfying
a strong mixing condition (as ours do) that for long enough time scales there 1s an
extremal index which in turn gives the Poisson clump structure of the exceedance
process. Thus it is not surprising to find the direct, strong, single window estimator
and the direct Poisson clumping estimator in close agreement.

Perhaps the most striking result in this study is the performance of the direct,
weak, multiple window estimator. It is the simplest conceptually and algorithmi-
cally, and gives relative errors near 6%.
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