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Modeling and Identification of a
Nonlinear SDOF Moored
Structure, Part 1—Hydrodynamic
Models and Algorithms

The highly nonlinear responses of compliant ocean structures characterized by a large-
geometry restoring force and coupled fluid-structure interaction excitation are of great
interest to ocean and coastal engineers. Practical modeling, parameter identification, and
incorporation of the inherent nonlinear dynamics in the design of these systems are
S.C.S.Yim essent_ial and challenging. The general approach _of a nonlinear system technique usi_ng
very simple models has been presented in the literature by Bendat. In Part 1 of this
two-part study, two specific nonlinear small-body hydrodynamic Morison type formula-
tions: (A) with a relative-velocity (RV) model, and (B) with an independent flow-field
(IFF) model, are formulated. Their associated nonlinear system-identification algorithms
based on the reverse multiple-input/single-output (R-MI/SO) system-identification tech-
nique: (A.1) nonlinear-structure linearly damped, and (A.2) nonlinear-structure coupled
hydrodynamically damped for the RV model, and (B.1) nonlinear-structure nonlinearly
damped for the IFF model, are developed for a specific experimental submerged-sphere
mooring system under ocean waves exhibiting such highly nonlinear response behaviors.
In Part 2, using the measured input wave and output system response data, the algorithms
derived based on the MI/SO linear analysis of the reverse dynamic systems are applied to
identify the properties of the highly nonlinear system. Practical issues on the application
of the R-MI/SO technique based on limited available experimental data are
addressed[DOI: 10.1115/1.1710875
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Introduction linear system theor{10] are not applicable. For relatively simple

Complex nonlinear responses have been observed and deng”ﬂmear systems, however, a Reverse Multiple-Input/Single-

strated in various compliant ocean systems characterized by lar é’-tplpt éR-Mllg? technlqug hasdbeen develppedfto determlnel
geometry nonlinear mooring restoring force and coupled fluidPlitude and frequency dependent properties of some simple

structure interaction exciting forcgl,2]. An understanding of nonlinear systems such as the Duffing and Van der Pol types sub-
these nonlinear responses, including coexisting peripdioary, jected to broadband excn'atl(_)n inpyisl]. Numerlcal_ly S|mulated_
subharmonic and superharmonic resonanaes aperiodiguasi- €Sponses to random e_x0|tat|ons were used to verify the _technlque.
periodic, chaoticphenomena under both deterministic and noisy EXperiments on a single-degree-of-freed6BDOR nonlinear
excitations, is essential to incorporate these responses in fut(Hdlti-point moored submerged sphere subject to wave excitations
engineering design for safe operation of these structures. have been conducted at the O. H. Hinsdale Wave Laboratory at
When examining the complex dynamic responses of the§¥egon State Universitjl2]. Measured results for both systems
highly nonlinear systems, it is important to develop sophisticateddicated that various types of nonlinear responses including har-
analytical models that the details of the nonlinear responses camhenic, sub-harmonics, super-harmonics and chaotic responses
captured accurately. However, at the same time the models havevire present.
be sufficiently simple that modern geometrical analysis techniquesin this study, two alternative small-body Morison type models
and efficient computer simulations can be performed. Determinist coupled fluid-structure interaction excitation§A) a relative
tic analysis theories and numerical prediction techniques of relgelocity (RV) model that fully couples wave motion and dynamic
tively simple models have been developed to analyze the complgxuctural response, aiiB) an independent flow-fieldl FF) model
nonlinear phenomena for single-point mooring systé&jsships  that decouples the fluid and structural velocities, are formulated
[1], and multi-point mooring system3,4]. Lin and Yim [5,6]  for the specific experimental mooring system conducted at Oregon
developed stochastic extensions of these techniques and efte and their applicability examined in detail. For the RV model,
r_espondlng anglyses. They prqvnded guidelines for interpreting straightforward system identification algorithniA.1)—
field and experimental observations where randomness cannot B8 inear-structure linearly dampéNSLD) is first derived using
neglected. the R-MI/SO technique. In addition, based on the concept of

_To calibrate the prediction capability of these analytical tecfyy /50 technique, which identifies any number of nonlinear
niques and simulation models, a number of experiments have bg

: . . i ?/Etem parameterg11], an iterative version(A.2) called

ggngﬁﬁif\{;l—%smtgr?ﬁé tso gg:ﬁraﬁaar;‘:gtr'gaelrﬁr?g'(:('jo::]st‘r’]vggnor]Iinear-structure coupled hydrodynamically damp@e8CHD)
P X ' ystém para ploy 0 orithm, is derived to improve the accuracy of the identified
lytical techniques need to be identified. Because the system |

nonlinear, conventional system identification techniques based %%rameters_. For the IFF mOdel’ the associated algoritBrh)
with a nonlinear-structure nonlinearly damp@dSND) assump-

ioni rived. In Part 2, the resultin m ing the identifi
Contributed by the OOAE Division for publication in th©@UJRNAL OF OFF tion is de edb . ?jtb ! tde eSﬁt 9 aySte Is u.s'h g the ident Ied d
SHOREMECHANICS AND ARCTIC ENGINEERING. Manuscript received July 9, 2002; Parameters obtained based on these three algorithms are employe
final revision, September 27, 2003. Associate Editor: R. Riggs. to depict the responses of the fluid-structure interaction of the
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Dynamic Equilibrium. By considering dynamic equilibrium
in the surge direction, the governing equation of motion for the
SDOF mooring system in standard form can be written as

mX(t) + CX(t) + R(x(t))=f(t) (1)

wherem=mass of the spherd(t)=hydrodynamic force acting

on the sphereC¢=linear structural damping coefficierR(x(t))

=nonlinear restoring forcex(t), X(t), X(t) are the system dis-

placement, velocity and acceleration, respectively. In the SDOF

model, due to the presence of the rod passing through the center

(used to prevent verticéheave and sidg(sway) motions, see Fig.

1), the structural damping mechanism includes a time dependent
@ Coulomb friction component originating from th{gme varying

— Ii_ft fo_rc_e and combined drag/lift moment. As a_first approxima-

tion, it is assumed here that the structural damping can be lumped

into an equivalent linear structural-damping coeffici€qt The

nonlinear restoring force and excitation force are described in the

X following subsections.

Ls
rod N\
N Restoring Force. The restoring force includes an elastic force
i due to the mooring lines and a vertical force due to hydrostatic
buoyancy. Because the sphere used for the experiment was neu-
trally buoyant, the forcing caused by hydrostatic buoyancy is neg-
ligible [12]. The resulting inline forceR(x(t)) may be derived
4 from a potential functionV(x(t)), which describes the pre-
tensioned geometrical configuration of a symmetric small body
Fig. 1 SDOF experimental set up: a) plan, b) profile view [4].

V(x(1) =K([11(x(t)) = IJ?+[12(x(1) —1c]%) (2a)
. ) . ) With the mooring angles attached at 90 deg, the spring lergths
SDOF, symmetric spherical mooring system. Appropriateness aéllqld|2 can be expressed as
practical issues of these models and algorithms are examined in
detail using experimental data. l1,=1=d*+x(t)? (2b)
Note that there are alternates to the use of Morison’s equation .
for hydrodynamics forces. These include fully nonlinear potentid%now'ng that R(x(t)) =d/dx(V(x(1)), the restoring force
flow and Reynolds Averaged Navier-Stokes equations to mod&{X(1)) in the surge direction is derived as given below:

fluid flows and pressure forces on the structural system. However, le

the computational efforts are much more involved, and coupled R(x(t))=4Kx(t)(1— T (3a)
fluid-structure interaction analysis will require the use of super or

parallel computers. where K=spring constant,|.=initial spring length, andd

=distance of the center of the sphere from the Whig. 1). The

restoring force can be approximated by a high order polynomial
System Considered obtained through a least square approximation. Polynomials of
u\ba}rious orders have been employed and an optimum fit within the

The SDOF structural experimental system consists of a s kggperimental range is identified. The polynomial can be expressed
(o]

merged two-point moored neutrally buoyant sphere excited
regular and random waves. Springs are attached to the spher
provide the restoring force at an angle of 90 dege[4] for R’ (X(t))=a,x(t) +ax(t)2+asx(t)? (3b)
detailg. Although the mooring lines are linearly elastic, the restor- ) . )
ing force is strongly nonlinear with large geometric stiffness. Fdror the experimental model, a comparison of the approximate
the SDOF system, the sphere is restricted to moving only in tfigstoring force R’ (x(t)), in Eqg. (3a) with the geometric model
surge direction by passing a rigid steel rod through its center. Plegstoring forceR(x(t), in Eq. (3b) is given in Fig. 2. It can be
and profile views of this setup are shown in Fig. 1. Eight tesgbserved thaR'(x(t)) matches very well witrR(x(t)). A nor-
were conducted on the sphere with periodic plus band-limitedalized (relative) error measure|R(x(t)) — R’ (x(t))|/|R(x(t))],
white noise excitation§12]. The wave displacement and surgéetween the geometric model and approximate restoring force
response of the sphere were measured and the wave velocity amttions is given in Fig. & The error is found to be negligible
acceleration were numerically evaluated using a central-differengeuch less than 19%over the range where the restoring force is
method[13]. significant.
The mooring line stiffnesses are selected to provide the desired

vibration frequencies and resonance motions to maximize the oc-
Governing Equation currence of nonlinear responses in the wave basin setting. The
hydrodynamic forces on the mooring lines, which are piano wires,

. . o in contact with the fluid are negligible by design. The rod, which
independent flow-fieldexcitation models of the SDOF moored;g 1 ich square steel, is practically rigid and not affected by hy-

structural system sybjected to gxcitations _consi.st of periq odynamic effects.
waves perturbed with random noise are derived in this section.
The excitation force takes into account both nonlinear drag andHydrodynamic Force Models. Using linear wave theory as
inertia effects on a submerged symmetric small body using tdescribed if15], the horizontal water particle velocity is given by
Morison type mode[14]. Through an appropriate transformation,

The equations of motion for twda relative-velocity and an

the randomness in the wave field is incorporated into the hydro- _ hks _
dynamic forcing terms. u®)=wa sinh(kh) cogkx(t) ~wt) (42)
2 / Vol. 126, MAY 2004 Transactions of the ASME
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5

oot | A " (7b)
+  Approximate =
’:Acmal 3 { P 4

< -
g 1- | | ma=gD3Ca (7c)
£ 10 0. 10,0 05 Lo _ . . _
g p=mass density, Bdiameter of sphere,C,=added mass
o ‘ coefficientC,,=hydrodynamic inertia coefficient, andCy
3 =hydrodynamic drag coefficient. The values®©f, and C4 may
SJ be obtained from wave experiments while the coefficigbisis
S' . derived from oscillating sphere in otherwise calm water. Also
urge (m
v,oD Uil
@ Cm,Cd=f(ReF= © ,KCE% (8a)
2.0 A v
X,D %o To
S 15 A C,=f Rq\,zT,KCN= D (8b)
5
L§ where v,,=amplitude of v,, the relative velocity andT,
5 =combined period ob, , X,=amplitude of the structure velocity
2 05 - and T,=period of oscillation of structurey=yviscosity of the
fluid, Re=Reynolds number, KE Keulegan-Carpenter number.
00 ‘ Note that, as in Chakrabalfti5], suffix F refers to far-field and
o 05 A 05 10 suffix N to near field. The schematic diagram of the SDOF system
Surge (m) with the RV model representing Eq4. and § is given in Fig. 3.
® B. Independent Flow-Field Model.When a rigid body is
free to move in waves, Chakrabafii5| suggested that an inde-
Fig. 2 Comparison between the geometric model and approxi- pendent flow-field(IFF) model might be used as an alternating
mate restoring force functions:  a) force, b) relative error form of the Morison equation. A linear superposition of two inde-
pendent flow-fields separating the wave motion and the structure
motion is used here, given by
where. u=water part[cle velocity in surge directiona f(t)=pVCpl(t) —mx(t)+ gApCdU(t)|U(t)|
=dominant wave amplitudey =angular velocityk=wave num-

ber, h=water depth, and=distance of the instantaneous center

of the sphere from the bottom. - BApC[jk(t)|>'<(t)| 9)
The wave excitation can be considered as a randomly perturbed 2

regular wave field. With wave elevation(t), measured, Eq4a)

; whereCj is the nonlinear structural damping coefficient. In this
can be approximated by

case,C,, andCy are given by
coshks
sinfkh) 7Y

It is assumed that the random perturbations in the excitation
included in%(t), given by

u,D uoT
(4b) Cm,Cy=f| Re:= ‘; KCeg= (I)Dr
Rereu,=amplitude of the water particle velocity. The schematic
diagram of the SDOF system using the IFF model as a form of
n(t)=acogkx(t) — ot + ¢) + (1) (4c) Morison force is given in Fig.  which delineates Eqg1) and

ut)=w

(10)

where, in this studyg(t) is a zero-mean delta-correlated white Laya et al[16] discussed the region of applicability of the RV

noise. The horizontal water particle acceleration can also be 8y |FF models in terms of reduced veloci, defined by
proximated as

ug,T,
coshks Vi= (I)DO

) ) ) o ~ Itis observed that for low KC and hig¥ir, as in the case of the
where U(t) is the water particle acceleration in surge directionaxperimental system considered, the IFF model may be more ap-
The system diagram for the calculation of water particle velocityyopriate. Due to the lack of a comprehensive experimental study
and acceleration from the experimental wave input is given in Figpn the determination of the appropriate forms of the Morison
3a. equation(which itself is empiricgl for different combinations of

A. Relative-Velocity Model. A relative-velocity (RV) model parameters and experlment_al settings, it is dlfflcul_t to assess the
that couples the fluid-structure velocities can be used as one fofRpProPriateness of the various forms of the Morison hydrody-
for the Morison equation to express the forces on the sphdtgMic force expression. However, the R-MI/SO technique can be

; ; used as a tool to determine the appropriate form of the equation
which are given by > . . .
best suited for the experimental system under considergies
discussion in Part)2

u(t) = (11)

f(t)=p¥ Cppli(t) — MaX(t) + gApCd(u(t)—X(t))\u(t)—)'((t)|
(6) R-MI/SO Algorithms

where The general identification techniques for nonlinear dynamic
systemddifferential equations of motionsinder a stochastic set-
V= ID?’ (7a) ting have been presented in detail[iL]. Its novelty lies in the
6 causality of input and output relationship and the reversibility of
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n ® Linear wave theory » Approximation » u,u

s (1) = CpVi

1
=5l
3 2
-axX
—
!
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Fig.3a - (A) 0= %pc'dqux\
fip(t) = Cyp¥i

1
fyt) = -Z—pCdApu‘u‘

Me®l 1 o
oo MM

{c)

Fig. 3 Schematic diagram of the SDOF system:  a) system diagram for the calculation of wave velocity and accelera-
tion, b) RV model, ¢) IFF model

the model in terms of the input and output. While the R-MI/S@umed to be linear, or can be represented by an “equivalent”
technique can be applied to most nonlinear systems subjectedinear damper. The selection of this simple model allows for easy
random excitation irrespective of the nature of the distributioimterpretation of nonlinear responses, but needs an iterative ap-
(e.g., Gaussian or non-Gaussianf the excitation and responsesproach as one or both of the hydrodynamic coefficients need to be
[11,17, selection of the “most appropriate” mathematical modehssumed.

to represent the physical system is not straightforward. For the . . .
application of the R-MI/SO technique, depending on the availabil- -1—Nonlinear-Structure - Linearly-Damped AlgorithnRe-

ity of data and the emphasis of the modeler, many alternatiféiting Eas. (1), (3), and (6) using the RV model to represent
algorithms can be formulated by choosing different data seYE drodynamic force, the govering equation for the nonlinear-
(measured and/or deriveds inputs and outputs. In general, thetructure linearly dampetNSLD) algorithm is

more measured data one has, the more sophisticated ”On"near(m+ma)X(t)+CS>'<(t)+a1x(t)+a2x2(t)+a3x3(t):fa(t)
system model one can employ. In practice, a balance between (128)
accurate physical representation and simplicity of interpretation

will have to be taken into account based on the quantity anchere

quality of available data. In this study, the hydrodynamic force, 1 D2 -

which is not measured during the experiment, is evaluated usin _= g . T3~

the Morison EquatiofiEgs. (6) or (9)]. With the inertia and drag g""(t) ZPCd 4 (u(t) =X(O)|u® =XV +p 6 D*Crmli(t)

force dependent on the coefficierls, andC,, the mathematical (12b)
equation has unknown parametésystem properties as well as
hydrodynamic coefficienjson both sides and applying the
R-MI/SO technique to determine the system parameters need
iterative approach. Three alternative algorithms based on the
and IFF models, with various degree of appropriateness of phyg
cal representation and simplicity, are derived and discussed bel
to demonstrate the level of efforts involved and the delicate b

ance between modeling accuracy and simplicity. (a,+j(2mf )Co— (2 )2(m+my) ) X(F )+ Ay(F)Xo(T)
RV Algorithms. Under the relative-velocityRV) model, the +Ag(f)Xs(f)=F(f) (13)

nonlinearity of the system is assumed to concentrate in the restor-
ing force and coupled RV drag. The structural damping is awthere

The nonlinear relative motion coupled damping is treated implic-

it%in the excitation force. Values of the inertia and drag coeffi-

ﬁ\gnts,cd andC,,, are assumedh order to evaluate the forde,

iyen by Eq.(12b), which is treated as the algorithm input and the
tem response as the algorithm output. Fourier transforming

oth sides of Eq(12a) gives the frequency domain relation

4 | Vol. 126, MAY 2004 Transactions of the ASME
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Fa(f)=3[fa(t)] (14a) Y -1
Xz(f)z’jLXZ(t)J (14b) fa(t) _>®_' H(f)=a1|:l—(EJ +2gs[aﬂ —> x(t)
Xa(f)=2x(t)] (14c) '
Az(f )=a2 (14d) -azxz
2
As(f)=ag (1%) <—| il )
Note that the conventional symb@iummy variablg f is used
here to represent frequency in Hz in the frequency domain. Be- and
cause the contact of the expressions will always be clear whether :
we are in time or frequency domain, it will not be confused with
the same symbol representing forces in the time domain. @
In the absence of nonlinear term$(t) andx3(t), H(f) rep-
resents the frequency response function of an ideal constant pa-
rameter linear system that relates the displacement ox{puto
the force inputf (t) given by 2
) . ] Al =2y 1—[3j +2qs(i]
by X0 _fartj(2mf)Com - f fa
(=51 7| @nf)2m+my)
— _ 2+ -1 2
ail1- (F/8) 2+ 244(/1)] a8 ° o
where the natural frequendy, and damping ratid’s are defined,
respectively, by
1 a,
f=—\/— 16a)
" 2m YV (m+m,) (16)
C. (b)
Ss™ (160) Fig. 4 The nonlinear-structure linearly damped (NSLD) algo-

2Vay(m+my) rithm: &) with feedback, b) without feedback

When the nonlinear terms are prese#{f ) relates the displace-
ment outputx(t) to an effective forcd o(t) given by

— 2 3
Fe(t) = Fa(t) =ax"(t) — agx*(t) 17 (A detailed explanation on how to obtain the natural vibration
The single-input/single-output nonlinear forward algorithm witlirequency,f,, of the “linear system” will be presented in Part 2
feedback, Eq(13), is delineated in Fig. & Identification of this using actual examplesHence, the minimum value of gain factor
system requires an iterative approach because of the presencthaf occurs at resonance is given by

the feedback termsa,x? and agx®, which is time-consuming.

Because the forward system analysis is difficult, an alternative

reverse dynamic viewpoint is considerg¢dl]. To apply the

R-MI/SO technique, the input/output roles are mathematically i

terchanged. This reverse dynamic system can be viewed

term as shown in Fig.@t
The associated Fourier transform relation is given by
Fa(f)=A(f)Xa(f)+A(F)Xo(F)+As(f)Xs(f)
where

(18)

X1(f)=Tx (V)] (1%a)

A4(f), is defined as the linear impedance function which is given

by
Ay(F)=[H(F)] *=ay(1- (f/f)?+2jL(f/f)  (19%)

Note thatx(t) has been replaced bgj(t) for clarity. The system
gain and phase factors of E.9%) are given by

|AL(F)|=ay[ V(1= (FIf )22+ (2L(F1T,)2]  (208)
O] 266f1T -
o(f)=tan T (/7.2 (200)

The minimum gain factor occurs at the resonance frequengy,
of the system. By maximizing Eq19%), it can be shown that for
structures having damping ratia<0.5,[18], the resonance fre-

guency is given by
f=f,V1-222

Journal of Offshore Mechanics and Arctic Engineering
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a
three-input/single-output nonlinear algorithm without a feedba

A(f)l=a, (20d)

20 N1-22

"For lightly damped systems, the resonance frequeigyand the

C?gi"?\imum value of the gain factor can be approximatéd by

fr=f,

The physical parameters of the mooring system can therefore be
estimated as follows

[AL(f)]~2a,4s

a;~A;(0) (21a)
|Al(fn)|
Cs=2{V(ay(m+my))~ pyar (210)
Tl

Xo(f), X3(f), Ax(f) andAs(f) are given by Eq(14). Reverse
dynamic inputsx(t), x?(t) andx3(t) are usually correlated. Pro-
cedures to replace the correlated inputs with a new set of uncor-
related inputs are applied to convert the nonlinear algorithm to an
equivalent three-input/single-output linear algorithii]. The re-
sulting impedance function&,(f), A,(f), andAs(f) yield the
three restoring force coefficients. Hence, this procedure identifies
the structural damping coefficie@,, and restoring coefficients
a;, a, andas. In performing the system identification, a sensi-
tivity study of the identified values on the assumed values of the
inertia and drag coefficient§y and C,,,, is recommendedsee
Part 2.

MAY 2004, Vol. 126 / 5
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v . o where
Mo—( 2} H<f>=al{l—[g] +2@s(gﬂ T Xa(F) =3[ (u(t) =X(t)|u(t) = %(1)]] (230)
A 2
1 D
; Ay(t)=5pCo (2%)
21903
Fo(f)=3[f5(1)] (23d)
The frequency response functioAg(f ) (described by Eq419—
£ 21), Ax(f) (Eq. (14d)), andAs(f) (Eq. (14e)), identify all the
< lpCdAp M system properties andtl,(f ) (Eg. (23c)) gives the hydrodynamic
£ = Loca( o -« 2 coefficient,Cy, in addition to the restoring force coefficierds,
4 =7 Phafplu TR X a, andas.

(@) IFF Model Algorithm.  For the IFF model, nonlinear interac-
tion between the fluid and structural velocities is decoupled and
the hydrodynamic force is evaluated using E). Nonlinear

) structural damping force and the wave excitation drag force can
— A= al{l-[fi +2€s(fL]] then be treated separately.
" i B.1—Nonlinear-Structure  Nonlinearly Damped Algorithm
. ax’ The IFF assumption results in the following nonlinear equation of
motion (nonlinear-structure nonlinearly dampélSND) algo-
) —p 2 fn  rithm) given by
(M+my)X(t)+ Cex(t) +ax(t) +ax3(t) +agx3(t)
! L/ D WIkDl=
(u—)'(}u—f(| Epchp , +pCdT X(t)|X(t)| - f4(t) (246-)
fy= EpCdAP(u—Xlu—)'q where,
(b) D2

T ) T
fa(1)=p 5 D3Ci(V) + pCagmu(D U] (24D)

Fig. 5 The nonlinear-structure coupled hydrodynamically-

NSCHD) algorithm: ith f k i feed- . . . . .
ggrgl\(ped (NSCHD) algorithm: - &) with feedback, - b) without feed The NSND algorithm, which may be considered as an intermedi-

ate between the NSLD and the NSCHD algorithms, has some of
the advantages of both algorithms in terms of simplicity and need
for quantity and quality data. As in the NSLD case, the parameter
A.2—Nonlinear-Structure Coupled Hydrodynamic-Damped Aidentification for the experimental system considered needs an
gorithm. When the excitation force is inertia dominated, i.e., théerative approach as the inertia and drag coefficiebgsandC,,,
drag force is relatively small compared to the inertia force, are assumed
straightforward, nonlinear-structure coupled hydrodynamic- The single-input/single-output nonlinear forward algorithm
damped NSCHD) algorithm can be derived. In this case, the nonwith feedback is shown in Fig.e6 The nonlinear forward algo-
linear relative motion coupled damping is treated explicitly antithm is converted to reverse dynamic model by applying the
the R-MI/SO technique is applied to identify the damping coeffiR-MI/SO procedures. The corresponding reverse dynamic four-
cient C4 along with other linear and nonlinear coefficients. Thénput/single-output nonlinear algorithm without feedback is

governing equation can be written as shown in Fig. ®.
. . 2 3 The associated Fourier transform relation can be written as
(m-+my)X(t)+CX(t) +ax(t) +a;x=(t) +azx>(t)— C(u(t)
AL(F)X(F)+AL(F)X(F ) +Ag(F)X3(F)+AL(F)X,(F
— () Ut =X(D)] = Fo(0) (228) 1(F)X1(F) +Ax(F )Xo(F )+ Ag(f ) Xa(F ) +Ay(f )Xy (F)
where =F4(f) (259)
where
7T .

folt) =p g D*Crli(D (220) X4(F)=AxOIXO]] (250)
This algorithm requires iterations due to the presence ofathe e 324 wD?
sumed inertia coefficien€,,, in Eq.(22b). In addition, this algo- Aq(f)= Epcd 4 (2%)
rithm would require a more reliable data set than the latter ones
(NSLD and NSND, see below section#lso this model can be Fu(f)=3[fa(1)] (25d)

an appropriate representation of the physical system only wh
the inertia force dominates.
The corresponding single-input/single-output nonlinear forwa

BYing the frequency response functiofs(f) (Egs. (19-21),
Ap(f) (Eq. (14d), As(f) (Eq. (14e)) andAy(f) (Eq. (25¢)), the
NSCHD algorithm with feedback is shown in Figa.5The non- system properties can be identified. Thus, this procedure identifies
linear forward algorithm is converted to a reverse dynamic algd?® Nnydrodynamic coefficientCy, in addition to the restoring

rithm by applying the R-MI/SO procedures. The correspondini§rce coefficientsa; , a,, anda;.
reverse dynamic NSCHD algorithm without feedback is given in

Fig. . Conclusion
The associated Fourier transform relation can be written as  The equations of motion for a SDOF submerged spherical ex-
A (EX(E ) ASE )+ Aa(FIXa(F )+ AL(F X, (F perimental mooring system subjected to wave action for two al-
X))+ A(T)X(T)+ As(T)X(F)+ AdT)XA(T) ternate mathematical models using the small-body Morison type
=Fp(f) (23a) formulation—A) relative-velocity(RV) model, and(B) indepen-
6 / Vol. 126, MAY 2004 Transactions of the ASME
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" x(t)

) -1
f f
H(f)=a 1—[—] + 26, [—)
1{ f, 1,
A ax
X% L
L1

£4(0) b

s = distance of the instantaneous center of the
sphere from the bottom
u = fluid particle velocity in surge direction
u(t) = fluid particle acceleration in surge direction
u, = amplitude of the water particle velocity
v, = amplitude ofv,

Uy,
x(1), x(t), X(t)

relative velocity
displacement, velocity and acceleration of
structure as a function of time

X, = amplitude of the structure velocity
, Ad(f), Aq(f) .
R P lpcd'A andA;(f) = Fourier transform of,, a, andag, respec-
£ = 2PCaAp[x] 2 7 tively
C, = added mass coefficient
@ C4 = hydrodynamic drag coefficient
- Cg1 = linear structural damping coefficient
—» Al(f)=al{1_(i] +2QS(L” C4 = nonlinear structural damping coefficient
f f C,, = hydrodynamic inertia coefficient
C, = linear structural damping coefficiefdi-
mensional
= D = diameter of sphere
X(1) —p . H = high amplitude
4 H(f) = frequency response function of an ideal
constant parameter linear system
, / IFF = independent flow field
y Locsa, | & SR P K = spring constant
2 fo = 5PCaAp[| KC = Keulegan-Carpenter number
L = low amplitude
® M = medium amplitude
Fig. 6 The nonlinear-structure nonlinearly-damped (NSND) al- NSCHD = ngr:jz?:‘;égcwre coupled hydrodynami-
gorithm a) with feedback b) without feedback NSLD = nonlinear-structure linearly damped
NSND = nonlinear-structure nonlinearly damped
dent flow-field(IFF) model, have been derived in this study. Two RR,\(A):/(?)()) = ;g;’fgﬁﬁgﬂ}glrtéglilsnguf'gﬁg%ﬁ g?tc?igtplace-
alternative algorithmgA.1) nonlinear-structure coupled hydrody- ment of the structure
namically dampedNSCHD), and (A.2) nonlinear-structure lin- Re = Reynolds number
early damped(NSLD), for the RV model, and one(B.1) R'(x(t)) = approximate restoring forc(x(t))
nonlinear-structure nonlinearly dampe@SND) for the IFF RV = relative velocity
model, have been developed. The nonlinear forward algorithms of S = single-degree-of-freedom
these models are converted to reverse dynamic linear ones by T = wave period
applying the R-MI/SO technique. Details of the conversion pro- T, = combined period of
cedures are presented and their formulations are discussed. The T; — period of oscillation rof structure

applicability of these mathematical models and their correspond- v
ing algorithms will be evaluated, and practical issues associated
with the R-MI/SO method will discussed in Part 2 using a pract'5-(

: ; 1(f),
cal set of data from the nonlinear moored system experiment.
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Nomenclature

The following
papers.

symbols appeared in either Parts 1 or 2 of these

reduced velocity

R =
V(x(t)) = potential function of displacemen(t)
XaF),

X5(f) = Fourier transform ok, , X, andxs, respec-
tively

n(t) = wave elevation

&(t) = zero-mean delta-correlated white noise
{, = linear damping ratio
v = viscosity of the fluid
p = mass density
o = angular velocity
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