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ABSTRACT 

   
The highly nonlinear responses of compliant ocean 

structures characterized by a large-geometry restoring force and a 
coupled fluid-structure interaction excitation are of great interest to 
ocean engineers. Practical modeling, parameter identification, and 
incorporation of the inherent nonlinear dynamics in the design of 
these systems are essential and challenging. An experimental 
mooring system exhibiting nonlinear behavior due to geometric 
nonlinearity of mooring line angles and the complexity of 
hydrodynamic excitations is chosen for the study.  An Independent-
Flow-Field (IFF) model based on Morison equation and its associated 
nonlinear system identification algorithm is used to evaluate the 
system parameters of an experimental submerged mooring system. 
With the input wave and output system response data known, based 
on multiple input/single-output linear analysis of reverse dynamic 
system, the methodology identifies the linear and nonlinear system 
properties.  A sensitive analysis is conducted to investigate the 
coupled hydrodynamic forces modeled by the Morison equation, 
nonlinear stiffness from mooring lines and nonlinear response. 

 
 
INTRODUCTION 
 

Complex nonlinear responses including harmonics, sub- and 
super-harmonics and chaos, have been observed and demonstrated in 
various compliant ocean systems characterized by large-geometry 
nonlinear mooring restoring force and coupled fluid-structure 
interaction exciting force. When examining the responses of these 
highly nonlinear systems, it is important to develop sophisticated 
analytical models that the details of the nonlinear responses can be 
captured accurately. However, at the same time the models have to be 
sufficiently simple that modern geometrical analysis techniques and 
efficient computer simulations can be performed. Deterministic 
analysis theories and numerical prediction techniques of relatively 
simple models have been developed to analyze the complex nonlinear 
phenomena for single-point mooring systems (Gottlieb et al 1992), 
ships (Bishop and Virgin 1988), and multi-point mooring systems 
(Bernitsas and Chung 1990, Gottlieb and Yim 1993). Lin and Yim 
(1996 and 1997) developed stochastic extensions of these techniques 
and corresponding analyses. They provided guidelines for 

interpreting field and experimental observations where randomness 
cannot be neglected. 

Experiments on a single-degree-of-freedom (SDOF) and a multi-
degree-freedom (MDOF) nonlinear multi-point moored submerged 
sphere subject to wave excitations have been conducted at the 
O.H.Hinsdale Wave Laboratory at Oregon State University (Yim et 
al 1993, Narayanan and Yim, 2001). Measured results for both 
systems indicated that various types of nonlinear responses including 
harmonic, sub- and super-harmonics and chaotic responses were 
present. In this study, the wave input and the system responses 
measured during the test are employed for parameter identification.  

The applicability of two different models, (A) relative-velocity 
(RV) and (B) independent flow field (IFF) models and their 
corresponding algorithms have been examined and IFF model with 
the nonlinear-structure nonlinearly-damped (NSND) algorithm is 
determined to be the most suitable analytical model for the 
experimental system (Narayanan and Yim, 2001). In this paper, the 
resulting system using the identified parameters obtained based on 
the NSND algorithm is employed to predict the responses of the 
fluid-structure interaction of the SDOF, symmetric spherical mooring 
system. 

Using the measured wave excitation and response data together 
with the identified system parameters, a detailed study is performed 
on the response behavior of the system under consideration. A 
sensitivity analysis is conducted to determine the optimal range of 
system parameters and understand the effect of varying the stiffness 
and damping coefficients on the system response. 

The independent flow field (IFF) model requires the knowledge 
of inertia and drag coefficients, Cm and Cd respectively for the 
evaluation of hydrodynamic force. Theoretical studies of unsteady 
motions involving a sphere in a real fluid have so far been restricted 
to small Reynolds numbers (Wang 1965, Hjelmfelt et al 1967). The 
Cm for fixed spheres was found to vary between 1.43 and 1.73 within 
the range of 0.2 ≤ KC ≤ 3.2 (Harleman and Shapiro 1958). For a pilot 
study in the ocean on wave-induced forces on a fixed sphere with the 
inertia forces dominating the total force and Re ranging from 105 to 5 
x 105, Grace and Zee (1978) found the average inertia coefficient to 
be 1.21 and the Cd to be 0.4. With the coefficients dependent on KC 
and Re, reasonable estimates of the hydrodynamic coefficients for a 
sphere are within the following bounds, 0.1 ≤ Cd ≤ 1.0 and 1.0 ≤ Cm ≤ 
1.5 (Grace and Casino 1969, Grace and Zee 1978). In this study, 
NSND algorithm is also employed to evaluate the effects of 



hydrodynamic coefficients on system response by varying Cm and Cd 
within a range. 

 
EXPERIMENTAL DATA 

 
An experiment was performed at the O. H. Hinsdale Wave 

Laboratory at Oregon State University on a multi-point moored 
submerged sphere subject to wave excitations. The experimental 
model consists of a submerged moored neutrally buoyant sphere 
excited by regular and random waves.  Springs were attached to the 
sphere to provide the restoring force at an angle of 90o (four-point 
system).  The sphere was restricted to move only in the surge 
direction by passing a rigid steel rod through the center of the sphere. 
The equations of motion for this SDOF moored structural system 
subject to excitations consist of periodic waves perturbed with 
random noise has been derived (Yim et al 1993, Narayanan and Yim, 
2001). 

Eight tests were conducted on the sphere with periodic plus 
white noise excitations (Yim et al 1993). All the experimental data 
have wave period of T = 2 seconds with varying wave heights and 
noise/signal ratio. The wave displacement and surge response of the 
sphere were measured and the wave velocity and acceleration were 
numerically evaluated using a central-difference method (Gerald and 
Wheatley 1989). Each of the tests displays a certain degree of 
subharmonics in the sphere movement. The data sets SL1, SL2, SM1, 
SM2, SM3, SH1, SH2 and SH3 are grouped according to wave 
excitation amplitudes, where 'S' stands for single-degree-freedom, 
and 'L', 'M' and 'H' represents low, medium and high wave 
amplitudes, respectively. A typical segment of the wave time series 
and its corresponding spectra, and a typical segment of the response 
time series and its corresponding spectra for the high wave amplitude 
data sets grouped are given in Fig.1. The mean spectra, SH is also 
shown in the figure and is considered to be representative of the 
group. The input wave characteristics such as wave height (H), Cm, 
Cd, Keulegan Carpenter number (KC) and Reynolds number (Re) are 
shown in the Table 1. 
 

Data H (m) Cm Cd KC Re 
SL1 0.17 1.4 0.1- 0.9 

(0.5) 
0.56 5.70E4 

SL2 0.24 1.4 0.1-0.9 
(0.5) 

0.79 7.80E4 

SM1 0.35 1.3 0.1-0.9 
(0.5) 

1.18 1.20E5 

SM2 0.36 1.3 0.1- 0.9 
(0.5) 

1.18 1.20E5 

SM3 0.49 1.3 0.1-0.9 
(0.5) 

1.57 1.60E5 

SH1 0.66 1.1 0.1-0.9 
(0.5) 

2.16 2.20E5 

SH2 0.66 1.1 0.1-0.9 
(0.5) 

2.18 2.22E5 

SH3 0.67 1.1 0.1-0.9 
(0.5) 

2.20 2.30E5 

 
Table 1  Input wave characteristics of the SDOF subharmonic data 
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Fig.1  SDOF experimental high wave amplitude data:  a) wave time 
series, b) wave spectra, c) response time series, d) response spectra 

The sampling interval used in the experiment was 0.0625 second 
(16 Hz), which yields a Nyquist frequency of 8 Hz. The total number 
of samples of the excitation and response time histories for spectral 
simulations is 8192 (512 seconds), with sub-record lengths of 1024 
for the Fourier transforms (64 seconds). 

 
 



IFF Model Algorithm 
 
By considering surge as the generalized displacement 

coordinate, the governing equation of motion for the SDOF mooring 
system can be written as  

)t(f))t(x(R)t(xC)t(xm s =++ &&&  (1) 
where m = mass of the sphere, f(t) = hydrodynamic force acting 

on the sphere, Cs = linear structural damping coefficient, R(x(t)) = 
nonlinear restoring force, )t(x),t(x),t(x &&& are the system displacement, 
velocity and acceleration respectively.   

The restoring force can be approximated by a third order 
polynomial obtained through a least square approximation 
(Narayanan and Yim, 2001).  The polynomial is expressed as 

3
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For the Independent Flow Field (IFF) model, nonlinear 
interaction between the fluid and structural velocities is decoupled 
and the hydrodynamic force is evaluated using Eq.3. Nonlinear 
structural damping force and the wave excitation drag force can then 
be treated separately.  
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ρ = mass density, D = diameter of sphere, u, u& (t) is the water 
particle velocity and acceleration respectively in surge direction Ca = 
added mass coefficient, Cd' = nonlinear structural damping 
coefficient, Cm = hydrodynamic inertia coefficient and Cd = 
hydrodynamic drag coefficient.  The values of Cm and Cd may be 
obtained from wave experiments while the coefficients Ca and Cd' are 
derived from oscillating sphere in otherwise calm water.  Also 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

υ
==

D
Tu

KC,
Du

RefC,C o
F

o
Fdm  

(5a) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

υ
==

D
Tx

KC,
Dx

RefC,C oo
N

o
N

'
da

&&
 

(5b) 

where uo, ox& = amplitudes of the water particle and structure 
velocity, respectively, T and To =  periods of oscillation of water 
particle and structure, respectively (they are often equal), υ = 
viscosity of the fluid, Re = Reynolds number, KC = Keulegan-
Carpenter number.  Note that suffix ‘F’ refers to far field and suffix 
‘N’ to near field (Chakrabarti 1987).   

The IFF assumption results in the following nonlinear equation 
of motion given by 
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The corresponding single-input/single-output nonlinear forward 
model with feedback is shown in Fig.2a.  The nonlinear forward 
model is converted to reverse dynamic model by applying the 
Reverse-Multiple-Input/single-Output (R-MI/SO) procedures (Bendat 
1998).  The corresponding reverse dynamic four-input/single-output 
nonlinear model without feedback is shown in Fig.2b.  Using the 
frequency response functions, linear and nonlinear system parameters 
are identified (Narayanan and Yim, 2001). 
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Fig.2:  The nonlinear-structure nonlinearly-damped (NSND) model a) 
with feedback b) without feedback 
 
RESULTS 
 

The nonlinear system identification algorithm, NSND for the 
IFF model is applied to all the data sets using the R-MI/SO technique 
and system parameters are identified. Using the identified 
parameters, the response is evaluated for the model using a fourth-
order Runge-Kutta method (Gerald and Wheatley 1989).  

A comparison of time series and spectra between the identified 
response using the IFF model and the experimental response for a 
typical experimental data is shown in Fig.3. The system parameters, 
a1, a2, a3, ζ1 and Cd1

' identified for all the test data using the IFF 
model are given in Table 2.  
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Fig.3  Comparison of simulated response using NSND model with 
the experimental response:  a) time series, b) spectra 
 
Data a1 

(N/m) 
a2 

(N/m2) 
a3 

(N/m3) 
Cd1

' ζ1 (%) fn1 (Hz) 

SL1 128.8 315.6 721.3 2.5 3.5 0.22 
SL2 125.6 280.1 814.7 3.5 3.4 0.23 
SM1 128.8 260.8 863.0 3.0 3.0 0.23 
SM2 132.0 257.6 769.6 1.5 2.9 0.24 
SM3 125.6 206.1 689.1 1.0 2.8 0.23 
SH1 128.8 209.3 689.1 0.8 3.0 0.23 
SH2 128.8 209.3 689.1 0.2 3.2 0.23 
SH3 125.6 190.0 627.9 0.3 3.1 0.22 

 
Table 2  Identified system parameters of the experimental data 

 
SENSITIVITY ANALYSIS 
 

A parametric study is performed to determine the sensitivity of 
the system to variations in the parameters. Specifically, each 
parameter is varied in prescribed increments while keeping all other 
identified parameters constant (Table 2) and the surge response is 
computed for each variation by solving (Eq.6a). The simulated 
responses using the identified parameters are compared against each 
other in both the time and frequency domains. 

From the parametric study, an optimal range and the most 
suitable value of the system parameters are obtained and tabulated in 
Table 3. Because the data sets belong to L, M and H groups exhibit 
similar behavior; only the mean of the resulting spectra for each 
variation is discussed in the following paragraphs. 

The effect of varying linear stiffness coefficient, a1 on SL, SM 
and SH are demonstrated in Fig.4. The spectral density normalized 
with the variance of experimental wave data (Sxxn) is plotted against 
frequency for a1 from 58.0 to 202.9 N/m or a1n (the ratio of 
instantaneous value of a1 to the best value of a1 as given in Table 3a 
from 0.5 to 1.6. It can be observed that there is a slight increase in the 
primary resonance response as a1 increases. The subharmonic 

resonance region shifts towards the right with increasing a1. The 
trend can be observed more clearly (from SL to SH) as the wave 
amplitude increases.  

 
Data a1 (N/m) a2 (N/m2) a3 (N/m3) Cd1

' ζ1 
(%) 

fn 
(Hz) 

SL1 122.4-32.0 
(128.8) 

48.3-
378.0 

(215.7) 

157.8-
1410.4 
(772.8) 

1.5-
2.5 

(2.0) 

1.0-
4.0 

(3.0) 

0.23 

SL2 119.1-
132.0 

(125.6) 

48.3-
380.0 

(215.7) 

157.8-
1410.4 
(772.8) 

1.5-
2.5 

(2.0) 

1.0-
4.0 

(3.0) 

0.23 

SM1 122.4-
132.0 

(128.8) 

48.3-
380.0 

(215.7) 

157.8-
1255.8 
(708.4) 

1.5-
2.5 

(2.0) 

1.5-
4.0 

(3.3) 

0.23 

SM2 122.4-
135.2 

(128.8) 

141.7-
286.6 

(215.7) 

470.1-
933.8 

(708.4) 

0.3-
0.7 

(0.5) 

2.0-
4.0 

(3.0) 

0.24 

SM3 
 

122.4-
135.2 

(125.6) 

141.7-
286.6 

(215.7) 

470.1-
933.8 

(708.4) 

0.3-
0.7 

(0.5) 

2.0-
4.0 

(3.0) 

0.23 

SH1 122.4-
138.5 

(132.0) 

167.4-
286.6 

(225.4) 

550.6-
933.8 

(740.6) 

0.1-
0.2 

(0.15) 

2.5-
4.0 

(3.3) 

0.23 

SH2 122.4-
135.2 

(128.8) 

190.0-
238.3 

(215.7) 

627.9-
772.8 

(708.4) 

0.1-
0.2 

(0.15) 

2.0-
4.0 

(3.0) 

0.23 

SH3 122.4-
135.2 

(132.0) 

199.6-
238.3 

(219.0) 

660.1-
772.8 

(708.4) 

0.1-
0.2 

(0.15) 

2.0-
4.0 

(3.0) 

0.22 

 
Table 3  Identified system parameters from the sensitivity analysis of 
the SDOF subharmonic data 
 
When a2 is increased from 0 to 476.6 N/m2, there is no significant 
change in the data group SL as shown in Fig.5a. However, the 
response in the secondary resonance region increases from a2n = 0 to 
2.5 for SM and SH, and the effects are more pronounced for the latter 
(Fig.5 b and c). The total energy of the response in the primary 
resonance region is affected by changing a2. 
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Fig.4  Effect of a1 on SDOF system behavior:  a) SL, b) SM c) SH 
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Fig.5  Effect of a2 on SDOF system behavior:  a) SL b) SM c) SH 
 

Fig.6 shows that varying a3 from 0 to 1568.1 N/m3 or a3n from 0 
to 2.5 affects only the response in the secondary resonance region, 
which decreases as a3 increases. The variation is most noticeable for 
SH in Fig.6c. 
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Fig.6  Effect of a3 on SDOF system behavior:  a) SL b) SM c) SH 
 
With regards to varying the linear structural damping coefficient 

ζ1 from 0 to 0.1, it is observed that the response in the subharmonic 
region decreases with increasing damping while the primary 
resonance region remains unaffected as demonstrated in Fig.7. This 
result indicates that the subharmonic response is sensitive to 
structural damping. This phenomenon is often observed in responses 
of nonlinear systems. 
 
The effects of varying Cd1

' on the identified response are 
demonstrated in Fig.8. It shows that the secondary resonance region 
generally decreases with increasing Cd1

'. However, the optimum 
range that identify response comparable to the experimental response 
differs for the data groups SL, SM and SH. The most suitable value 
goes as high as 2 for SL and it decreases to 0.5 for SM and 0.15 for 
SH. This apparent behavior is probably caused by the inability of the 
model to approximate accurately the actual nonlinear behavior of the 
complex damping mechanism of the SDOF configuration. In the 
physical system, with the rod passing through the center of the sphere 
(to restrict vertical and rotational motions), the Coulomb frictional 
component is proportional to the magnitude of the normal reaction 
force between the sphere and the supporting rod. Because the sphere 
is neutrally buoyant, this normal force is proportional to the 
magnitude of the oscillatory lift force. The nonlinear effects become 
more severe at the lower wave amplitudes prominent due to the 
sticky (stop and go, highly nonlinear) motion of the sphere, thus 
affecting the response prediction capability of the model. 
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Fig.7  Effect of ζ1 on SDOF system behavior:  a) SL b) SM c) SH 
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Fig.8  Effect of Cd1
' on SDOF system behavior:  a) SL b) SM c) SH 

 
EFFECTS OF HYDRODYNAMIC COEFFICIENTS ON 
SYSTEM RESPONSE 

 
The IFF model requires the knowledge of Cd and Cm for the 

evaluation of hydrodynamic force on the sphere. As mentioned 
earlier, the effect of Cm and Cd on the nonlinear response has not 
been studied before according to the authors’ knowledge. In order to 

investigate the response behavior of the system, Cm is varied within 
the range of 1 – 1.5 and the NSND algorithm is then applied. The 
identified properties are tabulated for different Cm in Table 4a. From 
the table, magnitudes of Ca, a1, a2, a3, Cd

’, ζs and Cs increase with 
increasing Cm. The natural frequency identified is constant for all the 
cases. The responses simulated using the parameters are compared 
with the measured response in Fig.9a. The primary resonance energy 
of all the predicted responses is practically constant and agrees 
favorably with that of the measured response. Note that the 
subharmonic energy of the predicted response decreases with 
increasing values of inertia coefficient and Cm = 1.3 matches well 
with the experimental response. 

The drag coefficient Cd is varied between 0.2 -- 1.0 and the 
properties are identified in Table 4b. The parameters remain 
consistent for different values of Cd. The responses simulated using 
the parameters are compared with the measured response in Fig.9b, 
and it can be observed that the response does not change significantly 
with varying values of Cd. Based on the water depth to wavelength 
(h/L) and diameter to wave height (D/H) ratios (Nath and Harleman 
1970), the inertia effects dominate the total forces and the response, 
as expected, is found to be relatively insensitive to changes in Cd. 
 
4a) 
 
Cm Ca Cd a1 

N/m 
a2 
N/m2 

a3 
N/m3 

Cd
’ ζ1 fn 

 
1.10 0.11 1.0 119.1 167.4 911.3 0.18 0.02 0.24 
1.20 0.21 1.0 122.4 180.3 924.1 0.18 0.03 0.24 
1.30 0.32 1.0 132.0 215.7 1020.7 0.18 0.03 0.24 
1.40 0.42 1.0 151.3 235.1 1175.3 0.19 0.03 0.24 
1.50 0.51 1.0 161.0 244.7 1284.8 0.19 0.03 0.24 
 
4b) 
 
Cd Cm Cd a1 

N/m 
a2 
N/m2 

a3 
N/m3 

Cd
’ ζ1 fn 

 
0.20 1.3 0.3 128.8 215.7 972.4 0.18 0.021 0.24 
0.50 1.3 0.3 128.8 219.0 988.6 0.18 0.033 0.24 
0.80 1.3 0.3 132.0 219.0 1004.7 0.19 0.032 0.24 
1.00 1.3 0.3 132.0 219.0 1004.7 0.19 0.035 0.24 
1.20 1.3 0.3 132.0 222.2 1020.7 0.19 0.035 0.24 
 
Table 4  Identified system parameters using NSND model by varying 
hydrodynamic coefficients:  a) Cm, b) Cd   
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9b) 
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Fig.9  Comparison of identified response using NSND model with the 
measured response by varying hydrodynamic coefficients:  a) Cm, b) 
Cd 
 
 
 
 

 
 CONCLUDIG REMARKS 

 
The independent flow field (IFF) model and its corresponding 

algorithm, nonlinear-structure linearly-damped (NSLD), has been 
examined and used to evaluate the linear and nonlinear system 
parameters of the experimental system. The sensitivity analysis of the 
SDOF system presented here reveals that the effects of variations in 
system parameters on the predicted responses become more 
significant with increasing wave excitation amplitude. Three groups 
are established among the tests depending on low, medium or high 
wave excitation amplitude based on the response behavior. The 
response variation becomes more significant with increasing wave 
amplitude. The optimal value and range of nonlinear structural 
damping coefficient varies among the tests. This apparent behavior is 
probably caused by the inability of the model to approximate 
accurately the actual nonlinear behavior of the complex damping 
mechanism of the SDOF configuration as the Coulomb frictional 
component is not included in the mathematical model. For the set of 
experimental data considered, when Cm is varied between 1.0 –1.5, 
the subharmonic energy of the predicted response decreases with 
increasing values of inertia coefficient. Because the experimental 
wave-structure interaction characteristics fall within the inertia 
regime, it is not possible to accurately evaluate the drag coefficients. 
Indeed, the response is observed to be insensitive to variations in Cd. 
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