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Abstract. A unified approach of using densities to analyze both deterministic and stochastic complex responses
including chaotic and random motions of nonlinear engineering systems is illustrated in this study. Motivations
to examine deterministic nonlinear dynamical systems via densities are first discussed. Essential mathematical
background and techniques pertinent to the analyses of both deterministic chaos and random chaotic processes
are briefly summarized. Densities of nonlinear responses are computed by numerically solving the Fokker—Planck
equation to examine stochastic properties of random chaotic responses. It is demonstrated that, by introducing
random perturbations in an otherwise deterministic excitation, the existence of attractors can be efficiently and
clearly depicted by the evolution of a unique probability density over the physical phase space. Two distinct
asymptotic behaviors of densities: (i) invariance and (ii) sweeping, of complex motions and their relationship
to response stabilities predicted by the Foguel Alternative Theorem are numerically demonstrated. Applications
using the probability densities to compute reliability indices of an engineering system are demonstrated.
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1. Introduction

Two recent trends in the design of structures make the use probability density as an engin-
eering analysis and design tool indispensable. One is the intended revision of many exist-
ing design codes to a reliability-based format. Another is the increasing demand for safe
performance of a new generation of structures in a highly nonlinear (possibly inelastic) range.

In the past, many design codes for structures were deterministic with safety factors selected
on an ad hoc basis. However, with the maturing of reliability theory and applications, and the
availability of an increasing amount of field data, many on-going efforts have been devoted to
converting deterministic-based codes to probabilistic-based ones (e.g. partial safety factors in
the API LRFD code for offshore structures). To compute the reliability indices of a structure,
probability distributions (or densities) of the response processes are needed.

Concurrently, the need for economical design and construction in often increasingly hos-
tile environments requires structures to be compliant and to operate frequently in highly
nonlinear modes. The nonlinear response motions include subharmonic, superharmonic, ultra-
subharmonic, quasi-periodic and, under certain conditions, chaotic responses. Of these com-
plex motions, the characterization of chaotic response, because of its seemingly unpredictable
nature, presents the most challenge to the design engineer. However, recent research has dis-
covered that although chaotic motions under regular (periodic) excitations are deterministic,
they possess stochastic properties that can be efficiently characterized via densities. Although
these properties are stochastically stable, they are difficult to be employed in practical en-
gineering applications due to the fact that the invariant sets of chaotic attractors have fractal
dimensions thus with Lebesque measure zero in physical phase space. Because of this, it is
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not clear how classical stochastic analyses and reliability calculations can be directly applied
to purely chaotic motions. However, excitations in the natural environment (e.g. aerospace
and ocean) often contain intrinsic random components. Thus, in addition to a dominant peri-
odic component, random perturbations are present and need to be included in modeling of
the excitations and the response analyses. Random chaotic response behavior may then be
included in structural design via a probabilistic approach. The goal of this paper is to, along
with other prominent researchers in the field [1-5], take another step forward in this direction
by demonstrating the potential unified analysis of both deterministic and stochastic responses
of engineering systems using (probability) densities.

2. Background

Chaotic behavior in a periodically driven deterministic nonlinear system has been of great
interest to researchers in engineering [6, 7]. Criteria for occurrence of chaotic responses in
purely deterministic nonlinear systems have been developed [8-10]. Applications of global
analysis techniques on stability studies of ship roll motion have been carried out by Thompson
et al. [11] using basin boundaries erosion, Gottlieb and Yim [12] using perturbation and har-
monic balance methods, and Falzarano et al. [13] using lobe dynamics to explain the complex
behavior and ‘unexpected capsizing’.

It is well known that chaotic responses are sensitive to small variations in initial conditions
and system parameters [6-8]. This ‘unstable’ characteristic makes it difficult to take into ac-
count chaotic responses in the design of nonlinear structures using conventional deterministic
methods. On the other hand, chaotic responses possess many ‘stable’ stochastic properties.
In fact, under properly selected measure spaces, chaotic attractors possess invariant densities
(measures) and ergodic (and mixing) properties. These stable properties are difficult to employ
in practical engineering applications because, as mentioned above, the invariant sets of chaotic
attractors have fractal dimensions and Lebesque measure zero in physical phase space, and
reliability indices of system response cannot be directly computed by applying conventional
stochastic analyses and engineering reliability calculations.

However, under realistic field environments, purely deterministic (periodic) environmental
excitations seldom exist and random perturbations are often inevitable. Thus the structural
systems are better modeled as randomly perturbed. These so called noisy dynamical systems
have been studied and it is concluded that deterministic analysis techniques via topological
concepts may not be useful and global behavior including bifurcation phenomenon should be
studied from a stochastic perspective [1-3, 14].

Stochastic extensions of a few analysis techniques originally developed for deterministic
chaotic systems have been derived. In particular, the effects of weak random perturbations
on chaotic behavior have been investigated via the Melnikov process and phase-space flux
approaches [15-19].

Results of computer experiments on deterministic chaotic systems have suggested a wealth
of stochastic phenomena of complex nonlinear system behaviors. Common stochastic prop-
erties among deterministic and randomly perturbed systems including existence of invariant
densities (and measures), stochastic stability and asymptotic periodicity have been observed.
Thus, stochastic concepts and ergodic theory can be applied to chaotic systems [1-5]. To gain
an understanding of the relationships between deterministic systems exhibiting complex non-
linear behaviors and stochastic systems, knowledge of the basic stochastic calculus, ergodic
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and operator theories is helpful. A few key elements pertinent to interests in this study are
brieflv summarized below.

2.1. MATHEMATICAL BACKGROUND

In order to introduce the mathematical concept of invariant measure, Markov and Frobenius—
Perron operators and the Foguel Alternative Theorem, and their relationship with probability
applications that are well-known to engineers, the notions of measure, density and operators
pertinent to this study are first reviewed (see {20] for detailed descriptions).

18 a measure of a space (X, ) with & being a o-algebra of subsets of a set X, and ¥
satisfying: (i) u(¢) = 0; (i) w(B) > O for all B € F, and (iii) u(UrBr) = Ty (By) with
{ By} finite or infinite sequence of pair-wise disjoint sets from ¥ . The triple (X, ¥, ) forms
a measure space.

A function f € D(X,¥,p) is called a density if the set D(X,F,u) = {g €
LY(X.¥.p);g > 0and ||g|| = 1) where L! is a Lebesque space consisting of all possible

integrable functions f : X — R. Moreover, if f € L'(X, ¥, 1) and f > 0, then the measure
i 5 defined by

1y (B) = / FEm(dx) 1)
B

is absolutely continuous with respect to w. In the special case that f € D(X, ¥, u), then fis
the density of u; and that ;s is a normalized measure. Note that the probability theory em-
ployed in conventional reliability analyses is an application of measure theory with probability
as a normalized measure.

The Markov operator is a primary tool in studying the flow of (probability) densities of
stochastic systems. An operator P, : L' — L! in measure space (X, ¥, ) is called Markov
with parameter tif Vf > O and f € L', and satisfies

Pfz0 (2a)

and
He =111 (2b)

The Frobenius—Perron operator, which may be considered a deterministic restriction of the
Markov operator, is useful for examining the flow of densities of corresponding deterministic
systems. The part of ergodic theory concerning asymptotic behaviors of densities often applies
equally well under both deterministic and stochastic settings. In particular, many analytical
results applicable to deterministic flows described by Frobenius-Perron operators concerning
chaotic behaviors evolving under the influence of periodic excitations have direct exten-
sions to their corresponding stochastic counterparts under periodic excitations with random
perturbations. The definition of Frobenius—Perron operators is introduced in the following.

A continuous semigroup of operators S, : X — X,t € R* may be defined in measure
space (X, ¥, ) as the solution to the following ordinary differential equation [20]

%;- = b(x) with x(0) = x°. (3a)
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A Frobenius—Perron operator can then be defined as the operator P, satisfying

/ P f (6)p(dx) = / Feu(d), (3b)
B s7'B)

where f € D is a density associated with S,

/ fp(dx) = 1. (e
R

These abstract concepts and definitions will assume concrete meaning when applied to the
analysis of numerical examples.

2.2. STOCHASTIC CALCULUS AND FOKKER-PLANCK EQUATION

2.2.1. Fokker—Planck Equation

The concept of the Markov operator has been applied in the classical nonlinear random vibra-
tion analysis (e.g., [21]). The response of nonlinear systems to white noise or filtered-white
noise excitations are often modeled as a Markov process, and the flow of response probability
densities is governed by the Markov operator. The evolution of the probability densities can be
alternatively expressed by a statistically equivalent, deterministic partial deferential equation,
called the Fokker-Planck equation (FPE). A generic form of the PFE is given by

P 1 B 9
ST =52 5o BiP) =) —BiP) | @)

ij=1 i=1

fort > 0, x € R*, with functions 8 P/d¢t, d P/dx;, 3*P/dx;dx;, da;; /dx;9x;, db; /dx;, being
continuous, and b;, a;; and their derivatives being bounded. Probability density P(X,t)is a
solution to the FPE if it satisfies

P(X, 1) = / I'X,Y, 0 f(Y)dy, %)

Rm

where f(Y) e L! represents the initial distribution and I'(X, Y, t) is a stochastic kernel
satisfying the corresponding FPE for + > 0. An advantage to this approach is that there is
no limit to the degree of nonlinearity in the system considered.

This study focuses on applications of a few recently developed analysis techniques based
on ergodic theory developed for deterministic systems and its stochastic extensions using
densities to extract stability characteristics of randomly perturbed nonlinear complex (chaotic)
motions. Based on the Frobenius—Perron operator theory, advantages of using evolution of
(probability) density instead of single trajectory to illustrate the pertinent stochastic properties
of chaotic response are numerically demonstrated. Random components in the excitation are
later introduced to better describe the stochastic nature in the environmental loadings, e.g.,
wind, waves and current. Transient and steady-state probability densities are computed by
numerically solving the (FPE), and their asymptotic behaviors are interpreted in light of the
Foguel Alternative Theorem. The alternative behaviors: (i) invariant (stable), and (ii) sweeping
(unstable), are numerically demonstrated. The key is to take advantage of the fact that the pres-
ence of a random excitation component induces stochastic responses of non-zero Lebesque
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measure in the state space which can be directly applied in computing engineering reliability
indices.

3. System Model

To demonstrate the mathematical theory and engineering applications, a single-degree-of-
freedom ship-roll model with water-on-deck effect [18], which possesses two distinctive
well-defined response behavior domains, is considered here. Each response domain is ex-
amined individually to show the distinct characteristics of the associated response behavior
with and without random perturbations.

Assuming a beam sea condition and the roll motion being uncoupled from other degrees

of freedom, the governing equation of a single-degree-of-freedom ship-roll motion can be
expressed as follows [18]

U + A(w)]¢ + B(w)g + By (w)Plgl + AGZ, () = Fea(w) cos(wt +2) +85@1),  (6a)

where ¢ is the roll angle, I is the moment of inertia (in air) of the ship about the roll axis,
A is the hydrodynamic added mass coefficient, B is the linear roll damping coefficient, B,
is the quadratic drag coefficient, A is the weight of the ship, and GZ,(¢) is a polynomial
approximation to the nonlinear roll-restoring moment arm. Fg.,, w and & are the amplitude,
frequency, and phase shift of the external wave exciting force, respectively. £(¢) is an ideal,
zero-mean, delta-correlated Gaussian white noise, i.e.,

@) =0,
EHED) = va(t' —1), (6b)

where (-) represents the ensemble average, §(-). Is the Dirac delta function, and v is the noise
intensity. The Gaussian white noise approximates all possible random perturbations in the
external exciting force.

By including the effect of water-on-deck, the roll motion is characterized by two distinct,
well-defined domains of different dynamical behaviors — homoclinic and heteroclinic [18].
Assuming frequency-independent coefficients, normalizing Equation (6a) with the inertia
coefficient (mass plus added mass), linearizing the quadratic hydrodynamic force, taking
a two-term polynomial approximation of the GZ,,(¢) curve, and re-scaling time, the non-
dimensionalized versions of the homoclinic and heteroclinic dynamics can be obtained,
respectively, as follows

¥+ cx — kix + k3x® = Acos(wr + V) + n(t) (7a)
and
¥+t +kix — ksx® = Acos(ot + V) + 1), (7b)

where 7n(t) is a zero-mean, delta-correlated white noise with intensity «, i.e.,

(n®) =0
() = k8 —1). (70)
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Figure 1. Homoclinic (inside) and heteroclinic orbits in unperturbed rolling motion.

The two systems (Equations (6a) and (6b)) can be rewritten via state variables, x; and x;,
and analyzed in the (displacement-velocity) state space

Xl X 0
{ X2 ] h { Fhix £ kax] } + { —cxy + Acos(wt + W) + (1) } ’ (8)

respectively, with

X1 ‘ _ X
MEH] o
The corresponding separatrix of each region in the phase space is plotted in Figure 1. Chaotic
responses are found to exist near the separatrix in both regions [18]. The response behavior in
each region with and without random perturbations will be examined and interpreted via the

evolution and characteristics of (probability) densities in later sections.
The associated FPEs to Equations (7a) and (7b) may be written as [22]

WP 0, POX,0) = (e + ki1 — kax]
T T T oo ) — —il—cx — kax;
at axl 2 8.7(2 2 1X1 3%

Kk 9°

+ Acos(wt + WIP(X, )} + 3 9l P(X,t) (9a)
2
and
aP(X,1) 0 9

Ty T -8—;{262 P(X, I)}—a—x2{[—cx2—k1x1 + k3x;

2
+ Acostr + WP 0} + < L px. 1), (9b)
2 9x3
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where P (X, t) denotes the (joint) probability density, x, and (—cx; +k;x; $k3xl3 + A cos(wt +
W) are the two entries in the corresponding drift vectors, and « is the only non-zero coefficient
in the 2 x 2 diffusion matrix [23]. The periodic excitation in the drift vector (Equation (9))
implies that the steady-state probability density, if exists, is periodic with period 27 /w in time
[24, 25].

Although a simple analytical expression of the solution to the FPE (e.g. [9]), closed form
solutions are seldom available in general. Among existing numerical schemes [1, 3, 26, 27], a
path-integral solution procedure solving the FPE for probability densities is chosen here for its
systematic numerical implementation and computational efficiency [27-29]. Computational

advantages and limitations of the path-integral method have been discussed in detail in [5, 28,
29].

4. Deterministic and Random Chaotic Responses

4.1. DETERMINISTIC CHAOTIC MOTIONS

Deterministic chaotic motions of a nonlinear system are often studied via modern nonlin-
ear dynamical system approach [9-13]. Stability and global bifurcation behaviors of such a
system can be illustrated by examining Equations (2a) and (b) with noise intensity « zero.
Possible deterministic chaotic responses are identified to exist when the stable and unstable
manifolds transversely intersect each other [9, 10]. The intersections are estimated by applying
the Melnikov function [8-10], and the resulting Melnikov criterion provides a lower bound
for the chaotic domain in the parameter space. Deterministic chaotic responses of both the
homoclinic and heteroclinic regions satisfying the Melnikov criterion are shown in Figure 2

to illustrate their non-periodicity in time history and phase plane, and the fractal properties in
Pcincaré map.

4.2. RANDOMLY PERTURBED CHAOTIC MOTIONS

Random perturbations in the external excitation can be represented by a Gaussian white noise
n(r) with intensity ‘modulation parameter’ « (Equation (7c¢)). The deterministic Melnikov
criterion can be directly extended to take into account the presence of random perturbations.
Specifically, with the presence of a zero-mean white noise 7(r) (Equation (7c)), a gener-
alized (Gaussian distributed) stochastic Melnikov process and its variance can be obtained
through the transfer function associated with the convolution integrals [18]. It is indicated
that (in the mean-square sense) the presence of zero-mean random noise enlarges the possible
chaotic domain in parameter space. Noise-induced effects on chaotic responses are numeric-
ally demonstrated by a single response trajectory represented via time history, phase plane
and Poincaré map (Figure 3). Different stabilities of chaotic responses of the homoclinic
and heteroclinic regions are indicated. It appears that under random perturbations the chaotic
response in the homoclinic region is stable (Figures 3a-3c), and that in the heteroclinic region
typically diverges (for the particular example considered, to lower left corner in phase plane
and Poincaré map, Figures 3d-3f). Asymptotic stability of chaotic response of these two
regions under random perturbations will be examined from an ensemble point of view via
(probability) densities in the following sections.



112 S. C. S. Yimand H. Lin

5. Asymptotic Properties of Densities

5.1. STOCHASTIC PROPERTIES OF DETERMINISTIC TRANSFORMATIONS

There are three levels of irregular response (chaotic) behaviors a deterministic (measure-
preserving) transformation of nonlinear systems can induce — ergodicity, mixing, and exact-
ness. The Frobenius—Perron operator is an efficient means to discern these behaviors [20].
However, the measure spaces suitable for analyzing these deterministic attractors and their
stochastic properties, due to their fractal nature (for chaotic attractors), are usually different
for each (possibly co-existing) attractor and have Lebesque measure zero associated with
the physical state space of practical engineering interest. This undesirable (measure zero)
property renders a direct application of the stochastic analyses of the deterministic attractors
impractical for conventional reliability analyses.

5.2. RELATIONSHIPS BETWEEN DETERMINISTIC AND RANDOMLY PERTURBED
SYSTEMS

As mentioned earlier, in the presence of random perturbations, the response of a nonlinear
system is described by a stochastic differential equation. The corresponding response behavi-
ors can be examined via the evolution of the density governed by the FPE. Solutions of the
FPE are equivalent to the flows of densities governed by a semigroup of Markov operators.

When the relative intensity of the random perturbations in the excitation reduces to zero,
the FPE reduces to the Liouville equation and the semigroup of Markov operators reduces to a
semigroup of Frobenius—Perron operators. Under certain smoothness conditions (topological
structural stability), properties associated with the deterministic system can be recovered as
limiting cases of stochastic results.

Two major advantages of including random perturbations as a component of the excitation
are that the model represents a more accurate description of the physical system, and that the
resulting densities governing the responses belong to the physical state space of engineering
interest. In fact the resulting densities are the familiar ones studied extensively in classical ran-
dom vibrations, hence can be used directly in reliability calculations. Thus it is advantageous
to examine nonlinear complex (chaotic) response behaviors from a stochastic setting.

5.3. ASYMPTOTIC STABILITY OF DENSITIES

While solutions to the FPE can be computed efficiently via numerical (path-integral solution)
procedures, stability characteristics of the responses may be proficiently extracted by examin-
ing properties of their associated semigroup of Markov operators. Depending on the stability
of the density, two distinct discrete asymptotic properties, (i) invariant and (i) sweeping,
can be observed. These two possible asymptotic behaviors of the density are addressed in
the Foguel Alternative Theorem, which states that: (a) a continuous stochastic semigroup of
Markov operators possesses either an asymptotic stationary density or sweeping properties
for the FPE; and (b) if there exists a time shift 7, such that the densities corresponding to ¢
and ¢ + fo are identical, then the semigroup of Markov operators is periodic and a stationary
density which is equal to the averaged value of the densities over the period #; exists. Part (b)

of the theorem can be expressed mathematically as follows: if there exists fp € R*, fo € D
to such that

Pt().fo - va (103)
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then
i
fe= ” f B fo(x) dt (10b)
0
and
P fi=fo, VieR". (10¢)

The mathematical conditions under which the theorem holds are described in detail in
[15]. Note that despite the Foguel Alternative Theorem being demonstrated only by means
of semigroup of Markov operators in this study, it is equally applicable to deterministic
transformations, e.g., semigroup of Frobenius—Perron operators.

6. Numerical Results and Discussions

In the previous sections, essential mathematical background and theorems pertinent to engin-
eer interest have been introduced. As many mathematical theorems, systematic procedures
to verify particular engineering systems satisfying the mathematical conditions of a theorem
are often difficult to develop and implement. However, the availability of such a mathem-
atical framework and theorems are often helpful in interpreting numerical results. Possible
engineering applications by using probability densities to incorporate intrinsic characteristics
of both deterministic and randomly perturbed chaotic responses are indicated and discussed
via numerical examples, and demonstrated in a later section. The usefulness of the Foguel
Alternative Theorem to both deterministic and stochastic response analysis is also numerically
demonstrated to illustrate periodicity and asymptotic stability as well as sweeping properties
of the systems considered in this section.

6.1. DETERMINISTIC CHAOS

Sample chaotic responses from both homoclinic and heteroclinic regions (Equations (7a) and
(7b)) without random perturbations are first examined from a single trajectory and later from
a stochastic perspective via probability densities.

6.1.1. Trajectory vs. Densiry

As demonstrated in Figure 2, chaotic responses are non-periodic in time, and their fong-term
unpredictability and sensitivity to uncertainties in initial conditions are further illustrated in
Figure 4a. With slight variation from the initial conditions (0, 0) and (0, 0.1), respectively,
dramatic changes are observed in the corresponding time histories (Figure 4a). Despite the
unstable and unpredictable nature of the deterministic chaotic response, invariant stochastic
properties can be extracted and depicted via density (Figure 4b).

Based on the theory of Frobenius-Perron operator (Section 2.1), ensemble numerical
experiments are conducted to demonstrate stable properties of deterministic chaos with a
uniform initial distribution. In this study, 5000 realizations of chaotic response with initial
distribution corresponding to grid points in a tiny displacement-velocity square (0.001x0.001)
centered around the initial condition of interest are generated and sampled after 500 cycles of
the forcing period (Poincaré section). The chaotic attractor is clearly reflected by the contour
plot of the density, which is invariant on the Poincaré section. Numerical results suggest that
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Figure 4. Trajectory vs. density: (a) solid and dashed lines represent chaotic response trajectories with initial
conditions at (0, 0) and (0, 0.1), respectively; (b) contour plot of density of corresponding attractor on physical
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Unified Analysis of Complex Nonlinear Motions via Densities 115

density is a means for further study of stochastic properties of deterministic chaos as examined
in the following sections.

6.1.2. Evolution of Sensities

Periodic samples of the evolution of the density in state space governing the responses of
the homoclinic and heteroclinic regions are examined based on the numerical experiment
described in Section 6.1.1. Figures 5 and 6 show the marginal densities corresponding to
typical homoclinic and heteroclinic chaotic responses, respectively, sampled with various
(phase) shifts (W =0.0x T,02x 7,04 xT,0.6 xT,0.8 x T and 1.0 x T). It is shown
that the probability densities are practically identical when the shift is at integer multiples of
the forcing period, 1.e., 0.0 x T and 1.0 x T'. The densities appear to be symmetric about the
half-cycle time point, i.e., at 0.2xT and 0.8 x T, and at 0.4 x T and 0.6 x T, the density are
practically identical. Thus periodicity in the evolution is demonstrated.

6.1.3. Asymptotic Stability of Densities

The Foguel Alternative Theorem is equally applicable to deterministic transformations as
indicated in Section 5.3.3 and the asymptotic stability of densities of deterministic chaos
is interpreted here accordingly. Because of the existence of periodicity in the evolution of
probability density, based on part (b) of the Foguel Alternative Theorem (Equation (10b)), a
stationary density (and hence an invariant measure) exists for both deterministic homoclinic
and heteroclinic regions. For this example, the time shift in the Foguel Alternative Theorem,
1o, is equal to the excitation period, T'. The corresponding time-averaged probability densities
(invariant measure) are shown in Figure 7. The numerical results demonstrate and the Foguel
Alternative Theorem assures that the deterministic chaotic responses for both regions in the
attracting domains are bounded and asymptotically stable.

As numerical results demonstrate that the unpredictability and sensitivity of individual
chaotic response trajectory are difficult to take into account in deterministic engineering
designs. However, by introducing an initial distribution and through a deterministic trans-
formation defined by the semigroup of Frobenius—Perron operators (Section 2.1), invariant
properties of deterministic chaos can be extracted via density on the Poincaré section. Com-
plete information about the existing attractor (if no other co-existing attractors) is provided
by the density and the existence of invariant measure can be computed by time-averaging the
densities over a forcing period, based on the Foguel Alternative Theorem. In mathematical
terms, the deterministic chaotic attractor is of Lebesque measure zero in the phase space (a
space of practical interest for conventional reliability analysis). Also, for the case of coexisting
response attractors, which is one of the features of nonlinear dynamics, the physical measure
may depend on the initial distribution, and only partial information about the physical phase
space is provided. An example of the dependence between the initial distribution and coex-
isting attractors is demonstrated (Figure 8). Figure 8a shows two initial uniform distributions
with mean located at (0, 0) and (1, 2), respectively. The corresponding response attractors
(chaotic and periodic) are shown in Figures 8b and c, different stochastic properties of each
attractor are observed.

The aforementioned drawbacks, i.e. measure zero and partial information of phase space,
of directly incorporating deterministic chaos in engineering practice can be ameliorated by
including stochastic components in the excitation, which in reality better describes the random
nature of environmental loads. Results of engineer interest based on stochastic analysis are
demonstrated and discussed in the following section.
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Figure 6. Periodicity in evolution of density of heteroclinic chaos: ¥ — @0 0xT,0)02xT,()04xT
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Figure 7. Invariant measure (time-averaged density) of deterministic chaos: (a) homoclinc with (A, w, ¢, k1, k3)
= (0.3, 1.0, 0.185, 1.0, 1.0); (b) heteroclinic with (A, w, ¢, k1, k3) = (0.115, 0.5255, 0.4, 1.0, 4.0).

6.2. RANDOMLY PERTURBED CHAOTIC RESPONSES

The advantages of including random perturbations as a component of the excitation in a highly
nonlinear (chaotic) system have been briefly discussed in Section 5.2, and a direct application
of stochastic analysis is rendered. Sample randomly perturbed chaotic responses from both
homoclinic and heteroclinic dynamics (Equations (2a) and (2b)) are examined via evolution
of density to demonstrate their asymptotic behaviors. Because of their distinct asymptotic
stabilities, the homoclinic and heteroclinic dynamics are examined individually and discussed
in the following sections.
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6.2.1. Homoclinic Dynamics

Global information about the physical phase space provided by densities is an important
feature of practical engineering interest. The density is obtained by solving the FPE (Equa-
tion (9a)) using a path-integral solution procedure, and sampled on the Poincaré section
(multiple times of the forcing period). As shown in Figure 8, the density evolves into a steady
state which contains both (randomly perturbed) periodic and chaotic motions (Figure 8d). Dis-
tribution of probability density in state space indicates the relative strengths of the coexisting
attractors [18]. Transitions between the coexisting periodic and chaotic responses may exist
in practice. The unique (probability) density, containing both ‘periodic’ and ‘chaotic’ motions
can be considered as a physical measure in engineering applications (e.g., [28]).

Periodic samples of the evolution of the density in state space governing the responses
of the homoclinic region are shown in Figure 9. Starting from the quiescent condition (0, 0)
(Figure 9a), the density gradually evolves over the chaotic attracting domain (Figures 9b—d).
The density finally settles into a steady state which is invariant on the Poincaré section, thus
periodicity in the evolution is assured. Based on part (b) of the Foguel Alternative Theorem,
the presence of periodicity in the evolution of the density implies the existence of an invariant
density, which can be obtained by averaging the steady-state density over one forcing period
(Equation (10b)). The existence of invariant measure (Figure 10) ensures that the system is
asymptotically stable.

It is observed that the stochastic analysis presented here via the FPE formulation captures
the essential behaviors and the stable attractors (both periodic and chaotic) with relatively
little computational efforts (in terms of machine execution time, once the numerical code
is developed). On the other hand, in a deterministic analysis, the amount of analytical and
computational efforts involved in identifying the co-existing attractors (via large order of trial
simulations) and examining their stability is often substantially higher in comparison (in terms
of engineering hours).

6.2.2. Heteroclinic Dynamics

Evolution of the first few cycles of the probability density of randomly perturbed chaotic re-
sponses of the heteroclinic region is obtained by numerically solving the FPE (Equation (9b))
and presented on the Poincaré section in Figure 11. Starting with the quiescent initial condition
(0, 0) (Figure 11a), the probability density spreads widely over the phase space after a cycle of
the forcing period (Figure 11b), and the probability mass keeps diverging toward 400 within
the first few cycles (Figures 11c-11d). Continuing integration of the evolution of the probab-
ility density (not presented in the figure) shows that spreading of the density continues with
increasing number of excitation cycles and eventually all probability mass is swept out of the
region of interest. (Note that the stable region of interest is a function of the excitation details
and system parameters such as damping coefficient). These numerical results are consistent
with the sweeping property (i.e., part (a)) of the Foguel Alternative Theorem (Section 5.3).
Because a stationary density (invariant measure) does not exist within the region of interest,
all probability mass will eventually escape (be swept) from the region. Sweeping of the prob-
ability mass from the stable, bounded-motion region indicates that the heteroclinic dynamics
is asymptotically unstable under the presence of random perturbations, thus all perturbed
response trajectories near the separatrix will eventually diverge to unbounded motions.
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Figure 9. Evolution of density of randomly perturbed chaos (homoclinic region): contour maps at (a) ini-
tial coenditions (0.0, 0.0), (b) Ist, (c) 2nd, (d) 4th, (e) 18th, and (f) 20th cycle of forcing period,
(A, w, ¢, ky, k3, k) = (0.27, 1.0, 0.185, 1, 1, 0.003).
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Figure 10. Invariant measure (time-averaged density) of randomly perturbed chaos; homoclinic dynamics with
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7. Engineering Application

It has been shown above that the probability measure is the unique normalized measure for
nonlinear stochastic systems and the associated probability densities provide a means for
practical reliability analyses. The asymptotic behavior of the density is characterized by the
Foguel Alternative Theorem, i.e., the density is either invariant or sweeping in time. For the
case that an invariant measure exists (the time-average probability density, cf. Equation (10b)),
various models have been developed to approximate the frequency of response trajectories
up-crossing at a given amplitude. With further statistical assumptions, the probability of large
excursions in system responses can be estimated and serve as a reliability index for system
performance (e.g., [30]). On the other hand, for the case with a sweeping probability density,
the probability of system response trajectories escaping from the ‘defined’ domain will even-
tually become unity. For this type of response, the transient behavior of the evolution of the
probability density become important in evaluating the system performance. Despite the two
distinct asymptotic density behaviors (i.e., invariant and sweeping), the reliability of a general
class of nonlinear stochastic systems with either asymptotic density behavior can be reflected
by a unified index, the first passage time, as demonstrated in the following.

7.1. RELIABILITY BY FIRST PASSAGE TIME

Reliability of a system is defined as the system behaves in a designated ‘safe’ domain within
a designed life span. The reliability can be translated into a probabilistic description {22]

Ps(t) = P{X(t) e D, o<t <r1), (11a)
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