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Analysis of Nonlinear Response of an Articulated Tower
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ABSTRACT

A semi-analytical method is employed to investigate stability of the nonlinear response of an articuiated tower. Local and
globai bifurcations determine the possibie existence of complex nonlinear and chaotic motions which cannot be obtained

through evaluation of an equivalent linearized system.

INTRODUCTION

Complex nonlinear and chaotic responses have been recently
observed in various models of articulated towers and other
compliant ocean systems (e.g., Thompson et al., 1984; Liaw,
1988). Similar behavior has been found in roll response of ships
and semisubmersibles where the restoring moment was modeled
by a quintic polynomial (Nayfeh and Khdeir, 1986; Witz et al.,
1989). Articulated towers are surface piercing columns pinned to
the sea floor which serve as mooring loading terminals for oil
tankers. They are characterized by a nonlinear restoring moment
and a nonlinear coupled hydrodynamic exciting moment. The
restoring moment of the articulated tower is that of a forced plane
pendulum and is generated by an internal excess buoyancy
mechanism. The exciting moment includes a coupled wave-
structure viscous drag component and a wave induced inertial
moment. The drag component consists of parametric and
quadratic damping, a bias and harmonic forcing.

The forced pendulum has been extensively investigated and
complex nonlinear behavior, such as coexistence of attractors,
symmetry breaking, period doubling and intermittency has been
found experimentally, numerically and analytically (D"Humiers et
al., 1982; Miles, 1988). Furthermore, global asymptotic criteria
for the existence of chaotic response have been derived for the
pendulum and for a Josephson junction circuit (Salam and Sastry,
1985) modeled as a forced and biased pendulum. However,
unlike the unperturbed pendulum which has a pair of homoclinic
orbits separating the domain of response into two disjoint parts of
bounded and unbounded solutions, the articulated tower belongs
to a family of oscillators which have a unique equilibrium
position.

While weakly nonlinear systems have been studied extensively
from both classical (Nayfeh and Mook, 1979) and modern
approaches (Guckenheimer and Hoimes, 1983), complex single
equilibrium point systems are limited in their scope of analysis.
Examples of these systems are the hardening Duffing equation
analyzed by modified multiple scales and by the method of
harmonic balance (Rahman and Burton, 1986; Szemplinska-
Stupnicka, 1987) and the subharmonic motions of a wind loaded
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structure analyzed by the general method of averaging (Holmes,
1980). Stability analysis of system behavior results in local
bifurcation maps defining regions of existence of the various
nonlinear phenomena in parameter space. This analysis consists
of perturbing the approximate solution and analyzing the resulting
variational equation numerically by Floquet analysis or by
analytically solving the equivalent Hill’s variational equation.
Both methods have been successfully employed on the hardening
and softening Duffing equation (Szemplinska-Stupnicka, 1988;
Nayfeh and Sanchez, 1989).

Extensive investigation of the articulated tower model has been
performed for various configurations of slender and non-slender
towers (e.g., Patel, 1989; Chakrabarti, 1987) in which the
response was assumed small and the noniinear moments were
equivalently linearized by various methods. However, equivalent
linearization eliminates the possibility of obtaining coexisting
solutions and other nonlinear phenomena. Various configurations
of articulated towers moored to floating structures have revealed
the existence of subharmonic and chaotic response. Three models
describing these motions are a bilinear oscillator identifying a
stiffness discontinuity due to slackening mooring lines
(Thompson et al., 1984), and two nonlinear oscillators where the
restoring moment is characterized by cubic (Choi & Lou. 1991)
and quartic (Fujino & Sagara, 1990) polynomials respectively.
These models assumed smalil amplitude response and the restoring
moment consisted of a linearized buoyancy component and the
complementary nonlinear mooring stiffness function. The
hydrodynamic drag moment was simplified to a quadratic
damping function in the latter model and was linearized in the
former models.

This paper describes a semi-analytic stability analysis
performed on the nonlinear response of an unconstrained slender
articulated tower. Consequently, the restoring moment consists of
only a nonlinear buoyancy component. In order to model the
nonlinear wave-structure coupling effect, the exact relative
motion quadratic drag component is retained. Thus, the predicted
local and global bifurcations determine the complex noniinear
behavior found numerically and can serve as a reference for
identification of the generating mechanisms of instabilities in
models with nonlinear mooring functions.

MODEL FORMULATION

The articulated tower considered (Fig. 1) is modeled as a single
degree of freedom (#: pitch), hydrodynamically damped and
excited nonlinear oscillator. The equation of motion is modeled
by a relative motion Morison equation with frequency
independent coefficients (Sarpkaya and Issacson, 1983). This
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Fig. | Definition sketch

approach. which assumes that the presence of the structure does
not affect the wave field, hence waves propagating past the
structure remain unmodified, can be justified for slender body
motion in the vertical plane (surge, heave, pitch) where the
wavelength is large compared to the beam of the structure
(Newman, 1977).

The restoring moment is calculated about the base of the tower
[R(8)] and friction at the joint is included with small structural
damping (C). The exciting moment [M(&;1)} is calculated along a
stationary upright tower assuming linear wave kinematics.

16+CH+R(8) = M(8.,6;1) (1a)
where
R(8)=(Falg-Fylg)sin 8 (1b)
.
M(B,6.0) = [dM () +dM (=)+dM_ () (1e)

M ; p px - differential moment components
(inertia, drag, Froude-Krilov):

M, =pC U - 2'6)dz’

M, =pC,r U~ BlfU (")~ 2'6az (19)
M, =p nriz'[U(")] dz’

U(z)=wa C(_)Sh K2 os (le)

sinh
and
a.wk = wave amplitude, frequency and number (@° = gk
tanh kh)
C4C, - drag and inertia coefficients

FaFy buoyancy force (n:pgrzh), tower weight

1.C moment of inertia, structural damping
r.h = radius of structure, submerged length
f.] = differentiation with respect to time

Rearranging and normalizing (s'=kz") the equation of motion
(Eq. 1) yields the following nonlinear oscillator:

G+ y9+R(6)=MD(9;1)—F(r) (2a)
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where
R(@)=asin8 (2b)
F(r)=u/cyfsinw! (2c)
kh LA A
A » ’ 9 ’ 6 ’
MD(B’I):-&kSJ‘X lu—-s z)—]tu—s 5(1& 2d)
UishH=f Cosh s cos wr
sinhkh (2e)
and
a__}_thch/FaLBg_ _C
C h t+1/1 h I+
__3 Cd/ .8 _3I+I/Cug
ml+l/1 h - L+1/1 h
_ tanhkh (kh)sinhkh — coshkh+1

K = T, -
& kr{khy # (kh)" tanh kh

f=ka , Ia=§Cupr2h3

Note that kr < n/5 (diffraction parameter), ka < n/7 (wave
steepness parameter).

The potential of the undamped unforced (Hamiltonian) system
(Mp,F,v=0) can be obtained by integrating the restoring force
resulting with an invariant quantity for the Hamiltonian energy.
However, uniike the unperturbed pendulum, the potential well has
no maxima and the Hamiltonian energy is bounded {H(6,d6/d1)<2
: oscillations].

2

H(6,0)=2+a(1 - cos ) ©

HARMONIC AND SUBHARMONIC SOLUTIONS

Investigation of system response is similar to analysis of a
system with an unsymmetric elastic stiffness function. Loss of
symmetry is due to a bias caused by the wave-induced drag
moment. In both harmonic and subharmonic response the nT
periodic solution can be approximated by a finite Fourier series
expansion.

- wr 4
8,024+ 4, cos(m+ ) @

m=|

where  Ap, A,y @y, - solution amplitudes and phases.
and m=[23,..M ; Misthe order of approximation.

n={23,..N ; Nisthe order of subharmonic.

An unsymmetric solution [6y(t) # -8y(t+nT/2)] includes both even
and odd harmonics whereas a symmetric solution would consist
of only odd harmonics.

Due to the complex form of the drag nonlinearity, the method
of harmonic balance is employed (Hayashi, 1964). The
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approximate solution (Eq. 4) is substituted into the system (Eq. 2).
After rearranging, squaring and calculating the differential drag
moment along the tower, the harmonic and constant coefficients
are equated separately to zero. Thus, the original nonlinear
ordinary differential equation is replaced by a finite set of
algebraic equations.

G(A,A ®)=0 ®)

where  i=12,.Jr ; [r=2M+1 is the size of the set.

See Appendix (A.1) for detail of a low-order set (I+=3)
corresponding to 6= Ag + A cos(wr+®y).

Solutions of this set are obtained using an iterative Newton-
Raphson procedure from which frequency response curves are
senerated numerically by solving for the unknown amplitudes
140.4m) and phases (@,). Note that for very small pitch angles
[R(6)—8)] the anticipated first order solution is that of a biased
{inear oscillator:

3 3((5 :, ol 2 2
A =§k;] (25.+5; . +S:.) (6a)
(ux £
S R (6b)
" (a-wT ) +(yw)”
o, =mn-'f- 2= “’j (6¢)
; \ Yo

STABILITY ANALYSIS

Global stability of the system is performed by a Lyapunov
“unction [V(6.,d6/dt)] approach (Hagedorn, 1978). The
Hamiltonian energy {Eq.3) is a weak Lyapunov function
[V(0.0)=0 and dV/dr = 0] resulting in neutral stable solutions
fcenters):

0=+2(h- a(l-cos§)] @

where  h=H(6,d6/dr) is calculated from initial conditions.

Modification of V(6,d6/dt) to account for structural damping
resuits in a strong Lyapunov function:

A2 2
&’(9,9)=8T+a(1—c059)+v(69+*/%) (8a)

and

Ve 0[OR(6)]~(7 - 0) 6 (80)

Choosing v sufficiently small (O<v<y) results in a globally stable
unforced system [i.e., V(0.d6/dt) positive definite and dV/dt<0)
describing in phase plane (8,d6/dt) an asymptotically stable
hyperbolic fixed point (sink) at the origin. However, with the
additon of wave excitation the sink becomes a hyperbolic closed
orbit (limit cycle). The limit cycle loses the circularity of the sink
but is anticipated by the invariant manifold theorem to retain its
stable characteristics (Guckenheimer and Holmes, 1986).
Although this result ensures that solutions remain bounded for
small excitation (Mp,F<<1), investigation of the influence of
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larger excitation can only be performed by local analysis (Nayfeh
and Mook, 1979).

Local stability is determined by considering a perturbed
solution &(1)=6y(n+&(t), where 8y(r) is the approximate solution
and £(t) is a small perturbation. Substituting &(t) in Eq.2 and
simplifying the resuiting equation lead to a nonlinear variational
equation.

E+D[£:0 (1]+G[€:6,(1]=0 (9a)
where

G(e)=alsin(8, +£)-sinf ] (9b)

D(EY=yE+ML(0,+E;0)-M,(B,;1) (9¢)

Linearizing the variational (Egs. 9b, c) yields a linear ordinary
differential equation with a periodic coefficient functions

Hpg pl8y()]=Hg plBpt+T)].

E+H [0 (N]é+H [6 (1)]e=0 (10a)
where
H (8 )=acos8, (10b)

. SK_ i .
H,(8 )=*/+2-—5J'“ () |u(s)-5'6 |ds” (10c)
o A o

Substitution of the solution Eq. 4 in Eq. 10 and expanding
Hp r(6) in Fourier series Hp z(¥); (w=wr+®)) lead to a general
Hill’s variational equation.

E+H [w(D]é+H [W(D]e=0 (11a)
where
HR(W)=G[/1”+iﬂ.I_cosjw] (11b)
=
(11c)

5 .
H, (‘/’)=7’+2;!/"xc°°5 y+u  sin w{

See Appendix (A.2) for A, 1.

The particular solution to Eq. 11 is &(r)=exp(§)Z(r).
Application of Floquet theory (Ioos and Joseph, 1981) yields two
forms of the particular solution: Z($)=Z(¢+T) and Z()=Z(t+2T)
which are due to the odd and even terms in Eq. 4, respectively.
Thus, even a low order two-term solution {6y($)=Ag+A cos(y)]
defines two unstable regions. The first unstable region [Z(++T)] is
identified by the cos(2y) term in Eq. 11b and coincides with the
vertical tangent points of the primary resonance on the frequency
response curve. However, the constant amplitude (Ag) generates a
cos(y) in Eq. 11b and 1lc and defines the lowest order unstable
region [Z(N=Z(++2T)] or secondary resonance.

The boundaries of the unstable regions are obtained by
inserting the following solution forms into Eq. 11 and applying
the method of harmonic balance at the stability limit ({=0).

g(t)=h +h cos(wt+ @), Z(t+T)

e(h=h,, cos(—(%ﬁ+¢ ): Z(t+2T) (12)
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A4

The condition for a non-zero solution results in a determinant
(A(w)=0] from which the boundaries of the secondary resonance
can be obtained (A(w)<0 for {>0 : unstable]. The unstable region
1s defined by the intersection of the stability curves and the
frequency response curve (Fig. 2 : noniinear restoring moment).

1.00 4
3 frequency response
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3 ¢ = ~ stability curves {linear
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Fig.2 Stability loss of the T periodic response [ Al (radian) vs.
@ (radian/s} |
[ =05, y=0.01, =0.1, feka=0.1, u=2, kh=rt, kr=0.5]

ad SY . 4,
+sgn(;{)(7)ll,uu—(:) (U +U) (13)

where y=(U ccos®; + pygsin®)) and sgn(y) denotes the sign of
A

For small pitch angles [R(8)-»6] Eq. 13 can be further
simplified (A4y=1, 1,=0) resulting in a narrower unstable region
(Fig. 2: linear restoring moment).

5N

@ yoY (8Y 2
A(co)_(a—T +(—5—) —(—Z-J (. +40) (14)

/

Thus, the unstable region defining the secondary resonance can
te shown to be confined between two hyperbolic functions
[Alw)=0. <<4] and is shown to be sensitive to the magnitude of
the response as indicated by:

U, 4a
A'&.E—SII—F (15)

Note that the undamped system (y6=0) Eq. 13 simplifies to:
W =da (A - Ay/2).

LOCAL AND GLOBAL BIFURCATIONS

The variational equation (Eg. 11) reveals two regions where the
T periodic solution loses its stability. The primary and secondary
resonances are defined by saddle-node (tangent) and period
doubling (flip) bifurcations respectively. These bifurcations are
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local but they reveal coexistence of solutions. The tangent
bifurcations form the jump phenomena in which two coexisting
stable solutions are separated by an unstable solution.-
Unsymmetric subharmonics of period T will occur in multiple
“partner” orbits (Holmes, 1979). Note that coexistence of
solutions is defined by different initial conditions in the same
parameter space.

In order to investigatc.further the stabtlity of the 1/2
subharmonic (Eq. 4: n=2), the solution is perturbed
[8'()=8"((1)+€'(t) ; where * denotes the 2T solution] to obtain the
subharmonic variational equation [’ =y(wi/2+P1/2 ; wx+®))].

. b t
E+H [y (5)]5+HRW(5)15=0 (16a)
where
, - or .t
HR(V/)=a[ﬂ.”+21/mcos;7+l/msm/T] {16b)
7=t = <~
, §le ot 't
HD(W)=},+25Z‘U/C/2COS]7+#,S/ZSIH-/7 (16c)

j=l
See Appendix (A.3) for &', it".

Similarly to the stability analysis in the previous section, a low-
order three-term solution (Eq. 4: N=2, M=2):

(1) = Ag + Ay cos(at/2+Dy n) + A| cos(wt+Dy)

generates two unstable regions. The first order unstable region
[2(++21)] is identified by the cos(ex) term in Eq. 16 whereas the
lowest order unstable region {Z(++4T)] is identified by cos(w/2).
These instabilities are associated with the tangent and the flip
bifurcations which cause them.

Thus, the general Hill’s equation suggests the possible cascade
of period doubling bifurcations. If the period doubling sequence
is infinite, the resulting motion is chaotic (Thompson and Stewart,
1986).

System responses obtained by numerically integrating the
equation of motion Eq. 2 show the evolution of a period doubling
cascade (Figs. 3 and 4). The results are portrayed in phase planes
(6.d6/dt) and Poincaré maps (6,,d6,/dt) which are sampled at the
forcing period (T=2n/w). An nT subharmonic will repeat after n
intervals (Fig. 3a: 27) and the chaotic attractor will generate a
fractal map (Fig. 3b: 2°T). The power spectra of the response
[Sg(w)] also depicts the period doubling (Fig. 4a) and is
continuous, showing “random like” behavior when the response
becomes chaotic (Fig. 4b). Note that the chaotic attractor is
sensitive to initial conditions and can coexist with other steady
state solutions.

SUMMARY AND CONCLUSIONS

Stability of approximate low-order periodic solutions enables
the analysis of the nonlinearities governing the complex response
of the articulated tower ocean system.

The system is modeled by the exact forms of the restoring and
hydrodynamic exciting moment. A semi-analytic method is
applied to the system resulting in local and global bifurcations.
The method consists of intersecting approximated system
response with stability curves derived from a generalized Hill's
variational equation. Consequently, local bifurcations determine
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Fig. 3 Period doubling cascade: phase plane & Poincaré map
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coexistence of nonlinear solutions and period doubling
bifurcations may cascade resulting in chaotic response.

The bias induced by the quadratic drag force is the mechanism
which generates the secondary resonance consisting of the period
doubled response even for moderate sea states. The 1/2
subharmonic motion predicted cannot be obtained from a model
in which the hydrodynamic exciting moment is equivalently
linearized. Note that the period doubled response is of greater
magnitude than the response predicted by the equivalent system.

Thus, stability analysis of this nonlinear ocean system can
nredict the complex dynamics recently uncovered numerically.
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APPENDIX

A.l Amplitude equations (Eq. 5):
Gi|/A0Am'<pm)=0
where [=3, M=l 6=Aqg+ Ay cos(wr+Py)

or

Rf+zi(Rfs+Rfc+R:C+Rfc)' (6};) (25 +85 +S; ) 0

2R R +R (R1C+R3C)=O

[2NY

2 RORKC +R1C Rrs =0 (A.la)
where
=qA [1——(/{ +2 )]
e 6
R s TUK, feos® +ywA
K -(a w)A uxf—-— A+4A)
k=1 47
‘C—‘ZaAo‘ i
— 1 3
Ris=5794 (A.1b)
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S, =K, f1+2K, fAsin® +K, A’
S, =K, F+2K,,fA cos®,

4

53 2
Szc=Ks|/ cosZ<D‘-2K fA smCD K A

5370 (A.l¢)
and
1 2 2 wnhkh
8 " 4krlsinh2kh kh  (kh)
1 2 Ztanhkh
K. =—| tanhkh——+"0T
e (a" kR )

=L (kn)y tanh kA (A.1d)
dkr

33

A.2 Coefficients for the harmonic Hill's variational equation (Eq.
1):

1/ . 1.
Ill) =1‘§'(A0 +EA' )
A=-AA
3= (A2a)

Hie= K&ZfCOS(DI
: A.2b
#|5=K52f51n¢|+K53Ax ( )

A.3 Coefficients for the subharmonic Hill’s variational equation
(Eq. 16):

et -]

A = [24,4 cosd,  +A Acos(‘I> (Duz)]

crn 0172 2t

‘o= 2[2A A sm<1>”2+A”2Al sin(cbl —d)m)}

si2” 0 M2

iC "2

1 = _%{:; Al cos(2® )+2A A cos(¢> )]

A=+ 1 [l A sin2P )+24 A sm((b )] (A.3a)

"2

,um K A ,cos®

83 12

,uz_/,— KA ,sin® ,

83 172
/1I’S =-K_ fsin® KMA] cos®,

==K, fecos® K Asin® (A.3b)




