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Modeling and Identification of a
Nonlinear SDOF Moored
Structure, Part 1—Hydrodynamic
Models and Algorithms
The highly nonlinear responses of compliant ocean structures characterized by a large-
geometry restoring force and coupled fluid-structure interaction excitation are of great
interest to ocean and coastal engineers. Practical modeling, parameter identification, and
incorporation of the inherent nonlinear dynamics in the design of these systems are
essential and challenging. The general approach of a nonlinear system technique using
very simple models has been presented in the literature by Bendat. In Part 1 of this
two-part study, two specific nonlinear small-body hydrodynamic Morison type formula-
tions: (A) with a relative-velocity (RV) model, and (B) with an independent flow-field
(IFF) model, are formulated. Their associated nonlinear system-identification algorithms
based on the reverse multiple-input/single-output (R-MI/SO) system-identification tech-
nique: (A.1) nonlinear-structure linearly damped, and (A.2) nonlinear-structure coupled
hydrodynamically damped for the RV model, and (B.1) nonlinear-structure nonlinearly
damped for the IFF model, are developed for a specific experimental submerged-sphere
mooring system under ocean waves exhibiting such highly nonlinear response behaviors.
In Part 2, using the measured input wave and output system response data, the algorithms
derived based on the MI/SO linear analysis of the reverse dynamic systems are applied to
identify the properties of the highly nonlinear system. Practical issues on the application
of the R-MI/SO technique based on limited available experimental data are
addressed.@DOI: 10.1115/1.1710875#

Introduction
Complex nonlinear responses have been observed and demon-

strated in various compliant ocean systems characterized by large-
geometry nonlinear mooring restoring force and coupled fluid-
structure interaction exciting force@1,2#. An understanding of
these nonlinear responses, including coexisting periodicprimary,
subharmonic and superharmonic resonancesand aperiodicquasi-
periodic, chaoticphenomena under both deterministic and noisy
excitations, is essential to incorporate these responses in future
engineering design for safe operation of these structures.

When examining the complex dynamic responses of these
highly nonlinear systems, it is important to develop sophisticated
analytical models that the details of the nonlinear responses can be
captured accurately. However, at the same time the models have to
be sufficiently simple that modern geometrical analysis techniques
and efficient computer simulations can be performed. Determinis-
tic analysis theories and numerical prediction techniques of rela-
tively simple models have been developed to analyze the complex
nonlinear phenomena for single-point mooring systems@2# ships
@1#, and multi-point mooring systems@3,4#. Lin and Yim @5,6#
developed stochastic extensions of these techniques and cor-
responding analyses. They provided guidelines for interpreting
field and experimental observations where randomness cannot be
neglected.

To calibrate the prediction capability of these analytical tech-
niques and simulation models, a number of experiments have been
conducted@7–9#. In order to calibrate analytical predictions with
experimental results, the system parameters employed in the ana-
lytical techniques need to be identified. Because the system is
nonlinear, conventional system identification techniques based on

linear system theory@10# are not applicable. For relatively simple
nonlinear systems, however, a Reverse Multiple-Input/Single-
Output ~R-MI/SO! technique has been developed to determine
amplitude and frequency dependent properties of some simple
nonlinear systems such as the Duffing and Van der Pol types sub-
jected to broadband excitation inputs@11#. Numerically simulated
responses to random excitations were used to verify the technique.

Experiments on a single-degree-of-freedom~SDOF! nonlinear
multi-point moored submerged sphere subject to wave excitations
have been conducted at the O. H. Hinsdale Wave Laboratory at
Oregon State University@12#. Measured results for both systems
indicated that various types of nonlinear responses including har-
monic, sub-harmonics, super-harmonics and chaotic responses
were present.

In this study, two alternative small-body Morison type models
of coupled fluid-structure interaction excitations—~A! a relative
velocity ~RV! model that fully couples wave motion and dynamic
structural response, and~B! an independent flow-field~IFF! model
that decouples the fluid and structural velocities, are formulated
for the specific experimental mooring system conducted at Oregon
State and their applicability examined in detail. For the RV model,
a straightforward system identification algorithm~A.1!—
nonlinear-structure linearly damped~NSLD! is first derived using
the R-MI/SO technique. In addition, based on the concept of
R-MI/SO technique, which identifies any number of nonlinear
system parameters@11#, an iterative version ~A.2! called
nonlinear-structure coupled hydrodynamically damped~NSCHD!
algorithm, is derived to improve the accuracy of the identified
parameters. For the IFF model, the associated algorithm~B.1!
with a nonlinear-structure nonlinearly damped~NSND! assump-
tion is derived. In Part 2, the resulting systems using the identified
parameters obtained based on these three algorithms are employed
to depict the responses of the fluid-structure interaction of the
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SDOF, symmetric spherical mooring system. Appropriateness and
practical issues of these models and algorithms are examined in
detail using experimental data.

Note that there are alternates to the use of Morison’s equation
for hydrodynamics forces. These include fully nonlinear potential
flow and Reynolds Averaged Navier-Stokes equations to model
fluid flows and pressure forces on the structural system. However,
the computational efforts are much more involved, and coupled
fluid-structure interaction analysis will require the use of super or
parallel computers.

System Considered
The SDOF structural experimental system consists of a sub-

merged two-point moored neutrally buoyant sphere excited by
regular and random waves. Springs are attached to the sphere to
provide the restoring force at an angle of 90 deg~see @4# for
details!. Although the mooring lines are linearly elastic, the restor-
ing force is strongly nonlinear with large geometric stiffness. For
the SDOF system, the sphere is restricted to moving only in the
surge direction by passing a rigid steel rod through its center. Plan
and profile views of this setup are shown in Fig. 1. Eight tests
were conducted on the sphere with periodic plus band-limited
white noise excitations@12#. The wave displacement and surge
response of the sphere were measured and the wave velocity and
acceleration were numerically evaluated using a central-difference
method@13#.

Governing Equation
The equations of motion for two~a relative-velocity and an

independent flow-field! excitation models of the SDOF moored
structural system subjected to excitations consist of periodic
waves perturbed with random noise are derived in this section.
The excitation force takes into account both nonlinear drag and
inertia effects on a submerged symmetric small body using the
Morison type model@14#. Through an appropriate transformation,
the randomness in the wave field is incorporated into the hydro-
dynamic forcing terms.

Dynamic Equilibrium. By considering dynamic equilibrium
in the surge direction, the governing equation of motion for the
SDOF mooring system in standard form can be written as

mẍ~ t !1Csẋ~ t !1R~x~ t !!5 f ~ t ! (1)

wherem5mass of the sphere,f (t)5hydrodynamic force acting
on the sphere,Cs5 linear structural damping coefficient,R(x(t))
5nonlinear restoring force,x(t), ẋ(t), ẍ(t) are the system dis-
placement, velocity and acceleration, respectively. In the SDOF
model, due to the presence of the rod passing through the center
~used to prevent vertical~heave! and side~sway! motions, see Fig.
1!, the structural damping mechanism includes a time dependent
Coulomb friction component originating from the~time varying!
lift force and combined drag/lift moment. As a first approxima-
tion, it is assumed here that the structural damping can be lumped
into an equivalent linear structural-damping coefficientCs . The
nonlinear restoring force and excitation force are described in the
following subsections.

Restoring Force. The restoring force includes an elastic force
due to the mooring lines and a vertical force due to hydrostatic
buoyancy. Because the sphere used for the experiment was neu-
trally buoyant, the forcing caused by hydrostatic buoyancy is neg-
ligible @12#. The resulting inline forceR(x(t)) may be derived
from a potential functionV(x(t)), which describes the pre-
tensioned geometrical configuration of a symmetric small body
@4#.

V~x~ t !!5K~@ l 1~x~ t !!2 l c#
21@ l 2~x~ t !2 l c#

2! (2a)

With the mooring angles attached at 90 deg, the spring lengthsl 1
and l 2 can be expressed as

l 1,2515Ad21x~ t !2 (2b)

Knowing that R(x(t))5d/dx(V(x(t)), the restoring force
R(x(t)) in the surge direction is derived as given below:

R~x~ t !!54Kx~ t !S 12
l c

l D (3a)

where K5spring constant,l c5 initial spring length, andd
5distance of the center of the sphere from the wall~Fig. 1!. The
restoring force can be approximated by a high order polynomial
obtained through a least square approximation. Polynomials of
various orders have been employed and an optimum fit within the
experimental range is identified. The polynomial can be expressed
as

R8~x~ t !!>a1x~ t !1a2x~ t !21a3x~ t !3 (3b)

For the experimental model, a comparison of the approximate
restoring force,R8(x(t)), in Eq. ~3a! with the geometric model
restoring force,R(x(t), in Eq. ~3b! is given in Fig. 2a. It can be
observed thatR8(x(t)) matches very well withR(x(t)). A nor-
malized~relative! error measure,uR(x(t))2R8(x(t))u/uR(x(t))u,
between the geometric model and approximate restoring force
functions is given in Fig. 2b. The error is found to be negligible
~much less than 1%!, over the range where the restoring force is
significant.

The mooring line stiffnesses are selected to provide the desired
vibration frequencies and resonance motions to maximize the oc-
currence of nonlinear responses in the wave basin setting. The
hydrodynamic forces on the mooring lines, which are piano wires,
in contact with the fluid are negligible by design. The rod, which
is 1-inch square steel, is practically rigid and not affected by hy-
drodynamic effects.

Hydrodynamic Force Models. Using linear wave theory as
described in@15#, the horizontal water particle velocity is given by

u~ t !5va
coshks

sinh~kh!
cos~kx~ t !2vt ! (4a)

Fig. 1 SDOF experimental set up: a… plan, b… profile view
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where u5water particle velocity in surge direction,a
5dominant wave amplitude,v5angular velocity,k5wave num-
ber, h5water depth, ands5distance of the instantaneous center
of the sphere from the bottom.

The wave excitation can be considered as a randomly perturbed
regular wave field. With wave elevation,h(t), measured, Eq.~4a!
can be approximated by

u~ t !5v
coshks

sinh~kh!
h~ t ! (4b)

It is assumed that the random perturbations in the excitation are
included inh(t), given by

h~ t !5a cos~kx~ t !2vt1f!1j~ t ! (4c)

where, in this study,j(t) is a zero-mean delta-correlated white
noise. The horizontal water particle acceleration can also be ap-
proximated as

u̇~ t !5v
coshks

sinh~kh!
ḣ~ t ! (5)

where u̇(t) is the water particle acceleration in surge direction.
The system diagram for the calculation of water particle velocity
and acceleration from the experimental wave input is given in Fig.
3a.

A. Relative-Velocity Model. A relative-velocity ~RV! model
that couples the fluid-structure velocities can be used as one form
for the Morison equation to express the forces on the sphere
which are given by

f ~ t !5r;Cmu̇~ t !2maẍ~ t !1
r

2
ApCd~u~ t !2 ẋ~ t !!uu~ t !2 ẋ~ t !u

(6)

where

;5
p

6
D3 (7a)

Ap5
pD2

4
(7b)

ma5
p

6
D3Ca (7c)

r5mass density, D5diameter of sphere,Ca5added mass
coefficient,Cm5hydrodynamic inertia coefficient, andCd
5hydrodynamic drag coefficient. The values ofCm andCd may
be obtained from wave experiments while the coefficientsCa is
derived from oscillating sphere in otherwise calm water. Also

Cm ,Cd5 f S ReF5
v roD

y
,KCF5

v roTr

D D (8a)

Ca5 f S ReN5
ẋoD

y
,KCN5

ẋoTo

D D (8b)

where v ro5amplitude of v r , the relative velocity andTr
5combined period ofv r , ẋo5amplitude of the structure velocity
and To5period of oscillation of structure,y5viscosity of the
fluid, Re5Reynolds number, KC5Keulegan-Carpenter number.
Note that, as in Chakrabarti@15#, suffix F refers to far-field and
suffix N to near field. The schematic diagram of the SDOF system
with the RV model representing Eqs.~1 and 6! is given in Fig. 3b.

B. Independent Flow-Field Model.When a rigid body is
free to move in waves, Chakrabarti@15# suggested that an inde-
pendent flow-field~IFF! model might be used as an alternating
form of the Morison equation. A linear superposition of two inde-
pendent flow-fields separating the wave motion and the structure
motion is used here, given by

f ~ t !5r;Cmu̇~ t !2maẍ~ t !1
r

2
ApCdu~ t !uu~ t !u

2
r

2
ApCd8ẋ~ t !uẋ~ t !u (9)

whereCd8 is the nonlinear structural damping coefficient. In this
case,Cm andCd are given by

Cm ,Cd5 f S ReF5
uoD

y
,KCF5

uoTr

D D (10)

whereuo5amplitude of the water particle velocity. The schematic
diagram of the SDOF system using the IFF model as a form of
Morison force is given in Fig. 3c, which delineates Eqs.~1! and
~9!.

Laya et al.@16# discussed the region of applicability of the RV
and IFF models in terms of reduced velocity,VR , defined by

VR5
uoTo

D
(11)

It is observed that for low KC and highVR , as in the case of the
experimental system considered, the IFF model may be more ap-
propriate. Due to the lack of a comprehensive experimental study
on the determination of the appropriate forms of the Morison
equation~which itself is empirical! for different combinations of
parameters and experimental settings, it is difficult to assess the
appropriateness of the various forms of the Morison hydrody-
namic force expression. However, the R-MI/SO technique can be
used as a tool to determine the appropriate form of the equation
best suited for the experimental system under consideration~see
discussion in Part 2!.

R-MI ÕSO Algorithms
The general identification techniques for nonlinear dynamic

systems~differential equations of motions! under a stochastic set-
ting have been presented in detail in@11#. Its novelty lies in the
causality of input and output relationship and the reversibility of

Fig. 2 Comparison between the geometric model and approxi-
mate restoring force functions: a… force, b… relative error
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the model in terms of the input and output. While the R-MI/SO
technique can be applied to most nonlinear systems subjected to
random excitation irrespective of the nature of the distribution
~e.g., Gaussian or non-Gaussian! of the excitation and responses
@11,17#, selection of the ‘‘most appropriate’’ mathematical model
to represent the physical system is not straightforward. For the
application of the R-MI/SO technique, depending on the availabil-
ity of data and the emphasis of the modeler, many alternative
algorithms can be formulated by choosing different data sets
~measured and/or derived! as inputs and outputs. In general, the
more measured data one has, the more sophisticated nonlinear
system model one can employ. In practice, a balance between
accurate physical representation and simplicity of interpretation
will have to be taken into account based on the quantity and
quality of available data. In this study, the hydrodynamic force,
which is not measured during the experiment, is evaluated using
the Morison Equation@Eqs.~6! or ~9!#. With the inertia and drag
force dependent on the coefficientsCm andCd , the mathematical
equation has unknown parameters~system properties as well as
hydrodynamic coefficients! on both sides and applying the
R-MI/SO technique to determine the system parameters need an
iterative approach. Three alternative algorithms based on the RV
and IFF models, with various degree of appropriateness of physi-
cal representation and simplicity, are derived and discussed below
to demonstrate the level of efforts involved and the delicate bal-
ance between modeling accuracy and simplicity.

RV Algorithms. Under the relative-velocity~RV! model, the
nonlinearity of the system is assumed to concentrate in the restor-
ing force and coupled RV drag. The structural damping is as-

sumed to be linear, or can be represented by an ‘‘equivalent’’
linear damper. The selection of this simple model allows for easy
interpretation of nonlinear responses, but needs an iterative ap-
proach as one or both of the hydrodynamic coefficients need to be
assumed.

A.1—Nonlinear-Structure Linearly-Damped Algorithm.Re-
writing Eqs. ~1!, ~3!, and ~6! using the RV model to represent
hydrodynamic force, the governing equation for the nonlinear-
structure linearly damped~NSLD! algorithm is

~m1ma!ẍ~ t !1Csẋ~ t !1a1x~ t !1a2x2~ t !1a3x3~ t !5 f a~ t !
(12a)

where

f a~ t !5
1

2
rCd

pD2

4
~u~ t !2 ẋ~ t !!uu~ t !2 ẋ~ t !u1r

p

6
D3Cmu̇~ t !

(12b)

The nonlinear relative motion coupled damping is treated implic-
itly in the excitation force. Values of the inertia and drag coeffi-
cients,Cd andCm , are assumedin order to evaluate the forcef a
given by Eq.~12b!, which is treated as the algorithm input and the
system response as the algorithm output. Fourier transforming
both sides of Eq.~12a! gives the frequency domain relation

~a11 j ~2p f !Cs2~2p f !2~m1ma!!X~ f !1A2~ f !X2~ f !

1A3~ f !X3~ f !5Fa~ f ! (13)

where

Fig. 3 Schematic diagram of the SDOF system: a… system diagram for the calculation of wave velocity and accelera-
tion, b… RV model, c… IFF model
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Fa~ f !5I@ f a~ t !# (14a)

X2~ f !5Ibx2~ t !c (14b)

X3~ f !5Ibx3~ t !c (14c)

A2~ f !5a2 (14d)

A3~ f !5a3 (14e)

Note that the conventional symbol~dummy variable! f is used
here to represent frequency in Hz in the frequency domain. Be-
cause the contact of the expressions will always be clear whether
we are in time or frequency domain, it will not be confused with
the same symbol representing forces in the time domain.

In the absence of nonlinear termsx2(t) and x3(t), H( f ) rep-
resents the frequency response function of an ideal constant pa-
rameter linear system that relates the displacement outputx(t) to
the force inputf a(t) given by

H~ f !5
X~ f !

Fa~ f !
5Fa11 j ~2p f !Cs2

~2p f !2~m1ma! G21

5a1@12~ f / f n!212zs~ f / f n!#21 (15)

where the natural frequencyf n and damping ratiozs are defined,
respectively, by

f n5
1

2p
A a1

~m1ma!
(16a)

§s5
Cs

2Aa1~m1ma!
(16b)

When the nonlinear terms are present,H( f ) relates the displace-
ment outputx(t) to an effective forcef e(t) given by

f e~ t !5 f a~ t !2a2x2~ t !2a3x3~ t ! (17)

The single-input/single-output nonlinear forward algorithm with
feedback, Eq.~13!, is delineated in Fig. 4a. Identification of this
system requires an iterative approach because of the presence of
the feedback terms,a2x2 and a3x3, which is time-consuming.
Because the forward system analysis is difficult, an alternative
reverse dynamic viewpoint is considered@11#. To apply the
R-MI/SO technique, the input/output roles are mathematically in-
terchanged. This reverse dynamic system can be viewed as a
three-input/single-output nonlinear algorithm without a feedback
term as shown in Fig. 4b.

The associated Fourier transform relation is given by

Fa~ f !5A1~ f !X1~ f !1A2~ f !X2~ f !1A3~ f !X3~ f ! (18)

where

X1~ f !5I@x1~ t !# (19a)

A1( f ), is defined as the linear impedance function which is given
by

A1~ f !5@H~ f !#215a1~12~ f / f n!212 j zs~ f / f n!! (19b)

Note thatx(t) has been replaced byx1(t) for clarity. The system
gain and phase factors of Eq.~19b! are given by

uA1~ f !u5a1@A~12~ f / f n!2!21~2zs~ f / f n!!2# (20a)

f~ f !5tan21F 2zsf / f n

12~ f / f n!2G (20b)

The minimum gain factor occurs at the resonance frequency,f r ,
of the system. By maximizing Eq.~19b!, it can be shown that for
structures having damping ratiozs<0.5, @18#, the resonance fre-
quency is given by

f r5 f nA122zs
2 (20c)

~A detailed explanation on how to obtain the natural vibration
frequency,f n , of the ‘‘linear system’’ will be presented in Part 2
using actual examples.! Hence, the minimum value of gain factor
that occurs at resonance is given by

A1~ f r !u5a1F 2zsA12zs
2 G (20d)

For lightly damped systems, the resonance frequency,f r , and the
minimum value of the gain factor can be approximated@11# by

f r' f n uA1~ f r !u'2a1zs (20e)

The physical parameters of the mooring system can therefore be
estimated as follows

a1'A1~0! (21a)

Ca5
ma

~p/6rD3!
(21b)

Cs52zsA~a1~m1ma!!'
uA1~ f n!u

2p f n

(21c)

X2( f ), X3( f ), A2( f ) andA3( f ) are given by Eq.~14!. Reverse
dynamic inputsx(t), x2(t) andx3(t) are usually correlated. Pro-
cedures to replace the correlated inputs with a new set of uncor-
related inputs are applied to convert the nonlinear algorithm to an
equivalent three-input/single-output linear algorithm@11#. The re-
sulting impedance functionsA1( f ), A2( f ), andA3( f ) yield the
three restoring force coefficients. Hence, this procedure identifies
the structural damping coefficientCs , and restoring coefficients
a1 , a2 and a3 . In performing the system identification, a sensi-
tivity study of the identified values on the assumed values of the
inertia and drag coefficients,Cd and Cm , is recommended~see
Part 2!.

Fig. 4 The nonlinear-structure linearly damped „NSLD… algo-
rithm: a… with feedback, b… without feedback
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A.2—Nonlinear-Structure Coupled Hydrodynamic-Damped Al-
gorithm. When the excitation force is inertia dominated, i.e., the
drag force is relatively small compared to the inertia force, a
straightforward, nonlinear-structure coupled hydrodynamic-
damped~NSCHD! algorithm can be derived. In this case, the non-
linear relative motion coupled damping is treated explicitly and
the R-MI/SO technique is applied to identify the damping coeffi-
cient Cd along with other linear and nonlinear coefficients. The
governing equation can be written as

~m1ma!ẍ~ t !1Csẋ~ t !1a1x~ t !1a1x2~ t !1a3x3~ t !2Cm~u~ t !

2 ẋ~ t !!uu~ t !2 ẋ~ t !u5 f b~ t ! (22a)

where

f b~ t !5r
p

6
D3Cmu̇~ t ! (22b)

This algorithm requires iterations due to the presence of theas-
sumed inertia coefficient, Cm , in Eq. ~22b!. In addition, this algo-
rithm would require a more reliable data set than the latter ones
~NSLD and NSND, see below sections!. Also this model can be
an appropriate representation of the physical system only when
the inertia force dominates.

The corresponding single-input/single-output nonlinear forward
NSCHD algorithm with feedback is shown in Fig. 5a. The non-
linear forward algorithm is converted to a reverse dynamic algo-
rithm by applying the R-MI/SO procedures. The corresponding
reverse dynamic NSCHD algorithm without feedback is given in
Fig. 5b.

The associated Fourier transform relation can be written as

A1~ f !X1~ f !1A2~ f !X2~ f !1A3~ f !X3~ f !1A4~ f !X4~ f !

5Fb~ f ! (23a)

where

X4~ f !5I@~u~ t !2 ẋ~ t !!uu~ t !2 ẋ~ t !u# (23b)

A4~ f !5
1

2
rCd

pD2

4
(23c)

F2~ f !5I@ f 2~ t !# (23d)

The frequency response functionsA1( f ) ~described by Eqs.~19–
21!!, A2( f ) ~Eq. ~14d!!, and A3( f ) ~Eq. ~14e!!, identify all the
system properties andA4( f ) ~Eq. ~23c!! gives the hydrodynamic
coefficient,Cd , in addition to the restoring force coefficientsa1 ,
a2 anda3 .

IFF Model Algorithm. For the IFF model, nonlinear interac-
tion between the fluid and structural velocities is decoupled and
the hydrodynamic force is evaluated using Eq.~9!. Nonlinear
structural damping force and the wave excitation drag force can
then be treated separately.

B.1—Nonlinear-Structure Nonlinearly Damped Algorithm
The IFF assumption results in the following nonlinear equation of
motion ~nonlinear-structure nonlinearly damped~NSND! algo-
rithm! given by

~m1ma!ẍ~ t !1Csẋ~ t !1a1x~ t !1a2x2~ t !1a3x3~ t !

1rCd8
pD2

4
ẋ~ t !uẋ~ t !u5 f 4~ t ! (24a)

where,

f 4~ t !5r
p

6
D3Cmu̇~ t !1rCd

pD2

4
u~ t !uu~ t !u (24b)

The NSND algorithm, which may be considered as an intermedi-
ate between the NSLD and the NSCHD algorithms, has some of
the advantages of both algorithms in terms of simplicity and need
for quantity and quality data. As in the NSLD case, the parameter
identification for the experimental system considered needs an
iterative approach as the inertia and drag coefficients,Cd andCm ,
are assumed.

The single-input/single-output nonlinear forward algorithm
with feedback is shown in Fig. 6a. The nonlinear forward algo-
rithm is converted to reverse dynamic model by applying the
R-MI/SO procedures. The corresponding reverse dynamic four-
input/single-output nonlinear algorithm without feedback is
shown in Fig. 6b.

The associated Fourier transform relation can be written as

A1~ f !X1~ f !1A2~ f !X2~ f !1A3~ f !X3~ f !1A48~ f !X48~ f !

5F4~ f ! (25a)

where

X48~ f !5I@ ẋ~ t !uẋ~ t !u# (25b)

A48~ f !5
1

2
rCd8

pD2

4
(25c)

F4~ f !5I@ f 4~ t !# (25d)

Using the frequency response functionsA1( f ) ~Eqs. ~19–21!!,
A2( f ) ~Eq. ~14d!!, A3( f ) ~Eq. ~14e!! andA48( f ) ~Eq. ~25c!!, the
system properties can be identified. Thus, this procedure identifies
the hydrodynamic coefficient,Cd8 , in addition to the restoring
force coefficientsa1 , a2 , anda3 .

Conclusion
The equations of motion for a SDOF submerged spherical ex-

perimental mooring system subjected to wave action for two al-
ternate mathematical models using the small-body Morison type
formulation—~A! relative-velocity~RV! model, and~B! indepen-

Fig. 5 The nonlinear-structure coupled hydrodynamically-
damped „NSCHD… algorithm: a… with feedback, b… without feed-
back
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dent flow-field~IFF! model, have been derived in this study. Two
alternative algorithms,~A.1! nonlinear-structure coupled hydrody-
namically damped~NSCHD!, and ~A.2! nonlinear-structure lin-
early damped~NSLD!, for the RV model, and one,~B.1!
nonlinear-structure nonlinearly damped~NSND! for the IFF
model, have been developed. The nonlinear forward algorithms of
these models are converted to reverse dynamic linear ones by
applying the R-MI/SO technique. Details of the conversion pro-
cedures are presented and their formulations are discussed. The
applicability of these mathematical models and their correspond-
ing algorithms will be evaluated, and practical issues associated
with the R-MI/SO method will discussed in Part 2 using a practi-
cal set of data from the nonlinear moored system experiment.
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Nomenclature
The following symbols appeared in either Parts 1 or 2 of these

papers.

a 5 dominant wave amplitude
a1 , a2 anda3 5 restoring force coefficients

d 5 distance of the center of the sphere from
the wall

f (t) 5 hydrodynamic force acting on the sphere
f a(t) 5 input force
f e(t) 5 effective force

f n 5 resonance frequency of linearized system
h 5 water depth
k 5 wave number
l c 5 initial spring length

l 1 and l 2 5 spring lengths
m 5 mass of structure~sphere!

s 5 distance of the instantaneous center of the
sphere from the bottom

u 5 fluid particle velocity in surge direction
u̇(t) 5 fluid particle acceleration in surge direction

uo 5 amplitude of the water particle velocity
v ro 5 amplitude ofv r
v r , 5 relative velocity

x(t), ẋ(t), ẍ(t) 5 displacement, velocity and acceleration of
structure as a function of timet

ẋo 5 amplitude of the structure velocity
A1( f ), A2( f )

andA3( f ) 5 Fourier transform ofa1 , a2 anda3 , respec-
tively

Ca 5 added mass coefficient
Cd 5 hydrodynamic drag coefficient

Cd18 5 linear structural damping coefficient
Cd8 5 nonlinear structural damping coefficient
Cm 5 hydrodynamic inertia coefficient
Cs 5 linear structural damping coefficient~di-

mensional!
D 5 diameter of sphere
H 5 high amplitude

H( f ) 5 frequency response function of an ideal
constant parameter linear system

IFF 5 independent flow field
K 5 spring constant

KC 5 Keulegan-Carpenter number
L 5 low amplitude
M 5 medium amplitude

NSCHD 5 nonlinear structure coupled hydrodynami-
cally damped

NSLD 5 nonlinear-structure linearly damped
NSND 5 nonlinear-structure nonlinearly damped

R-MI/SO 5 reverse multiple-input/single output
R(x(t)) 5 restoring force as a function of displace-

ment of the structure
Re 5 Reynolds number

R8(x(t)) 5 approximate restoring forceR(x(t))
RV 5 relative velocity

S 5 single-degree-of-freedom
T 5 wave period

Tr 5 combined period ofv r
To 5 period of oscillation of structure
VR 5 reduced velocity

V(x(t)) 5 potential function of displacementx(t)
X1( f ), X2( f ),

X3( f ) 5 Fourier transform ofx1 , x2 andx3 , respec-
tively

h(t) 5 wave elevation
j(t) 5 zero-mean delta-correlated white noise

z1 5 linear damping ratio
y 5 viscosity of the fluid
r 5 mass density
v 5 angular velocity
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