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Analysis of a Nonlinear System
Exhibiting Chaotic, Noisy
Chaotic, and Random Behaviors

This study presents a stochastic approach for the analysis of nonchaotic, chaotic,
random and nonchaotic, random and chaotic, and random dynamics of a nonlinear
system. The analysis utilizes a Markov process approximation, direct numerical simu-
lations, and a generalized stochastic Melnikov process. The Fokker-Planck equation
along with a path integral solution procedure are developed and implemented to
illustrate the evolution of probability density functions. Numerical integration is
employed to simulate the noise effects on nonlinear responses. In regard to the
presence of additive ideal white noise, the generalized stochastic Melnikov process
is developed to identify the boundary for noisy chaos. A mathematical representation
encompassing all possible dynamical responses is provided. Numerical results indi-
cate that noisy chaos is a possible intermediate state between deterministic and
random dynamics. A global picture of the system behavior is demonstrated via the
transition of probability density function over its entire evolution. It is observed that
the presence of external noise has significans effects over the transition berween

different response states and between co-existing attractors.

Introduction

The effects of noise on nonlinear dynamical systems exhib-
iting chaotic behavior have been of interest to researchers in
various fields in recent years. Frey and Simiu (1992) derived
a generalized stochastic Melnikov function by considering the
additive noise as a perturbation to the homoclinic orbit, and
concluded that the presence of weak noise can not suppress
chaotic motion. Probabilistic properties of noisy nonlinear re-
sponses have been demonstrated by probability density func-
tions. By solving the Fokker-Planck equation for marginal prob-
ability density functions of nonlinear systems driven by periodic
excitation and random noise, Kapitaniak (1988) observed that
noisy chaotic response is nonstationary and can be characterized
by a multi-maxima curve in marginal probability density func-
tions. Examining the noise effect on the response behavior of
nonlinear systems through the Lyapunov exponent and probabil-
ity density function, Bulsara et al. (1990) numerically demon-
strated the noise-induced chaos and smoothing effect. Em-
ploying a finite difference procedure to solve the Fokker-Planck
equation, Kunert and Pfeiffer (1991) found that the resulting
steady-state joint probability density function can portray the
corresponding chaotic attractor on the Poincaré section.

This investigation systematically analyzes all the possible
dynamical responses in a nonlinear system from a stochastic
perspective. The links among distinct (in a classical sense)
dynamical responses (i.e., nonchaotic, chaotic, random and non-
chaotic, random and chaotic, and purely random) in a nonlinear
system are examined. By introducing a modulation factor which
governs the relative strengths of deterministic and stochastic
forcings, all possible dynamics can be formulated under a single
mathematical representation. By varying this factor, diverse dy-
namical phenomena are exhibited, and possible transition routes
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from deterministic responses to purely random responses can
be demonstrated. Probabilistic representation of noisy responses
is provided by the probability density function, which is ob-
tained by solving the Fokker-Planck equation. The path integral
solution is employed to numerically solve the Fokker-Planck
equation to demonstrate the evolution of probability density
function (not examined in previous works ), which characterizes
the global system behavior. Moreover, the steady-state probabil-
ity density functions can reflect existing response attractors. The
noise-induced transition between the co-existing attractors is
also examined. A generalized stochastic Melnikov process is
develop to identify a boundary for possible chaotic domain
by extending the deterministic Melnikov function to include
stochastic excitations. Contrasted to the work by Frey and Simiu
(1992), ideal white noise instead of Shinozuka’s band-limited
noise is used in our formulation. Noise-induced transition from
nonchaotic response to noisy chaotic response becomes analyti-
cally evident when a mean-square representation of generalized
stochastic Melnikov criterion is derived. Although the proposed
analysis approach is completely general, for convenience of
demonstration, the well-studied Duffing system is employed.

System Considered

A periodically forced Duffing system with additive random
perturbation is given by

¥+ cx—x+x3=(1 - vy)Bcoswt+ vE1) (D

where £(¢) is a zero-mean and delta-correlated Gaussian white
noise with noise intensity v. In Eq. (1), v is a modulation factor
determining the relative strengths of deterministic and stochastic
forcings. By varying v, the full range from purely deterministic
systems (v = 0) to purely random systems (y = 1) is repre-
sented. In the intermediate states (0 < y < 1), the Duffing
system is subjected to both periodic excitation and Gaussian
white noise. The noise effect on the nonlinear response can be
examined by fixing the deterministic excitation and varying the
noise intensity. For this purpose, the modulated periodic forcing
amplitude, A = (1 — y)B, and noise intensity, x = vy, are
introduced. Equation (1) becomes

I+ c¥—x+ x> =Acoswt+ n) (2)
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variables, g and p:

{q} =f(qg,p) =
p

_0H

expressed as follows:

{Z} =f(q.p) + g(q, p; 1);

glg, p; 0 ={

where n(t) is a Gaussian white noise with modulated intensity
. Depending on the purpose of illustration, Egs. (1) and (2)
are utilized alternatively. The corresponding Hamiltonian (un-
perturbed) system can be obtained by introducing two state

oH(q, p)

3
|5
(q,p) 9-49

dq

where [¢, p]7 = [x, £]7, and H(q, p) represents the Hamilto-
nian (Guckenheimer and Holmes, 1983). Equation (2) can be

0
} (4)

—cp + A cos wt + n(t)

where g(q, p; 1) is the perturbation to the Hamiltonian system.
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Methods of Analysis

To examine the (noisy) nonlinear behavior of the system in
a stochastic sense, a Markov process approach is described in
detail. Generalized stochastic Melnikov process is developed to
analytically demonstrate noise-induced transition. Direct nu-
merical simulations are employed to validate the analytical pre-
dictions.

Markov Process Approach. The behavior of a nonlinear
system subjected to periodic excitation and white noise can be
approximated as a Markov process (Kapitaniak, 1988), and
the conditional probability density function of this process is
determined by the knowledge of the most recent condition
(Risken, 1984). Probability density functions of a Markov pro-
cess obeys a statistically equivalent deterministic partial differ-
ential equation—the Fokker-Planck equation. The temporal so-
lution to this equation can be obtained using a path integral
solution procedure.

Fokker-Planck Equation. The Fokker-Planck equation as-
sociated to Eq. (3) is given by

oP(q,p. 1) 0 d 3
— e — (pP(g.p. 1)) — = {(~cp + g —
E aq{p (q,p, 1)} ap{( cptqg-g
al
+ A cos wt) P(q, p, 1)} +5—,P(q,p,l) (5)
2 op~

c)
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Fig. 1 Upper bound for possible chaotic domain based on generalized stochastic Melnikov process: (a) upper surface in c-A-w space; (b) upper
bound in ¢c-A plane with w = 1.0; (c) upper bound in ¢-w plane with A = 0.3; x = 0.0 and 0.01 for solid and dashed lines, respectively.
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Fig. 2 Possible dynamical responses: (a) deterministic periodic attractor (Poincaré map); (b) deterministic chaotic attractor (Poincaré map); (c)
sample realization of random response (phase piane); joint probability density functions of (d) random and periodic, (e) random and chaotic, and

( f) random responses.

where P(q, p, ¢) denotes the probability density function, p
and —cp + g — ¢° + A cos wt are the two components in the
drift vector, and « is the only nonzero entry in the diffusion
matrix (Gardiner, 1985). The periodic excitation in the drift
vector (Eq. (5)) implies that the probability density function
is periodic with period 27/w in time (Stratonovich, 1967).
The periodicity in the joint probability density function can be
suppressed by sampling the probability on the Poincaré section,
P,(g,p). and the steady state of which appears invariant (Kun-

Journal of Applied Mechanics

ert and Pfeiffer, 1991). This representation of probability den-
sity function will be used throughout the study.

Path Integral Solution. In the path integral solution proce-
dure, the traveling path of the probability density function is
discretized in terms of infinitesimal segments in probability
space (Wissel, 1979). Each segment represents a short time
propagation which is approximated by a time-dependent
Gaussian distribution called the short time probability density
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Fig. 3 Evolution of joint probability density function: (a) coexisting deterministic chaotic and periodic attractors in Poincaré map with ¢ = 0.163,
and initial conditions at (0, 0) and (1.0, 1.5), respectively; joint probability density function at (b) initiation, and at (c) the 2nd, (d) the 3rd, (e) the
5th, and (f) the 25th cycle of the forcing period, ¢ = 0.185; (A, o, x) = (0.3, 1.0, 0.003).

function. The mean and variance of this probability density
function are determined by the drift vector and the diffusion

matrix, respectively. At the succeeding state, the probability
density function can be obtained through a short time propaga-
tion and the probability density function at the desired state can
be obtained by applying the propagation iteratively. For the
system considered the short time probability density function,
Gig'.p', q,p,t;T),Iis given by

512 / Vol

. 63, JUNE 1996

' 2
+Acoswt—li———£>:|é(p

T

G(q'. p’ . _ 1 R _ 3
q,P,q,P,l,T)~m€XP e ptqg—gq

9’ ' —-q
T

(6)

where vectors [¢', p’17 and [q, p]” represent the post-state and
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pre-state, respectively, and the probability density function at
the time ¢ is given by

y=1 N-1
P(g,p,t) = lim H f .. f exp[—T1 Y, G(Giri, Piets
i=0

™0 -
N0 =0
Nr—r—t,

(7

where P(q,, p,, t,) is the probability density function of the
initial conditions. The path integral solution procedure con-
verges to the exact solution in the limit as N =« and 7 — 0.
It is noted that, as « — 0, the path integral solution converges
to the path of the deterministic (single) response trajectory. The
numerical approach of the path integral is based on a discrete
lattice representation (Wehner and Wolfer, 1983 ). By discretiz-
ing the probability domains at the ends of the segments (i.e.,
pre-state and post-state), the short-time probability density
function is converted to the transition tensor, and the probability
density function at the post-state is obtained by accumulating all
contributions from the pre-state. The desired probability density
function can be achieved by iterating the above procedure. Nu-
merical results obtained in this study indicate that the path
integral solution procedure is quite computationally efficient.

qi; pi’ [j; T)]P(qas pov to)dqldpx
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Fig.4 Noise-induced chaos: {a3) periodic response with yo = 0.0 (Poinc-
aré map); (b) noise-induced chaotic response with yo = 0.05 (Poincaré
map); (c) sensitivity to initial conditions (time history, corresponding to
(b)); (A, », ¢} = (0.25, 1.0, 0.185).
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Generalized Melnikov Method. A generalized version of
the Melnikov function for a system subjected to an excitation
with multiple frequencies was introduced by Wiggins (1988,
1990). The generalized stochastic Melnikov function (or more
appropriately, the generalized stochastic Melnikov ‘‘process,”
due to its time dependency and random nature) for the Duffing
system subjected to periodic and weak white noise is derived
here. Unlike previous studies, a criterion based on the general-
ized Melnikov process is developed using a mean square repre-
sentation to explicitly express the noise effects on possible oc-
currence of chaotic response.

The generalized stochastic Melnikov process is performed by
treating the weak noise as a perturbation along with damping
and periodic excitation. Assuming smallness of the perturba-
tions, cp, A cos wt, and 7(t), and expressing the pair of homo-
clinic orbits by explicit time functions, (¢°(¢), p°(£)) = (=
J2 sech (¢), V2 sinh (¢) sech?(t)) (Guckenheimer and
Holmes, 1983), then the generalized stochastic Melnikov pro-
cess is given by

M;(flov tlo)

1l

f_ flgi(n), pi (0]

A g[qi(t)5 Pi(”; [109 tZo]dt

A f tanh (¢) cos w(t + t,) gt
- cosh (1)

0 2
+ 2Cf ————[anh,(t) dt
—= cosh™(1)

N \/EJ’“ tanh (£)n(1 + 1) it
-% cosh ()

Mi(t,) + M7 (1) (8)

where “*+’’ (superscript or subscript) indicates the upper do-
main of phase plane. The first iwo integrals in Eg. (8). corre-
sponding to M (1,,), represent the mean of the stochastic Mel-
nikov process due to the periodic excitation and damping force,
and the last integral, corresponding to M7 (), represents the
random portion due to white noise. M, (ty,), instead of directly
integrated, is calculated by considering the convolution integral
as a filtering process, i.e., a white noise process n(¢) passing
through a linear filter given by the homoclinic orbits p%(r)
(Frey and Simiu, 1992). Because of the linear filtering, the
random process M (t;,) is stationary and of zero mean

* tanh (1)
—w cosh (1)

(M7 (1)) = 2 (M) = 0. (9)
Its corresponding spectrum is obtained by directly multiplying
white noise spectrum S,(w) and the transfer function | F(w) |2
of the linear filter, p%(¢). The variance of M/ (1) can be
calculated by integrating its spectrum over the entire frequency
range

O, =f | F(w)|?Sy(w)dw = 13.15¢ (10)

The frequency response F(w) is obtained through Fourier trans-
form

—lwn

Flw) = f po(t)e ™dr = (1)

\/5 cosh ikt
2
The generalized stochastic Melnikov criterion is obtained by
setting Eq. (8) equal to zero
M7 (tio, 1) = My () + M (1) = 0. (12)

Note that the stochastic Melnikov process (Eq. (8)) is Gaussian

JUNE 1996, Vol. 63 / 513



-200 -1.8 —-137 =080 Q083 =416 020 0.37 984 139 1.87 2.04 2.41

]

LR ShL S S o B S S B B N S0 (8% SN S SN BN SN A 20 M SR 0 AR S AN 00 SN 0 SN AR B S B B B S SN A B BN SE B B S B0

e - B

) 208 £ ]

177 b a"/\ E

144 £ < 3

= S 3

= & 1.\/__/"/ b

1.1 =d =

ors [ b 3

o8 [ 3

e 3

o013 | 3

o 3

= 3

-0 3

c 3

E 3

-os2 [ 3

E 3

-o88 | 3

-tz B 3

E 3

JRPY.O o T U S S R S A S G0 U A0 U U B0 0 T U W0 W0 U G B U S 0 S0 S0 O W T 0 G W O O O W B

~2.00 —1.63 —1.27 —G.90 —O.33 —O.16 020 0.57 0.94 131 1.87 204 249

-2.00 —=1,83 —1.77 -0.90 —0OL) —O.18 O.20 9.97 9.9+ 1.3% 1.87 204 2.4

242 FIT 7T T T T T T I T T T I T T T T T T T I X A T T T T T T T T T T O T v T g

b

) .
1.44

AR A AR RN RSN AR RARRINARRLARRRRANRY!

P AU AT NS AR R IS 00 AU B A U NE S A S0 U U B S 0 U 0 B S S G A A A S W W A A A W

1LbEe s qa i et e ppq ottt s RN qLgR)

43
fiw ]

-2.00 ~1.63 -1.27 ~0.0 -0.33 0.1 0.2C 0.37 A4 1.9 1.867 2.04 2.4

-2.00 —1.63 —1.27 —-0.90 -0.33 -=0.18 020 0.57 Q.94 1.31 1.67 2.04 2.41

.42
.00

<) -

144

—0.23

-147

TITTOT T v v e e o T i vy o

L S0 B0 B (0 S0 B St M A A 0 00 B S0 O SE N M S S 0 L SN B S S A 0 SN BN S0 B B0 A SR (0 M N MO L O BN 0

Claot i ba i i 14 a1ttt a s’

11

AAtatbdonta o eyt ek bRbIIISIREANELYY

-1.50

~2.00 —1.63 —1.2Z7 2.0 —053 -QIBF 020 0.37 4.9+ .31 1.67 204 241

q

2.42

2,08

1.77

144

—0.t9

—0.82

-0.85

—t.17

-1.80

2.42

208

1.77

1,44

.1

o+8

13

-0. 19

-0.82

-—0.88

-1.17

—1.80
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0.001, (b) k = 0.007, and (c) x = 0.02, (A, w, ¢, «) = (0.3, 1.0, 0.185, 0.003).

with mean and variance equal to M (,,) and o}, respectively.
In the limit as k — 0, the generalized stochastic and the standard
deterministic Melnikov criteria coincide.

The standard Melnikov function renders a necessary condi-
tion for existence of chaos (Yim and Lin, 1991), and in this
study the noise effects on the occurrence of possible chaotic
response can be explicitly expressed by an energy interpretation.
Thus. in regard to the presence of noise, the criterion for possi-
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ble chaotic response based on generalized Melnikov process is
performed in a mean-square representation

2 2
<<4_e> > _ <<M> > e . (1)
3 TW
cosh—z—

Then the mean-square criterion for possible chaotic response in
terms of parameters (A, w, ¢, k) 1s given by
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Fig.6 Transition among nonchaotic, noisy chaotic, and random dynam-
ics (Poincaré points versus y with (B, o, ¢, ) = (0.5, 1.0, 0.185, 0.04}).

(14)

T

(40)1 24wt
— | ===+
3 , W

cosh® —
)

The mean-square representation of the upper bound of possible
chaotic domain is obtained by equating the expressions in Eq.
(14) and portrayed in Fig. 1(a). It delineates the domain of
possible occurrence of chaotic response in parameter space. The
upper bounds for the cases with and without random perturba-
tion in different parameter domains are also represented by the
dashed and solid lines in Figs. 1(b) and (c), respectively. The
positive correction term. ci, (Eq. (10)), elevates the upper
bound for chaos (Figs. 1(b) and (c¢)). Thus, the presence of
noise lowers the threshold and enlarges the possible chaotic
domain in parameter space.

Direct Numerical Simulation. Numerical simulation is
employed to validate the analytical predictions. Sample realiza-
tions of the system response are obtained by directly integrating
Eq. (1), e.g.. by a fourth-order Runge-Kutta integration algo-
rithm. The numerical representation of the random noise se-
lected here is based on Shinozuka’s Gaussian noise (Shinozuka,
1977), the intensity of which is measured by its finite variance,
o2, It is noted that Shinozuka’s noise representation provides
a good approximation to the ideal white noise (infinite variance
with intensity scaled by the intensity parameter, «), and it pre-
serves the characteristics of the system response to ideal white
noise excitation.

Probabilistic Representation of Possible Responses

By varying the excitation parameters, the Duffing system
exhibits diverse and complex dynamical responses including
nonchaotic, chaotic, random and nonchaotic, random and cha-
otic, and purely random behaviors. Links among these possible
responses are examined via transient and steady-state probabil-
ity density functions obtained from the Markov process ap-
proach.

Single Attractor. Figures 2(a) and (b) show sample peri-
odic and chaotic responses in the Poincaré map. By adding a
small amount of noise (x = 0.003) to the deterministic excita-
tion, the corresponding joint probability density functions (¥P,)
is obtained and shown on the Poincaré section in Figs. 2(d)
and (e). It is observed that, with weak noise intensity, joint
probability density functions of random and periodic (Fig.
2(d)), and random and chaotic responses can reflect the re-
sponse attractors of their deterministic counterparts. It is noted
that in Fig. 2(d) the fractal details in the chaotic attractor are
clearly described by the joint probability density function.
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Figure 2(c) demonstrates a sample realization of purely ran-
dom response in the phase plane. It is observed that the phase
trajectory drifts back and forth between the two basins in the
potential. These two basins are reflected by the associated joint
probability density function (Fig. 2(f)).

The above numerical results indicate that probability density
functions not only can delineate purely random response (Fig.
2(c¢)) but also can reflect deterministic attractors, both noncha-
otic and chaotic, in a probabilistic sense when the noise is
weak. Thus, the probability density function may be a measure
applicable to all possible dynamical responses (Lasota and
Mackey, 1994). The asymptotic behaviors of the probability
density functions as the noise intensity goes to zero will be the
focus of future investigations.

Coexisting Attractors. An advantage of using probability
density functions to demonstrate stochastic responses is further
elaborated by examining coexisting attractors in this section.
The coexistence of attractors is one of the characteristics of
nonlinear systems. Figure 3(a) shows coexisting deterministic
chaotic and periodic attractors in the Poincaré map (with initial
conditions at (0, 0) and (1.5, 1.0), respectively). The joint
probability density function, which describes the global behav-
ior of the system, can be used to effectively portray these two
coexisting attractors (Kunert and Pfeiffer, 1991) (Fig. 3(f)).

This probabilistic representation of the coexistence of at-
tractors is demonstrated by initiating the slightly randomly per-
turbed system with deterministic initial conditions in the domain
of the chaotic attractor and sampling recurrently on the Poincaré
section to demonstrate the evolution of the joint probability
density function. Figures 3(b), (¢}, and (d) show the evolution
of the probability density function from its deterministic initial
conditions at (0, 0) to the domain of the chaotic attractor The
probability density function then drifts from the chaotic attractor
to the periodic attractor after five cycles of the forcing period
(Fig. 3(e)). Finally, at about 20 cycles, steady state is achieved
and the joint probability density function clearly reflects the
two coexisting attractors (Fig. 3(f)). The probability density
function describes the trajectories and demonstrates the
strengths of attractors in the mean sense. Under a detailed exam-
ination of the numerical results of Fig. 3(f), it is found that
the probability density function is more concentrated in the
domain of the periodic response, indicating that the periodic
attractor is of the greater strength.

It is noted that the steady-state probability density function
is independent of the initial conditions. In particular, although
the coexisting attractors shown in Fig. 3(f) are obtained with
initial conditions in the domain of the deterministic chaotic
attractor, numerical results (not presented here due to space
limitation) confirm that the same steady-state probability den-
sity function can be obtained by initiating the system within the
domain of the deterministic periodic attractor. This is because
the probability density function, although concentrated at the
attractor, covers the entire phase space. Transitions between
attractors are guaranteed by the presence of random perturba-
tions. Hence, initial conditions become insignificant in describ-
ing the global behavior of stochastic systems, which is in con-
trast with the sensitivity to the initial conditions of a single
deterministic chaotic trajectory. A slight difference in system
parameters is noted in Figs. 3(a) and (f), which is due to a
noise-induced shift of threshold of different response states
(Just, 1989).

Noise-Induced Transition. The generalized Melnikov cri-
terion analytically elaborates that the presence of noise enlarges
the possible chaotic domain. The steady-state probability den-
sity functions in the previous section also indicate the noise-
induced bridging effects on coexisting attractors. In this section
noise-induced transitions between distinct response states and
between coexisting attractors are numerically examined and in-
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terpreted by fixing the deterministic excitation and varying the
noise intensity.

Analytical prediction of the generalized Melnikov criterion is
corroborated by the phenomenon called noise-induced chaos
(Bulsara et al., 1990). This random and chaotic state is induced
from the neighboring nonchaotic state due to the presence of weak
noise perturbation. If the noise intensity increases, the system re-
sponse exhibits more random-like behavior. The transition between
nonchaotic response, and random and chaotic response caused by
the presence of noise is demonstrated in Figs. 4(a) and (b).
Figure 4(a) shows a sample deterministic periodic response (no
random perturbation ) with quiescent initial conditions. Figure 4(b)
shows that, with the same initial conditions, a random and chaotic
state is induced by a weak noise perturbation. Chaoticity of the
response in Fig. 4(b) can be illustrated by examining the sensitiv-
ity of its trajectory to the initial conditions. Figure 4(c) shows
that a slight variation in the initial conditions causes divergent
response behavior and its chaoticity is demonstrated. As expected,
with stronger noise intensity, the system response appears to be-
come more random. Thus, with noise intensity as the control pa-
rameter in the vicinity of chaotic domain, random and chaotic
response may be considered as an intermediate state between deter-
ministic and random responses. '

For coexisting periodic and chaotic attractors, numerical re-
sults indicate that the relative strength of the chaotic attractor
is enhanced by the presence of a moderate amount of noise
(Figs. 5(a)—(c)). Figure 5(a) shows, with very low noise
intensity, the probability density function is mostly concerntrated
in the domain of periodic response, and system response mainly
exhibits periodic behavior. When the noise intensity increases,
the probability density function covers the domains of both
periodic and chaotic responses, and the system behaves with
characteristics of both responses. When the noise intensity is
of relatively high strength, domains of periodic and chaotic
responses are merged, and system behavior appears more ran-
dom. Thus the noise intensity should be considered as an im-
portant parameter in search of chaotic response in practice.

Transition Between Deterministic and Random Dynam-
ics. Diverse transition routes from deterministic responses to
purely random results may result when the modulation factor
v in Eq. (1) varies from zero to one. Possible transition routes
are 1. “‘non-chaotic’” — ‘“‘random and non-chaotic’” — ‘‘ran-
dom’’; 2. “‘chaotic”” — ‘‘random and chaotic’’ — ‘‘random’’;
3. ‘‘non-chaotic’’ — ‘‘random and chaotic’” — ‘‘random’’.
Routes 1 and 2 are more easily understood, and route 3 is not
as intuitively evident.

Route 3 is numerically demonstrated, with quiescent initial
conditions, a possible transition from purely deterministic to
purely random dynamics by varying 7 in this section (Fig. 6).
For each value of vy, the Poincaré points of ten random sample
paths of the steady-state responses are combined and presented
in the map in Fig. 5. The system response behaves in a determin-
istic periodic state at y = 0. By examining the Poincaré map
of each individual sample path, it is found that as y increases,
the system response behaves in a noisy periodic fashion up to
v = 0.3 (indicated by the closeness of the sample Poincaré
points in Fig. 5). The typical sample response within the inter-
val of y between [0.35, 0.65] deviates to, and stays in, a noisy
chaotic state, which is indicated by the large scattering of the
Poincaré points in that region. When vy increases further to
beyond 0.63, the typical response becomes more random and
in the limit as v approaches 1, the distribution of the Poincaré
points approaches that of the steady-state response of a (pure)
randomly excited double-well Duffing system (Lin, 1967).

As demonstrated above, ‘‘random and chaotic’’ response may
be a possible intermediate state for system response drifting
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from the deterministic to the purely random. This highly nonlin-
ear random response may be considered as a possible link be-
tween deterministic and random dynamics.

Concluding Remarks

This study presents a stochastic analysis of all currently
known responses in a nonlinear system, and demonstrates the
system behavior in a probabilistic sense. Several conclusions
are summarized as follows:

1 ‘“‘Random and chaotic’’ response has been demonstrated
to be a possible intermediate state between deterministic and
random responses using a simple, well-studied system. Stochas-
tic characteristics of all possible dynamical behaviors have been
demonstrated.

2 Based on generalized stochastic Melnikov process, an
upper bound for possible chaotic domain has been identified.
The presence of noise lowers the threshold and enlarges the
possible chaotic domain.

3 The Fokker-Planck equation along with path integral so-
lution provide a temporal solution of probability density func-
tion, which characterizes the global behavior of the system. The
steady-state joint probability density function appears invariant
on the Poincaré section, which reflects all the existing attractors.

4 The presence of noise decreases the order in the system
response. It bridges domains of all the existing attractors and
controls their relative stabilities. Sensitivity to initial conditions
of the ‘‘random and chaotic response’’ is less significant in the
representation by probability density function.
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