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Abstract 
 
In this paper a numerical model for predicting waves generated by nearshore submarine 
mass-movements is described. The model is based on the Reynolds Averaged Navier-
Stokes (RANS) equations with the k  turbulence model. The volume of fluid 
(VOF) method is employed to track the free surface. The submarine mass movement is 
prescribed. Numerical results obtained from the present model are validated with 
laboratory experiments and analytical solutions. Very good agreements are observed. 
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1 Introduction 

 
Motivated by the needs for preservation of human lives and coastal infrastructures, and 
for the deployment and operation of special structural and mechanical systems in 
coastal areas, the study of nearshore wave motions and wave-structure interaction has 
been of interest to coastal scientists and engineers for many years.  
 
Coastal wave generation due to submarine mass movement is a complex process. 
While the length-scale of a submarine mass movement is usually smaller than that of a 
seafloor displacement created by a fault rupture, the time-scale is usually longer. 
Therefore, the concept of “initial free surface displacement” in the wave generation 
region becomes a critical issue. Hence the evolution of the free surface displacement in 
the source region of mass movement needs to be modeled entirely. Furthermore, the 
characteristics of a submarine mass movement, including the soil properties, volume 
and area of the mass movement, also require a post-event bathymetry survey. 
 
Several numerical models have been developed to describe the waves generated by 
submerged or aerial mass movements. With the common assumption that the geometry 
and the movement of the mass movement can be prescribed, these models adopt 
various additional approximations in hydrodynamics. For instance, Lynett & Liu 
(2002) presented a model based on the depth-integrated nonlinear wave equations, 
which include the frequency dispersion effects. Therefore, their model can simulate 
relatively short waves that might be generated by a submarine mass movement. Grilli 
& Watts (1999) adopted a Boundary Integral Equation Method, based on the potential 
flow theory, and developed a fully nonlinear model for mass movement-generated 
waves. However, the approach does not allow wave breaking, which could be 
important in the vicinity of the generation region as well as the runup region. The 
depth-averaged model suffers the same drawback as the BIEM model in terms of the 
lack of capability of modeling breaking waves, however, it is much more 
computationally efficient for it has reduced the 3D problem to a 2D problem in the 
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horizontal space. Heinrich (1992) modified the NASA-VOF2D model, which is a 2D 
(vertical plane) nonlinear free surface model based on the Navier-Stokes equations, to 
study the generation, propagation and runup of tsunamis created by landslides. The 
effects of turbulence are not considered. Heinrich compared his numerical results for 
both submarine and aerial mass movements with his own experiments. The agreement 
is reasonable, except in the regions where breaking induced turbulence is important. 
 
In recent years, significant advancement in modeling the wave breaking process and 
the interactions between breaking waves and coastal structures has been made. For 
example, COBRAS (Cornell Breaking waves and Structures model) is based on the 
Reynolds Averaged Navier-Stokes (RANS) equations with a k  turbulence closure 
model. While a nonlinear Reynolds stress model is employed to allow anisotropic 
turbulence, the Volume of Fluid (VOF) method is used to track the free surface 
movements. COBRAS has been verified by comparing numerical results with 
experimental data for runup and rundown of breaking waves on a uniform beach (Lin 
& Liu 1998 a, b, Lin et al. 1999). It has wave-structure interactions capability (Hsu et 
al. 2002) with rigid, stationary, fully submerged or surface piercing structures. 
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The primary goal of this paper is to modify COBRAS to allow time-dependent solid 
boundaries such that mass movement-created waves can be simulated. Since COBRAS 
is capable of calculating turbulence, the modified model will be able to simulate 
breaking waves and runup. In this paper, we shall first present briefly the theoretical 
background of COBRAS and discuss the necessary modification to simulate the mass 
movement. 2D numerical results are then compared with experimental data. Some 
discussions on the future extensions are given at the end of the paper.   
     
2 Description of the model 

In this section the mathematical formulation and the associated numerical algorithm of 
COBRAS are discussed briefly. More detailed discussions can be found in Lin and Liu 
(1998 a, b). The model is based on the Reynolds Averaged Navier-Stokes (RANS) 
equations. For a turbulent flow, the velocity field and pressure field can be decomposed 
into two parts: the mean (ensemble average) velocity and pressure <  and iu > p< > , 

and the turbulent velocity and the pressure u  and i
′ p′ . Thus, u u  and i i=< iu′+>

 in which  for a three-dimensional flow. If the fluid is 
assumed incompressible, the mean flow field is governed by the Reynolds Averaged 
Navier-Stokes equations: 
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in which ρ  is the density of the fluid, ig  the -th component of the gravitational 

acceleration, and mean molecular stress tensor < >  with 
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molecular viscosity and < , the rate of strain tensor of the mean flow. In the 
momentum equation (2), the influence of the turbulent fluctuations on the mean flow 
field is represented by the Reynolds stress tensor − < . Many second-order 
turbulence closure models have been developed for different applications. In the 
present model, the Reynolds stress is expressed by a nonlinear algebraic stress model: 
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in which C C and  are empirical coefficients,  the Kronecker delta, 

 the turbulent kinetic energy, and the dissipation 

rate of turbulent kinetic energy, where v

1 2
, ,

d
C
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/

/ )i jε >

 is the molecular kinematic viscosity. 

It is noted that for the conventional eddy viscosity model C C in (3) and 

the eddy viscosity is then expressed as v C .  Compared with the conventional 
eddy viscosity model, the nonlinear Reynolds stress model (3) can be applied to 
general anisotropic turbulent flows. 
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The governing equations for  and ε  are modeled as (Lin and Liu, 1998 a, b), 
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in which and ,C  are empirical coefficients. The coefficients in equation (3) 
to (5) have been determined by performing many simple experiments and enforcing the 
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physical realizability; the recommended values for these coefficients can be found in 
Lin and Liu (1998 a, b).  

Appropriate boundary conditions need to be specified. For the mean flow field, both 
the no-slip and the free-slip boundary condition can be imposed on the solid boundary. 
Along the mass surface, the velocity of the moving boundary is prescribed. The zero-
stress condition is required on the mean free surface by neglecting the effect of airflow. 
For the turbulent field, near the solid boundary, the log-law distribution of mean 
tangential velocity in the turbulent boundary layer is applied so that the values of k  
and  can be expressed as functions of distance from the boundary and the mean 
tangential velocity outside of the viscous sub-layer. On the free surface, the zero-
gradient boundary conditions are imposed for both  and , i.e., ∂ = ∂ = 0. 
A low level of k  for the initial and inflow boundary conditions is assumed. 

ε

k ε /k n∂ / nε ∂

 
In the numerical model, the RANS equations are solved by the finite difference two-
step projection method. The forward time difference method is used to discretize the 
time derivative. The convection terms are discretized by the combination of central 
difference method and upwind method. The central difference method is employed to 
discretize the pressure gradient terms and stress gradient terms. The VOF method is 
used to track the free surface. The transport equations for  and  are solved with the 
similar method used in solving the momentum equations (Lin and Liu 1998a,b). 

k ε

 
3 Numerical Results and Discussions 
 
To validate the numerical model, numerical simulations of several laboratory 
experiments have been carried out, including waves generated by vertical bottom 
movements (Hammack, 1973) and by a sliding triangular block on a uniform beach 
(Heinrich, 1992). In Hammack’s experiments waves do not break in the generation 
region and the present numerical results agree with Hammack’s data very well. In this 
paper we shall focus our discussion on Heinrich’s experiments in which the generated 
waves break.  
 
The computational domain is 12 m in x-direction and 2 m in y-direction. A variable 
grid size system is used in the x-direction with minimum grid size of 0.01 m and a 
fixed grid size of 0.01 m is employed in y-direction. To satisfy all stability conditions 
and restrictions of the incorporated methods, a fixed time step of 5 1 s is used. 
Numerical results in generation (i.e., near moving mass) and propagation regions are 
compared with experimental data are shown in Figure 1 and 2. The submarine mass 
movement is modeled by a triangular shaped moving boundary that is initially located 
0.01m below the free surface. The displacement time history measured from 
experiment is used to move the triangular mass. Since the grid size is not small enough 
to resolve boundary layer, the free-slip boundary condition is applied on all the solid 
boundaries including sliding body, slopes, and channel bottom. As shown in Figures 1 
and 2, wave profiles in the generation region and the propagation region are in good 
agreement with experimental data. However, some deviations are observed in wave 
profile at t = 1.5 s when the reflected wave starts to break. It is surmised that the 
disagreement in wave profile is caused by the random nature of turbulence near wave 
breaking. 
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Fig 1. Free surface comparisons between simulation and experimental data at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 s 
in wave generation region. First panel shows portion of triangular shape moving boundary. 
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Fig 2. Free surface comparisons between simulation and experimental data at x = 4, 8, and 12 m in 
propagation region. 
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A convergence test using minimum grid sizes of 0.005, 0.01, 0.02, and 0.04m has been 
performed. A fine grid of 30 cells is used to resolve maximum wave height. It is 
observed that convergence is achieved with a grid size 0.01m. This value (or smaller) is 
employed through out the study. 
 
Turbulence generation by the submarine mass movement on a beach and its evolution 
are examined. Figure 3 shows the contours of turbulence intensity at t = 0.5, 1.0, 1.5, 
2.0, 2.5, and 3.0 seconds. It is observed that when the mass is in motion turbulence is 
generated around the upper right corner because of flow separation. Once the waves 
generated by the moving mass reach shore, waves are reflected. After the mass 
movement stops, turbulence is generated by the breaking of the reflected wave near the 
free surface and turbulence intensity decreases gradually. The maximum turbulence 
intensity can reach 0.83 m/sec, which is almost 50% of the mean velocity.    
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Fig 3. Turbulence intensity around moving body at t = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 seconds. 

 6



The influence of the submarine mass movement velocity is examined by varying the 
displacement time history. Denoting a0 as the acceleration of the mass movement 
measured in the experiment, we have calculated three additional cases with 
accelerations that are 0.5a0, 0.75a0 and 1.25a0, respectively. In these simulations the 
total displacement and the volume of mass movement remain constant so that only one 
parameter, i.e., velocity of the moving mass, is varied. The effects of mass movement 
velocity on maximum wave heights, runup and rundown are shown in Figures 3 and 4, 
respectively. As expected, the magnitudes of the wave height, runup and rundown 
increase with increasing acceleration, as shown in Figure 5. 
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experiments measuring the velocity field are desirable to validate the prediction of the 
turbulence intensity.  
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