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Abstract. The relationship between chaos and overturning in the rocking response of a rigid object under periodic
excitation is examined from both deterministic and stochastic points of view. A stochastic extension of the
deterministic Melnikov function (employed to provide a lower bound for the possible chaotic domain in parameter
space) is derived by taking into account the presence of random noise. The associated Fokker-Planck equation
is derived to obtain the joint probability density functions in state space. It is shown that global behavior of the
rocking motion can be effectively studied via the evolution of the joint probability density function. A mean
Poincaré mapping technique is developed to average out noise effects on the chaotic response to reconstruct
the embedded strange attractor on the Poincaré section. The close relationship between chaos and overturning
is demonstrated by examining the structure of the invariant manifolds. It is found that the presence of noise
enlarges the boundary of possible chaotic domains in parameter space and bridges the domains of attraction of
coexisting responses. Numerical results consistent with the Foguel alternative theorem, which discerns asymptotic
stabilities of responses, indicate that the overturning attracting domain is of the greatest strength. The presence of
an embedded strange attractor (reconstructed using the mean Poincaré mapping technique) indicates the existence
of transient chaotic rocking response.

Key words: Slender rocking object, chaotic, overturning, deterministic, stochastic, invariant manifolds, generalized
stochastic Melnikov process, Fokker—Planck equation, probability density function (PDF), Foguel alternative
theorem, mean Poincaré map.

1. Introduction

An in-depth understanding of the rocking behavior of rigid block-like structures is essential
to mechanical and civil engineers in the design and maintenance of a variety of free-standing
structures such as petroleum storage tanks, water towers, nuclear reactors, concrete radiation
shields and equipment racks subjected to base excitations due to earthquake ground motions,
and/or nearby machine vibrations [1-8]. It is well-known that the rocking response is highly
nonlinear and can be very sensitive to small variations in system parameters and excitation
details [1, 2]. Probabilistic trends can only be established with a large sample size [2]. Koh
[9] studied rocking response subjected purely random excitations through simulation and esti-
mated the probability of no toppling. For simplicity of analysis and demonstration purpose,
random excitations are usually assumed to be stationary delta-correlated (i.e. white) noise.
Iyengar and Manohar [10] investigated the stochastic rocking behavior under simultaneous
horizontal and vertical white-noise excitations. By approximating the impact-induced energy
dissipation by viscous damping and assuming no overturning under weak noise perturbations,
an approximate stationary solution of the probability density function (PDF) was obtained.
Another probabilistic analysis on the stochastic rocking response was carried out by Diment-
berg et al. [11]. The base excitations were modelled as white noise in both horizontal and
vertical directions, and both free-standing and anchored objects were considered. They found
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that, similar to the statistical results obtained by Yim et al. [2], larger blocks are more stable
than smaller ones of the same geometric proportion.

Recognizing the insurmountable difficulties in the analysis of the complex behavior of the
fully nonlinear rocking objects subjected to quake excitations, Spanos and Koh [3] simplified
the SDOF model by assuming the rigid objects to be slender and the base excitation to be
harmonic. They were able to develop approximate analytical methods to predict the existence
and stability of harmonic and subharmonic responses. A significant understanding about the
nonlinear behavior of the rocking object was gained through such a study. However, as pointed
out by Wong and Tso [4] in their experimental study of the simplified system, there appear to
be responses that could not be accounted for by the classical analytical methods.

These unpredicted responses were further investigated and later identified to be chaotic [5,
6]. Hogan [5] developed a discrete mapping technique to determine the stability regions of
harmonic and subharmonic responses and identified the regions of possible chaotic response.
He also quantitatively matched his analytical predictions with Wong and Tso’s experimental
results. Yim and Lin [6-8] examined the response behavior of both slender and non-slender
rocking objects subjected to simple deterministic excitations. They found that, although chaotic
time histories have a periodic time-dependency (thus non-stationary), time series consisting
of Poincaré points of chaotic responses possess stochastic invariant properties which indicate
a strong link between deterministic and stochastic behaviors.

This paper extends the deterministic studies of Yim and Lin [6-8] and investigates the
chaotic and overturning responses of a free-standing rigid object subjected to horizonal peri-
odic excitation under the influence of random noise. As indicated in [12], effects of slenderness
of the block on the chaotic rocking response are not significant in the Melnikov sense. Thus,
the rigid object is considered “slender” here as in [6] and [8] for simplicity and to isolate the
nonlinear effects due to impact. The effects of system parameters including slenderness ratio,
spectral characteristics of noise and non-stationarity of the excitation to the rocking responses
is being investigated and documented [13].

For the rocking block in a deterministic state (without noise perturbations), the Melnikov
function will be employed to provide a criterion for the existence of chaotic response. Invariant
manifolds will be constructed to reflect a close relationship between chaotic and overturning
responses and to identify the imprint of the safe region for bounded rocking responses (chaos).
For the rocking block in a stochastic state, a generalized stochastic version of the Melnikov
criterion will be derived by taking into account the presence of noise. The corresponding
Fokker-Planck equation will be derived and solved for the PDF using a path integral solution
procedure. Global information of the rocking behavior will be demonstrated via the evolution
of the PDF. By applying a mean Poincaré mapping technique [14], noise-induced random
perturbations of the chaotic responses are averaged out and the embedded strange attractor
can be reconstructed on the Poincaré section. The presence of the reconstructed chaotic
attractor indicates the possible existence of transient chaotic rocking response. The capability
and limitations of this mapping technique will be also examined in detail. The numerical results
are then interpreted in light of the Foguel alternative theorem which asserts the conditions for
the existence of invariant measures and signifies asymptotic stabilities of system responses.

2. System Considered

As described in [2] and [6], a free-standing slender object is modelled as a rectangular rigid
body subjected to horizontal base motion excitation (Figure 1). Assuming that friction at the
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Figure 1. Idealization of free-standing equipment as rigid rocking objected to horizontal excitation.

interface between the rigid object and the base is sufficiently large so that there is no slipping,
depending on the support accelerations, the body may move rigidly with the base or be set
into rocking motion. If rocking occurs, it is assumed that the body will oscillate rigidly about
the centers of rotation O and O'. The governing equation of motion about corner O (O’) with
positive (negative) angle of the rocking response is given by equation (1a) (equation (1b)):

If + MRay, + MgR(0, —0) =0, 6>0 (1a)
and
1§ + MRay, — MgR(6r +6) =0, 6 <0, (1b)

where Iy = moment of inertia about O or O’; M = mass; a4z = the horizontal base acceler-
ation; R = the distance from O to the center of mass; and 8, = cot™!(H/B) = the critical
(static overturning) angle, where H and B = the height and width of the object. Impact occurs
when the angular rotation crosses zero approaching from the positive (negative) direction and
the base surfaces re-contact. Impact-induced energy loss (or damping) is accounted for by a
coefficient of restitution, e, which relates the angular velocities before and after impact [2]

B(tT) =ef(t”) 0<e<l, 2)

where ¢* (¢7) = the time just after (before) impact. In this study, a deterministic horizontal
based motion excitation is considered sinusoidal, and any uncertainties/imperfections to the
sinusoidal excitation are deemed random perturbations which are approximated by an additive
white noise [15]. The white noise model provides an appropriate approximation when the noise
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correlation time is much shorter than the system relaxation time, which is generally true for
rocking systems. The horizontal base excitation is then given by

age(t) = acos(wt + ¢) + £(1), 3

where a, w and ¢ are the amplitude, frequency and phase shift of the periodic excitation,
respectively. £ describes a zero-mean, delta-correlated white noise perturbations with intensity
g. In the limit as ¢ — 0, the system becomes deterministic as the excitation approaches purely
periodic. As a first step towards understanding the influence of random noise on chaotic
response, only idealized stationary Gaussian white noise is used in this study for simplicity
of analysis and interpretation. (Numerical results indicate that white and non-white noises
have similar effects on rocking response when their energy levels are equivalent [16].) Effects
due to noise non-stationarity and spectral characteristics, which require extensive numerical
simulations, is examined in a separate study {13].

For convenience of analysis, non-dimensionalized versions of equations (l1a) and (1b)
are employed. Dividing both equations by the moment of inertia and the critical angle, and
re-scaling time [6], equations (1a) and (1b) become

© — 0 = —Acos(Qr + ®) + (1) — 1, >0 (4a)
and
© — O = —Acos(Qr + ®) + (1) + 1, 0 <0, (4b)

where © = non-dimensionalized angle; A,  and ® = non-dimensionalized amplitude,
frequency and phase shift of the periodic excitation. 7 is the re-scaled zero-mean delta-
correlated white noise with re-scaled intensity k;

Eln(r)] =0
E[n(r)n(r')] = k(7 — 7). &)

Thus, the system response is governed by two linear stochastic differential equations with
a local velocity discontinuity at zero displacement (i.e., impact, characterized by e). This
discontinuity causes the rocking response behavior to be highly nonlinear [5-8]. The system
behavior is analyzed in state space by setting state variables

T = 0, T, = O. (6)

The corresponding phase portrait with three fixed points, (+1,0), (—1,0) and (0, 0), is shown
in Figure 2. Two heteroclinic orbits are represented by the solid lines, and dashed lines
represent sample phase trajectories with different initial conditions.

By including external excitation and energy dissipation as perturbations, the governing
equation for the rocking system can be expressed in vector form:

X = fiaX) + (X, 7) (72)

with

_Jn _ I . T
X_{(ITQ}, fl(X)—{.’L‘l—l}’ fZ(X)—{m1+1} (7b)
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Figure 2. Phase portray of the unperturbed (Hamiltonian, e = 1.0) rocking system,

and

(7c)

9(X,7) = { 2

3(1 = €)8(21) + n(7) }

in which the energy dissipation due to impact is represented by the Dirac delta function [6].

—Acos(Qr + @) — %

3. Methods of Analysis

3.1. DETERMINISTIC STATE

When a rigid block is under purely periodic excitation, the system is said to respond in a
deterministic state. The associated Melnikov function has been developed by Yim and Lin [6]
to identify possible existence of chaotic response. Invariant manifolds will be constructed in

this section to indicate the basin of attraction for bounded rocking response (safe region) on
the Poincaré section.

3.1.1. Melnikov Method

The Melnikov method provides a quantitative representation of the existence of the transverse
intersection of homoclinic orbits and hyperbolic periodic orbits, thus identifying possible
chaotic response, in a two dimensional vector field [17, 18]. For convenience of reference,
and later comparison with stochastic extensions, the deterministic results obtained by Yim
and Lin [6] are briefly summarized here.
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The heteroclinic orbits in regions I and II (Figure 2) can be expressed by explicit time
functions [6]

@) =(1-e",e7),  gu(r)= ("~ L") ®)

Because of symmetry of the heteroclinic orbits with respect to z1, in the phase plane, only the
upper heteroclinic orbit needs to be examined. Assuming perturbations, z3(1 — €?)8(z1)/2,
A cos Q7 and 7(7), small, the Melnikov function is given by

M (m10)

f

| flalur) A gledu(r)imio] o

0 00
= [ sl Adlahir)imol dr + [ £168(] \slab(r):mic] ar
4, )

2Acos(Qryp) 1 2
AU ©)

where the superscript “+” signifies the upper heteroclinic orbit. M (7o) represents the
Melnikov function due to the deterministic perturbations, i.e., periodic excitation and impact.
The Melnikov function will equal zero for some 719 when the following condition is satisfied

1—e? _ 2Acos(Qryp)

= 10
2 1402 (10)
The criterion for possible chaos in the rocking system is then given by
1 —é? 2A
< . 11
2 T 1+ (h

The lower bound based on the Melnikov criterion in the A-{2 domain is shown by the solid line
in Figure 3. Deterministic chaotic rocking response may occur when the excitation parameters
(A and Q) fall in the region above the lower bound.

3.1.2. Invariant Manifolds

As mentioned in the Melnikov analysis, chaotic response may occur when the stable and
unstable manifolds intersect each other transversely. The invariant structures of the stable and
unstable manifolds can be obtained on the Poincaré section through a mapping technique {19]
and numerical simulations [20].

The saddles and center, which are located at (+1,0) and (0, 0) in the Hamiltonian system
(Figure 2), are shifted due to the presence of perturbations (periodic excitation). The direction
and magnitude of the shifts are closely related to the amplitude and frequency of the excitation
[19]. It is noted that there is no conventional (continuous) damping mechanism in the rocking
system, and impact-induced energy loss occurs locally at zero angular displacement during
re-contact. Thus, impact may influence the structure of the invariant manifolds but does not
shift the saddle points. Through local linearizations, the eigenvectors corresponding to each
shifted saddle can be obtained (Hartman—Grobman theorem, [17]).

Along the principal (eigen) direction of the saddle on the left, a selected small segment of
the eigenvector is divided into a finite number of infinitesimal elements which are individually
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Figure 3. Stochastic/deterministic Melnikov criteria for chaotic rocking response (lower bound in A—2 domain):

solid and dashed lines represent the cases without (x = 0.0) and with noise disturbance (s = 0.001), respectively;
with e = (.5.
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Figure 4. Stable (solid line) and unstable (dashed line) invariant manifolds on the Poincaré section, (4,2, e, ®) =
(4.6,2.7,0.5,3.14).
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to be a unified measure for both perturbed and unperturbed chaotic responses. The Foguel
alternative theorem is employed here to assert the existence of invariant measure (time-
averaged PDF). Numerical results are interpreted in light of this theorem to infer asymptotic
stabilities of responses.

For the purpose of this study, the Foguel alternative theorem may be stated as follow (for
a more formal mathematical statement, see [25]):

A continuous stochastic Markov process governed by the Fokker—Planck equation possess-
es either an asymptotic stationary PDF or sweeping properties with respective to a particular
region of interest containing the responses. If within the region of interest:

(a) the Markov process is periodic, i.e., there exists a time shift ¢ such that the PDFs
corresponding to time ¢ and ¢ + tp are identical, then a stationary PDF (equivalently
an invariant measure) exists and is equal to the averaged value of the PDFs over the
(steady-state) period to. Therefore, when periodicity-in the evolution of PDF is detected,
an invariant measure is assured and the response of the system is asymptotically stable.

(b) the Markov process is aperiodic (i.. a stationary density does not exist), then all prob-
ability mass (i.e. volume of PDF) will eventually escape (or be swept) out of the region
and hence asymptotically unstable.

Numerical results consistent with the Foguel alternative theorem will be demonstrated in the
following sections.

4. Chaotic and Overturning Response

The behavior of the rocking system is very rich in terms of diverse nonlinear responses
[5-8]. Among them, the chaotic (long-term unpredictable) and the overturning (unbounded)
responses are of most interest. In this section, relationships between these two critical rocking
responses are examined in both deterministic and stochastic states.

4.1. DETERMINISTIC STATE

4.1.1. Chaotic Response

Chaotic response may occur in a deterministic state when the Melnikov criterion is satisfied.
A sample chaotic response of the rocking system is shown in Figure 5. The unpredictability
(sensitivity to initial conditions) of the chaotic response is demonstrated by the time histories
shown in Figure 5a. It is observed that, with a small variation in the initial conditions, the
rocking system will result in totally different chaotic response trajectories. Fractal properties
of the chaotic attractor via the Poincaré map are shown in Figure 5b. Note that as indicated by
the Melnikov criterion (equation (11)), the possible chaotic domain expands when e increases.
On the other hand, the domain of stable rocking responses shrinks with increasing e [7]. Thus,
these possible chaotic responses may occur in the transient prior to overturning. Extensive
numerical studies shall be conducted to identify the existence of chaotic response with large
values of e. In this study, for the purpose of demonstrating the invariant structure of steady-
state chaos (Section 4.1.2), e is chosen 0.5 here together with large periodic excitation to
assure steady-state chaotic rocking response.
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Figure 5. Deterministic chaotic rocking response: (a) sensitivity to initial conditions in time histories; (b) corre-
sponding strange attractor in Poincaré map; (4,0, e, ®) = (4.6,2.7,0.5,3.14).

4.1.2. Stochastic Properties of Deterministic Chaotic Response

An ensemble numerical experiment has been conducted to demonstrate the stochastic prop-
erties of the deterministic chaotic rocking response with uniformly distributed initial uncer-
tainties [8). In this study, 5000 realizations of chaotic response with initial conditions cor-
responding to grid points in a small square are generated and sampled after 500 cycles of
the forcing period (T'). Figure 6 shows the marginal PDF corresponding to a typical chaotic
response sampled with various shifts, i.e., ¥ =0.0x T,02 xT,04 x T, 0.6 xT,08xT
and 1.0 x T'. It is shown that the PDFs are practically identical when the shift is at integer
multiples of the forcing period, i.e., 0.0 x T and 1.0 x T'. The PDFs appear to be symmetric
about the half-cycle time point, i.e.,at 0.2 x T and 0.8 x T',and at 0.4 x T'and 0.6 x T'. Thus
periodicity in the evolution is demonstrated. Based on part (a) of the Foguel alternative theo-
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Figure 6. Periodicity in the evolution of PDF of chaotic rocking response: ¥ = @ 0.0xT,(®)0.2xT,(c)04xT,
(d)0.6 x T, (e) 0.8 x T,and (f) 1.0 x T; (A4,Q,e,®) = (4.6,2.7,0.5,3.14).

rem, a stationary PDF (and hence an invariant measure) exists. For this example, the time shift
to is equal to excitation period, T'. The corresponding time-averaged PDF (invariant measure)
is shown in Figure 7. Thus the combination of numerical results and the Foguel alternative
theorem assures that sample deterministic chaotic rocking responses in the attracting region
are bounded and asymptotically stable.
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Figure 7. Time-averaged PDF (invariant measure) of chaotic rocking response; (4,9, e, ®) = (4.6,2.7,0.5,3.14).

4.1.3. Overturning Response

Due to the heteroclinic nature of the rocking system, overturning response can easily result
if the periodic excitation amplitude is sufficiently large or the initial value is in the “unsafe
region”. The region is deemed safe if initial conditions within which bounded rocking respons-
es (periodic or chaotic) result. Similarly, the region is deemed unsafe if initial conditions
within which unbounded rocking responses (overturning) occur. The boundary between safe
and unsafe regions is simple (smooth) in a periodic state [26]. However, this boundary may be
fractal when the system is chaotic. Identification of the boundary of the safe regionin a chaotic
state has to rely on an extensive numerical investigation [27]. Nevertheless, in a chaotic state,
the tangled invariant manifolds qualitatively indicate the boundary of the domain of attraction.
Thus the region enclosed by the invariant manifolds may yield the defining area for further
numerical search to identify the fractal details of the boundary for the safe region.

Figure 8a indicates the possible safe regions for the unperturbed/Hamiltonian system
(enclosed by the dashed line) and the perturbed, damped and forced system (enclosed by the
solid line). It is observed that the possible safe region has been shifted to the right due to
the presence of the external perturbations (periodic excitation). Figure 8b shows a bounded
chaotic time history with initial conditions (0.90,0.36) which is located inside the perturbed
safe region but outside the unperturbed safe region. Figure 8c shows an overturning rocking
response with initial conditions (—0.8,0.0) which is located inside the unperturbed safe region
but outside the perturbed safe region. These numerical observations confirm that when the

rocking system is perturbed (forced), the invariant manifolds provide the imprint of the safe
region.
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Figure 10. Sensitivity of chaotic response to noise perturbations and corresponding mean Poincaré map: (a) deter-
ministic (o> = 0.0); (b) weak noise leads to overturning (o> = 0.04%, Poincaré points vs. Nth forcing period);
(c) mean Poincaré map corresponding to (b); (4,2, e, ®) = (4.6,2.7,0.5, 3.14).

chaos). Moreover, if a response is chaotic in the deterministic state (Figure 10a), it could be
brought out of the chaotic state and led to overturning due to the presence of external noise
(Figure 10b). These numerical results indicate that the presence of additive noise expedites
the occurrence of chaotic rocking and overturning responses in parameter space and reduces
the stability of the response behavior.
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4.2.2. Overturning Response

The PDFs obtained through the Markov process approximation can supply global information
about rocking response behavior. The external random noise plays a role of bridging all
coexisting attracting domains. The corresponding PDFs portray these attractors on a Poincaré
map and indicate their relative strengths.

Figure 11 shows the evolution of the PDFs in the first few cycles of excitation period.
Starting with quiescent initial condition (0, 0), the PDF is concentrated in the safe region for
the first two cycles (Figures 11a and b), and then spreads widely over phase space after two
and a half cycles (Figure 11c). This indicates that the domains of attractions of all coexisting
attractors are bridged by the external noise. Continuing integration of the PDF (not shown here)
shows that spreading of the PDF continues with increasing number of excitation cycles and
eventually all probability mass is swept out of the region of interest (in this case region bounded
by £ /20, normalized angular displacements). This result implies that the overturning region
(diverging to Loo displacements) is a much stronger attractor compared to the other coexisting
attracting domains of bounded responses (periodic and chaotic). These numerical results are
consistent with part (b) (sweeping property) of the Foguel alternative. Because a stationary
density (invariant measure) does not exists within the region of interest, all probability mass
will eventually escape (be swept) from the region. Sweeping of the probability mass from the
stable (non-overturning) region indicates that the rocking system is asymptotically unstable
with the presence of white noise, thus all perturbed response trajectories will eventually
diverge to overturning (or, in other words, converge to the overturning attractors).

As mentioned previously, although the ideal white noise is not realized in practice because
of its infinite variance, results from the Markov process (which is based on white-noise
assumption) do indicate the intrinsic characteristics of the rocking response behavior. A
limited parametric simulation study has been conducted, and numerical results of randomly
disturbed chaotic responses based on finite-variance Shinozuka’s noise do escape out of the
bounded domain into the overturning domain within finite duration. An example of a chaotic
response under relatively weak Shinozuka’s noise perturbations (62 = 0.04%) is shown in
Figure 10b. Compared to the overturning attractor, the weak stability of the chaotic attractor

is indicated by the corresponding PDF obtained from the Markov process approximation, as
shown in Figure 11.

4.2.3. Reconstruction of Chaotic Attractor

As demonstrated in a previous section, numerical results indicate that all bounded motions are
weakly stable compared to overturning. Due to the overwhelming strength of the overturning
attractor and the noise-induced bridging effect on domains of attraction of coexisting attractors,
after a sufficient long but finite duration, all bounded motions will eventually escape to the
overturning region. In reality, except when under very strict control, noise perturbations in a
rocking system are inevitable. Thus, the strange attractor embedded in the stochastic state and
the associated transient chaotic rocking response may be difficult to detect due to the strong
attraction of overturning. However, through the mean Poincaré map, the fractal structure
of the corresponding embedded chaotic attractor can be reconstructed. Figure 10b shows a
chaotic time history which leads to overturning due to the presence of noise perturbations, i.e.,
transient chaos (also see Figure 9b). Figure 10c illustrates that when the noise perturbations are
averaged out through the mean Poincaré mapping technique, the embedded chaotic attractor
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Figure 12. Capability of mean Poincaré map at various noise levels: (a) 02 = 0.0, (b) 0% = 0.052, (c) 0% = 0.06°,
(d)o® =0.12%,(e) 0% = 0.132, and (f) 0 = 0.16%, (4,9, e, ®) = (4.6,2.7,0.5,3.14).

surfaces on the Poincaré section. The fractal details in the reconstructed strange attractor
implying “orderess” in the corresponding chaotic response are not destroyed by the presence
of noise. Thus transient chaos may be exhibited with noise present (Figures 9b and 10b).
The capability of the mean Poincaré map to reconstruct chaotic attractors via various noise
intensities is further demonstrated in Figure 12. Compared to the chaotic attractor in the
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deterministic state (Figure 12a), the mean Poincaré map preserves the fractal characteristics
with a low level noise perturbations (62 < 0.052, Figure 12b). When the noise intensity
increases (0.06% < 0% < 0.122), although the mean Poincaré points are still in the bounded
region (Figures 12c and d), the fractal structure of the embedded chaotic attractor deteriorates,
which indicates that the “orderness” of the chaotic response in the stochastic state is diminished
by the noise. When the noise intensity further increases (o> > 0.132), overturning response
results in the mean sense (Figures 12¢e and f).

Numerical results here indicate that when the noise level is low (o2 < 0.052), most of the
deterministic features of perturbed rocking responses are preserved, and the corresponding
embedded attractor can be reconstructed. The block may experience transient chaos with low-
intensity noise prior to eventual overturning. When the noise level is high (0.062 < 0? < 0.12%)
the noise-induced randomness prevails the “orderness” of the response, and a random-like
cluster is shown in the mean Poincaré map. Thus, the block rocks essentially in a random
fashion. Similar noise-induced “orderness” elimination has also been observed in the literature
via the smoothing of marginal PDF and Lyapunov exponent [28, 29]. When the noise level
further elevates (02 > 0.13%), the block overturns with practical certainty in the mean sense.

5. Concluding Remarks

The rocking behavior of a slender rigid object subjected to periodic excitation with and without
noise perturbations has been examined to gain a better understanding of its sensitivity and
stability. The close relationship between chaotic and overturning responses in the vicinity of
the heteroclinic orbits has been demonstrated in both deterministic and stochastic states. The
following concluding remarks are expressed:

1. A generalized stochastic Melnikov process have been derived by taking into account
the presence of random noise. The resulting criterion can provide a lower bound for
possible chaotic domain in parameter space. Numerical results show that the presence of
random noise expedites the occurrence of possible chaotic and overturning responses of
the rocking system and decreases the stability of the response behavior in general.

2. The Markov process approximation provides giobal information about rocking response
behaviors and their relative strengths. A fast diverging PDF of the perturbed chaotic
rocking response indicates its asymptotical instability with noise present.

3. In the deterministic chaotic state, the tangled invariant manifolds provide an imprint of
the boundary for the safe region in phase space and demonstrate the close relationship
between the chaotic and overturning responses in terms of domain of attraction.

4. Domains of attraction of all coexisting responses may be bridged with the presence of
random noise, thus the system may behave in a fashion of combined response characteris-
tics. Numerical results indicate that among coexisting responses, the overturning attractor
is of the greatest strength such that the block is led to overturn even when low-intensity
random noise is present.

5. Identification of transient chaos and reconstruction of the corresponding embedded chaotic
attractor in a noisy environment are accomplished by applying the mean Poincaré map.
When random noise is present and the fractal details of the reconstructed strange attractor
are preserved in the mean Poincaré map, the rigid object may experience transient chaotic
rocking response prior to eventual overturning.

6. The Foguel alternative theorem is numerically demonstrated in the perturbed/unperturbed
rocking system. When the rocking system is in a deterministic state, the deterministic
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chaotic response is asymptotically stable and an invariant measure (time-averaged PDF)
exists. When the rocking system is in a stochastic state (with white noise present), sweeping
of the PDF from the stable region indicates the system is asymptotically unstable.
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