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Modeling and Identification of a
Nonlinear SDOF Moored
Structure, Part 2—Comparisons
and Sensitivity Study
A system-identification technique based on the Reverse Multiple-Input/Single-Output (R-
MI/SO) procedure is applied to identify the parameters of an experimental mooring sys-
tem exhibiting nonlinear behavior. In Part 1, two nonlinear small-body hydrodynamic
Morison type formulations: (A) with a relative velocity (RV) model, and (B) with an
independent-flow-field (IFF) model, are formulated. Their associated nonlinear system-
identification algorithms based on the R-MI/SO system-identification technique: (A.1)
nonlinear-structure linearly damped, and (A.2) nonlinear-structure coupled hydrodynami-
cally damped for the RV model, and (B.1) nonlinear-structure nonlinearly damped for the
IFF model, are developed for an experimental submerged-sphere nonlinear mooring sys-
tem under ocean waves. The analytic models and the associated algorithms for paramet-
ric identification are described. In this companion paper (Part 2), we use the experimen-
tally measured input wave and output system response data and apply the algorithms
derived based on the multiple-input/single-output linear analysis of the reverse dynamic
systems to identify the system parameters. The two nonlinear models are examined in
detail and the most suitable physical representative model is selected for the mooring
system considered. A sensitive analysis is conducted to investigate the coupled hydrody-
namic forces modeled by the Morison equation, the nonlinear stiffness from mooring lines
and the nonlinear response. The appropriateness of each model is discussed in
detail. @DOI: 10.1115/1.1710874#

Introduction

Two alternative small-body hydrodynamic Morison type mod-
els of coupled fluid-structure interaction excitations–~A! a rela-
tively velocity ~RV! model that fully couples wave motion and
dynamic structural response, and~B! an independent flow-field
~IFF! model that decouples the fluid and structural velocities, have
been formulated in Part 1@1#. For the RV model, a straightforward
system identification algorithm~A.1!—nonlinear-structure lin-
early damped~NSLD! is first derived using the reverse multi-
input/single-output~R-MI/SO! technique. In addition, an iterative
version ~A.2! called nonlinear-structure coupled hydrodynami-
cally damped~NSCHD! algorithm, has been derived to improve
the accuracy of the identified parameters. For the IFF model, the
associated algorithm~B.1! with a nonlinear-structure nonlinearly
damped~NSND! assumption has been derived. In this paper~Part
2!, the resulting systems using the identified parameters obtained
based on these algorithms are employed to predict the responses
of the fluid-structure interaction of the SDOF, symmetric spherical
mooring system. A detailed study is conducted on the different
reverse dynamic models to select the most physically representa-
tive model for the ocean mooring system considered is described
herein.

The nonlinear multi-point moored submerged sphere experi-
ment @2# conducted at the O. H. Hinsdale Wave Laboratory at
Oregon State University~OSU! is employed in this study. The
wave excitation input and the system responses measured during
the test are used for parameter identification. Using the identified
properties from each model, numerical predictions of the dynamic

response are compared with the experimental results in both time
and frequency domains to select the most suitable one for the
system.

Using the measured wave excitation and response data together
with the identified system parameters, a detailed study is per-
formed on the response behavior of the system under consider-
ation. A sensitivity analysis is conducted to determine the optimal
range of system parameters and understand the effect of varying
the stiffness and damping coefficients on the system response.

The RV and independent flow field~IFF! models require the
knowledge of inertia and drag coefficients, Cm and Cd , respec-
tively for the evaluation of hydrodynamic force. A vast library of
experimental data on hydrodynamic coefficients for cylinders as a
function of the Keulegan-Carpenter number~KC!, the Reynolds
number~Re! and the roughness parameters is available from labo-
ratory and field tests. The real fluid effects, proximity of bound-
aries, fluid particle excursion lengths, surface roughness, vortex
shedding, and non-harmonic motions tend to modify the forces on
the cylinder thus yielding non-constant values for the hydrody-
namic coefficients. Theoretical studies of unsteady motions in-
volving a sphere in a real fluid have so far been restricted to small
Reynolds numbers@3,4#. The Cm for fixed spheres was found to
vary between 1.43 and 1.73 within the range of 0.2<KC<3.2 @5#.
For a pilot study in the ocean on wave-induced forces on a fixed
sphere with the inertia forces dominating the total force and Re
ranging from 105 to 53105, Grace and Zee~1978! @6# found the
average inertia coefficient to be 1.21 and the Cd to be 0.4. With the
coefficients dependent on KC and Re, reasonable estimates of the
hydrodynamic coefficients for a sphere are within the following
bounds, 0.1<Cd<1.0 and 1.0<Cm<1.5 @6,7#. In this study, the
R-MI/SO technique is also employed to evaluate the effects of
hydrodynamic coefficients on system response by varying Cm and
Cd within a range.
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Selection of Most Suitable Model
Two hydrodynamic models, resulting in three nonlinear system

identification formulations discussed in Part 1@1#, have been ap-
plied to the experimental SDOF mooring system. Eight tests were
conducted on the sphere with periodic plus white noise excitations
@2#. The experimental data had been examined for accuracy and
calibrated with independent measurements at the beginning and
end of each day of tests. Drifts of the gages were not observed.
Because the system is nonlinear, the means and trends have spe-
cial significance and are not removed. All the experimental data
have wave period of T52 seconds with varying wave heights and
noise/signal ratio. The wave displacement and surge response of
the sphere were measured and the wave velocity and acceleration
were numerically evaluated using a central-difference method@8#.
Each of the tests displays a certain degree of subharmonics in the
sphere movement. The data sets SL1, SL2, SM1, SM2, SM3,
SH1, SH2 and SH3 are grouped according to wave excitation
amplitudes, where S stands for single-degree-freedom, and L, M
and H represents low, medium and high wave amplitudes, respec-
tively. A typical segment of the wave time series and its corre-
sponding spectra, and a typical segment of the response time se-
ries and its corresponding spectra for all the data sets grouped are
given in Figs. 1–3. The mean spectra for the three groups, SL, SM
and SH are also shown in the figures and are considered to be
representative of each group. The input wave characteristics such
as wave height~H!, Cm , Cd , Keulegan Carpenter number~KC!
and Reynolds number~Re! are shown in the Table 1.

The sampling interval used in the experiment was 0.0625 s~16
Hz!, which yields a Nyquist frequency of 8 Hz. The total number
of samples of the excitation and response time histories for spec-
tral simulations is 8192~512 s!, with sub-record lengths of 1024
for the Fourier transforms~64 s!.

The nonlinear system identification algorithms NSLD and
NSCHD for the RV model, and NSND for the IFF model, are
applied to all the data sets using the R-MI/SO technique presented
in Part 1. The linear and nonlinear system parameters for the
NSLD, NSCHD and NSND algorithms are determined using Eqs.

~14d-e! and~21a-c!, Eqs.~14d-e!, ~21a-c!, and~23c!, Eqs.~14d-e!,
~21a-c! and ~25c!, respectively, in Part 1. Using the identified
parameters, the response is evaluated for each model by solving
the respective ordinary differential equations,~Eqs.~12!, ~22! and
~24! in Part 1! using a 4th-order Runge-Kutta method@8#.

The predicted responses from the RV and IFF models are com-
pared with the experimental response in the frequency domain for
all the experimental data. The comparisons are shown for the three
groups, SL, SM and SH in Fig. 4. It is observed that the primary
resonance region for the two models peak at the same frequency
as that for the experimental data with the RV and IFF models
using NSCHD and NSND algorithm, respectively, have the en-
ergy level closer to that of the experimental data. These reso-
nances correspond to the natural frequencies of the linear model,
i.e., H~f!. The RV model with the NSLD algorithm has a higher
primary energy level. The subharmonic response simulated using
RV model with NSLD and NSCHD algorithms does not compare
well with the actual measured response. On the other hand, the
response simulated for the IFF model using NSND algorithm
matches well with the experimental response both in the primary
as well as the subharmonic resonance regions. As discussed in the
Hydrodynamic Force Models Section in Part 1, for low KC and
high VR ~reduced velocity!, as in the case of the experimental
system considered, the RV model may not be appropriate@9#. Due
to the lack of a comprehensive experimental study on the deter-
mination of the appropriate forms of the Morison equation~which
itself is empirical! for different combinations of parameters and
experimental settings, it has been difficult to assess the appropri-
ateness of the various forms of the Morison hydrodynamic force
expression. But in this study, using the R-MISO technique, linear
and nonlinear system parameters for different models are deter-
mined and a response is simulated, that is compared with the
experimental response to evaluate the appropriateness of different
forms of force models. Hence, the IFF model using the NSND
algorithm represents the experimental system very well. A com-
parison of time series and spectra between the identified response
using the IFF model and the experimental response is shown in

Fig. 1 SDOF experimental low wave amplitude data: a… wave time series, b… wave spectra, c… response time series, d… re-
sponse spectra
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Fig. 5. The system parameters, a1 , a2 , a3 , z1 and Cd18 identified
for all the test data using the IFF model are given in Table 2.

Sensitivity Analysis
A parametric study is performed to determine the sensitivity of

the system to variations in the parameters. Specifically, each pa-

rameter is varied in prescribed increments while keeping all other
identified parameters constant~Table 2! and the surge response is
computed for each variation by solving~Eq. ~24!, Part 1!. The
simulated responses using the identified parameters are compared
against each other in both the time and frequency domains.

From the parametric study, an optimal range and the most suit-

Fig. 2 SDOF experimental medium wave amplitude data: a… wave time series, b… wave spectra, c… response time series, d…
response spectra

Fig. 3 SDOF experimental high wave amplitude data: a… wave time series, b… wave spectra, c… response time series, d…
response spectra
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able value of the system parameters are obtained and tabulated in
Table 3. Because the data sets belong to L, M, and H groups
exhibit similar behavior; only the mean of the resulting spectra for
each variation is discussed in the following paragraphs.

The effect of varying linear stiffness coefficient, a1 on SL, SM
and SH are demonstrated in Fig. 6. The spectral density normal-
ized with the variance of experimental wave data (Sxxn) is plotted
against frequency for a1 from 58.0 to 202.9 N/m or a1n~the ratio
of instantaneous value of a1 to the best value of a1 as given in
Table 4! from 0.5 to 1.6. It can be observed that there is a slight
increase in the primary resonance response as a1 increases. The
subharmonic resonance region shifts towards the right with in-
creasing a1 . The trend can be observed more clearly~from SL to
SH! as the wave amplitude increases.

When a2 is increased from 0 to 476.6 N/m2, there is no signifi-
cant change in the data group SL as shown in Fig. 7a. However,
the response in the secondary resonance region increases from
a2n50 to 2.5 for SM and SH, and the effects are more pro-

nounced for the latter~Fig. 7b and 7c!. The total energy of the
response in the primary resonance region is affected by changing
a2 .

Figure 8 shows that varying a3 from 0 to 1568.1 N/m3 or a3n
from 0 to 2.5 affects only the response in the secondary resonance
region, which decreases as a3 increases. The variation is most
noticeable for SH in Fig. 8c.

With regards to varying the linear structural damping coeffi-
cient z1 from 0 to 0.1, it is observed that the response in the
subharmonic region decreases with increasing damping while the
primary resonance region remains unaffected as demonstrated in
Fig. 9. This result indicates that the subharmonic response is sen-
sitive to structural damping. This phenomenon is often observed
in responses of nonlinear systems.

The effects of varying Cd18 on the identified response are dem-
onstrated in Fig. 10. It shows that the secondary resonance region
generally decreases with increasing Cd18 . However, the optimum
range that identify response comparable to the experimental re-
sponse differs for the data groups SL, SM and SH. The most
suitable value goes as high as 2 for SL and it decreases to 0.5 for
SM and 0.15 for SH. This apparent behavior is probably caused
by the inability of the model to approximate accurately the actual

Table 1 Input wave characteristics of the SDOF subharmonic
data

Data H ~m! Cm Cd KCF ReF

SL1 0.17 1.4 0.1–0.9~0.5! 0.56 5.70E4
SL2 0.24 1.4 0.1–0.9~0.5! 0.79 7.80E4
SM1 0.35 1.3 0.1–0.9~0.5! 1.18 1.20E5
SM2 0.36 1.3 0.1–0.9~0.5! 1.18 1.20E5
SM3 0.49 1.3 0.1–0.9~0.5! 1.57 1.60E5
SH1 0.66 1.1 0.1–0.9~0.5! 2.16 2.20E5
SH2 0.66 1.1 0.1–0.9~0.5! 2.18 2.22E5
SH3 0.67 1.1 0.1–0.9~0.5! 2.20 2.30E5

Fig. 4 Comparison of identified responses using alternative
algorithms with the experimental response a… SL b… SM c… SH

Fig. 5 Comparison of simulated response using IFF model
with the experimental response: a… time series, b… spectra
„Note: Captions will be modified–‘‘NSND’’ will be changed to
‘‘IFF’’ …

Table 2 Identified system parameters of the SDOF subhar-
monic data

Data a1 ~N/m! a2 (N/m2) a3 (N/m3) Cd18 z1 ~%! fn1 ~Hz!

SL1 128.8 315.6 721.3 2.5 3.5 0.22
SL2 125.6 280.1 814.7 3.5 3.4 0.23
SM1 128.8 260.8 863.0 3.0 3.0 0.23
SM2 132.0 257.6 769.6 1.5 2.9 0.24
SM3 125.6 206.1 689.1 1.0 2.8 0.23
SH1 128.8 209.3 689.1 0.8 3.0 0.23
SH2 128.8 209.3 689.1 0.2 3.2 0.23
SH3 125.6 190.0 627.9 0.3 3.1 0.22
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nonlinear behavior of the complex damping mechanism of the
SDOF configuration. In the physical system, with the rod passing
through the center of the sphere~to restrict vertical and rotational
motions!, the Coulomb frictional component is proportional to the
magnitude of the normal reaction force between the sphere and
the supporting rod. Because the sphere is neutrally buoyant, this
normal force is proportional to the magnitude of the oscillatory lift
force. The nonlinear effects become more severe at the lower
wave amplitudes prominent due to the sticky~stop and go, highly
nonlinear! motion of the sphere, thus affecting the response pre-
diction capability of the model.

Effects of Hydrodynamic Coefficients on System Re-
sponse

The IFF model requires the knowledge of Cd and Cm for the
evaluation of hydrodynamic force on the sphere. As mentioned
earlier, the effect of Cm and Cd on the nonlinear response has not
been studied before according to the authors’ knowledge. In order
to investigate the response behavior of the system, Cm is varied
within the range of 1–1.5 and the NSND algorithm is then ap-
plied. The identified properties are tabulated for different Cm in
Table 4. From the table, magnitudes of Ca , a1 , a2 , a3 , Cd8 , zs and
Cs increase with increasing Cm . The natural frequency identified
is constant for all the cases. The responses simulated using the
parameters are compared with the measured response in Fig. 11a.
The primary resonance energy of all the predicted responses is
practically constant and agrees favorably with that of the mea-
sured response. Note that the subharmonic energy of the predicted

Table 3 Identified system parameters from the sensitivity analysis of the SDOF subharmonic
data

Data a1 ~N/m! a2 (N/m2) a3 (N/m3) Cd18 z1 ~%! fn1 ~Hz!

SL1 122.4–32.0
~128.8!

48.3–378.0
~215.7!

157.8–1410.4
~772.8!

1.5–2.5
~2.0!

1.0–4.0
~3.0!

0.23

SL2 119.1–132.0
~125.6!

48.3–380.0
~215.7!

157.8–1410.4
~772.8!

1.5–2.5
~2.0!

1.0–4.0
~3.0!

0.23

SM1 122.4–132.0
~128.8!

48.3–380.0
~215.7!

157.8–1255.8
~708.4!

1.5–2.5
~2.0!

1.5–4.0
~3.3!

0.23

SM2 122.4–135.2
~128.8!

141.7–286.6
~215.7!

470.1–933.8
~708.4!

0.3–0.7
~0.5!

2.0–4.0
~3.0!

0.24

SM3 122.4–135.2
~125.6!

141.7–286.6
~215.7!

470.1–933.8
~708.4!

0.3–0.7
~0.5!

2.0–4.0
~3.0!

0.23

SH1 122.4–138.5
~132.0!

167.4–286.6
~225.4!

550.6–933.8
~740.6!

0.1–0.2
~0.15!

2.5–4.0
~3.3!

0.23

SH2 122.4–135.2
~128.8!

190.0–238.3
~215.7!

627.9–772.8
~708.4!

0.1–0.2
~0.15!

2.0–4.0
~3.0!

0.23

SH3 122.4–135.2
~132.0!

199.6–238.3
~219.0!

660.1–772.8
~708.4!

0.1–0.2
~0.15!

2.0–4.0
~3.0!

0.22

Fig. 6 Effect of a 1 on SDOF system behavior: a… „top … SL, b…
„middle … SM, c… „bottom … SH

Table 4 Identified system parameters using IFF model by varying hydrodynamic coefficients:
Cm and Cd

Cm Ca Cd

a1
N/m

a2

N/m2
a3

N/m3 Cd8 zs fn

1.10 0.11 1.00 119.1 167.4 911.3 0.18 0.021 0.237
1.20 0.21 1.00 122.4 180.3 924.1 0.18 0.033 0.237
1.30 0.32 1.00 132.0 215.7 1020.7 0.18 0.032 0.237
1.40 0.42 1.00 151.3 235.1 1175.3 0.19 0.033 0.237
1.50 0.51 1.00 161.0 244.7 1284.8 0.19 0.035 0.237

Cd Cm Ca

a1
N/m

a2

N/m2
a3

N/m3 Cd8 zs fn

0.20 1.30 0.30 128.8 215.7 972.4 0.18 0.021 0.237
0.50 1.30 0.30 128.8 219.0 988.6 0.18 0.033 0.237
0.80 1.30 0.30 132.0 219.0 1004.7 0.19 0.032 0.237
1.00 1.30 0.30 132.0 219.0 1004.7 0.19 0.035 0.237
1.20 1.30 0.30 132.0 222.2 1020.7 0.19 0.035 0.237
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response decreases with increasing values of inertia coefficient
and Cm51.3 matches well with the experimental response.

The drag coefficient Cd is varied between 0.2—1.0 and the
properties are identified in Table 4. The parameters remain con-
sistent for different values of Cd . The responses simulated using
the parameters are compared with the measured response in Fig.
11b, and it can be observed that the response does not change
significantly with varying values of Cd . Based on the water depth
to wavelength~h/L! and diameter to wave height~D/H! ratios
~Nath and Harleman, 1970!, the inertia effects dominate the total
forces and the response, as expected, is found to be relatively
insensitive to changes in Cd .

Effects of KC and Re on Hydrodynamic Coefficients
It can be observed from the Keulegan-Carpenter number (KCF

for far field in this case!, the Reynolds number (ReF for far field in
this case!, the inertia coefficient Cm and the drag coefficient Cd for
the SDOF experimental data tabulated in Table 1 that the inertia
coefficient Cm decreases with increases in KCF and ReF . It is
observed that Cm varies between 1.1–1.4 for 5.73104<ReF

<2.33105 and 0.56<KCF<2.2. Since the inertia effects domi-
nate the total forces for this experiment as explained in the previ-
ous section, the response is relatively insensitive to changes in
Cd . As shown in Table 1, Cd ranges between 0.1–0.9 for each data
set with simulated response matching with that of experimental
data.

Conclusion
The applicability of two different models,~A! relative-velocity

~RV! and ~B! independent flow field~IFF! models and their cor-
responding algorithms—~A.1! nonlinear-structure linearly damped
~NSLD!, and~A.2! nonlinear-structure coupled hydrodynamically
damped ~NSCHD!, for the RV model, and~B.1! nonlinear-

-

Fig. 7 Effect of a 2 on SDOF system behavior: a… „top … SL, b…
„middle … SM, c… „bottom … SH

Fig. 8 Effect of a 3 on SDOF system behavior: a… „top … SL, b…
„middle … SM, c… „bottom … SH

Fig. 9 Effect of z1 on SDOF system behavior: a… „top … SL, b…
„middle … SM, c… „bottom … SH
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structure nonlinearly damped~NSND! for the IFF model devel-
oped in Part 1, have been examined. The IFF model with the
NSND algorithm is determined to be the most suitable analytical
model for the experimental system. The RV models incorporate
relative motion hydrodynamic damping and the system properties
identified do not predict a comparable response with the measured
response. With low Keulegan-Carpenter number and high reduced
velocity, the IFF model is found to be more appropriate for the
experimental system. The sensitivity analysis of the SDOF system
presented here reveals that the effects of variations in system pa-
rameters on the predicted responses become more significant with
increasing wave excitation amplitude. Three groups are estab-
lished among the tests depending on low, medium or high wave
excitation amplitude based on the response behavior. The response
variation becomes more significant with increasing wave ampli-
tude. The optimal value and range of nonlinear structural damping
coefficient varies among the tests. This apparent behavior is prob-
ably caused by the inability of the model to approximate accu-
rately the actual nonlinear behavior of the complex damping
mechanism of the SDOF configuration as the Coulomb frictional
component is not included in the mathematical model. The non-
linear effects appear to become more prominent at the lower wave
amplitudes, resulting in high values with the errors lumped in the
coefficient, Cd18 . For the set of experimental data considered, Cm

varies between 1.1–1.3 for 5.33105<ReF<73105 and 4.7
<KCF<6.2 and 1.3–1.5 for 1.33105<ReF<3.73105 and 1.2
<KCF<3.3. In general, Cm increases with decreasing Reynolds
number and Carpenter-Carpenter number. Because the experimen-
tal wave-structure interaction characteristics fall within the inertia
regime, it is not possible to accurately evaluate the drag coeffi-
cients. Indeed, the response is observed to be insensitive to varia-
tions in Cd .
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Fig. 10 Effect of C d18 on SDOF system behavior: a… „top … SL, b…
„middle … SM, c… „bottom … SH

Fig. 11 Comparison of identified response using NSND model
with the measured response by varying hydrodynamic coeffi-
cients: a… Cm , b… Cd
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Nomenclature
The following symbols appeared in either Part 1 or Part 2 of

these papers.

a 5 dominant wave amplitude
a1 , a2 and a3 5 restoring force coefficients

d 5 distance of the center of the sphere
from the wall

f~t! 5 hydrodynamic force acting on the
sphere

fa(t) 5 input force
fe(t) 5 effective force

fn 5 resonance frequency of linearized
system

h 5 water depth
k 5 wave number
lc 5 initial spring length

l1 and l2 5 spring lengths
m 5 mass of structure~sphere!
s 5 distance of the instantaneous center

of the sphere from the bottom
u 5 fluid particle velocity in surge direc-

tion
u̇ (t) 5 fluid particle acceleration in surge

direction
uo 5 amplitude of the water particle veloc-

ity
vro 5 amplitude of vr
vr , 5 relative velocity

x(t),ẋ(t),ẍ(t) 5 displacement, velocity and accelera-
tion of structure as a function of time
t

ẋo 5 amplitude of the structure velocity
A1(f), A2(f) and A3(f) 5 Fourier transform of a1 , a2 and a3 ,

respectively
Ca 5 added mass coefficient
Cd 5 hydrodynamic drag coefficient

Cd18 5 linear structural damping coefficient
Cd8 5 nonlinear structural damping coeffi-

cient
Cm 5 hydrodynamic inertia coefficient
Cs 5 linear structural damping coefficient

~dimensional!
D 5 diameter of sphere
H 5 high amplitude

H~f! 5 frequency response function of an
ideal constant parameter linear sys-
tem

IFF 5 independent flow field
K 5 spring constant

KC 5 Keulegan-Carpenter number

L 5 low amplitude
M 5 medium amplitude

NSCHD 5 nonlinear structure coupled hydrody-
namically damped

NSLD 5 nonlinear-structure linearly damped
NSND 5 nonlinear-structure nonlinearly

damped
R-MI/SO 5 reverse multiple-input/single output

R~x~t!! 5 restoring force as a function of dis-
placement of the structure

Re 5 Reynolds number
R8(x(t)) 5 approximate restoring force R~x~t!!

RV 5 relative velocity
S 5 single degree of freedom
T 5 wave period
Tr 5 combined period of vr
To 5 period of oscillation of structure
VR 5 reduced velocity

V~x~t!! 5 potential function of displacement
x~t!

X1(f), X2(f), X3(f) 5 Fourier transform of x1 , x2 and x3 ,
respectively

h~t! 5 wave elevation
j~t! 5 zero-mean delta-correlated white

noise
z1 5 linear damping ratio
y 5 viscosity of the fluid
r 5 mass density
v 5 angular velocity
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