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Abstract—An investigation of coupled surge-heave motion of a symmetric small-body ocean
mooring system is carried out in this paper. The dynamical system, formulated using a Lagrangian
approach in the vertical plane of motion, is characterized by a strong geometric mooring
nonlinearity and includes a quadratic relative motion Morison form for the hydrodynamic damping.
Numerical simulations reveal complex periodic and aperiodic solutions which include torus
multiplying and chaotic motion. The onset of instabilities is discussed and a comparison with a
limiting decoupled surge model is performed. Copyright © 1997 Elsevier Science Ltd

i. INTRODUCTION

Complex nonlinear and chaotic responses have been reported extensively in the last decade
for various numerical and approximate semi-analytical models of single and multiple-
degree-of-freedom compliant offshore structures and mooring systems (e.g. Thompson,
1983; Papoulias and Bernitsas, 1988; Sharma et al., 1988; Bishop and Virgin, 1988; Jiang
and Schellin, 1990; Choi and Lou, 1991; Gottlieb and Yim, 1992 and Bermitsas and Garza-
Rios, 1995). Subharmonic (Thompson et al., 1984; Fujino and Sagara, 1990) and chaotic
(Isaacson and Phadke, 1994) responses have also been shown in limited laboratory studies.
Ocean mooring systems are characterized by a nonlinear mooring restoring force and a
coupled hydrodynamic exciting force. The restoring force, which includes material dis-
continuities and geometric nonlinearities, has a unique equilibrium position, hence has a
single well potential. The exciting force includes a quadratic fluid structure interaction
viscous drag and harmonic wave induced inertial components. The drag component
includes a bias, a quadratic nonlinearity and combined parametric and external excitation.
The inertial component consists of biased external excitation which, for certain structural
configurations, is complemented by an additional coupled nonlinear convective parametric
excitation. Coupling of degrees of freedom further complicates system behavior.
Numerical and analytical investigations of systems which exhibit similar nonlinear
properties have revealed complex behavior including coexisting periodic (harmonic, sub-
harmonic, ultraharmonic, ultrasubharmonic) and aperiodic (quasiperiodic, chaotic) sol-
utions defined by different initial conditions (Moon, 1992). System stability is governed
by complex near resonant phenomena and sensitivity to initial conditions. While weakly
nonlinear systems have been studied extensively from both classical (Nayfeh and Mook,
1979) and modern approaches (Guckenheimer and Holmes, 1986; Wiggins, 1990), analy-
ses of complex single equilibrium point systems with a strong nonlinearity (which is a

479



480 O. Gottlieb and S. C. S. Yim

characteristic of ocean mooring systems) performed to date have been limited in their
scope. Coupling of the degrees of freedom further complicates system analysis of finite
multi-degree-of-freedom systems. Classical asymptotic techniques complemented by
numerical analysis identify an enlarged bifurcation set and aperiodic solutions induced by
internal resonance mechanisms in quadratically and cubical coupled oscillators (e.g. Miles,
1984a; Miles, 1984b; Nayfeh, 1988; Bajaj and Tousi, 1990; Cheng, 1991).

Ocean mooring systems include single and multi-point configurations (Skop, 1988) and
are used to restrain the motion of compliant offshore structures (Leonard and Young,
1985). Single-point moorings (ABS, 1975) are characterized by curvature, material and
hydrodynamic load nonlinearities (Leonard, 1988), whereas multi-point or spread moorings
(API, 1987) include an additional geometric nonlinearity associated with mooring line
angles (Bernitsas and Chung, 1990; Gottlieb and Yim, 1992). The mooring restoring force
is formulated by incorporating these nonlinearities by exact or approximate formulation
based on the mooring line characteristics and its orientation in the system. The nonlinear
elastic force of a single cable line has been formulated by various methods. Examples
include a quasi-static formulation of semi-empirical relations for elastic rope, catenary
equations for chain (Leonard, 1988), and finite elements for steel cable. An alternative
formulation is to incorporate a measured restoring force or its approximation. Examples
of approximations by elementary functions include a piece-wise linear formulation (de
Kat and Wichers, 1991), an exponential function description (Virgin and Bishop, 1988)
and a truncated power series described by a quartic polynomial (Fujino and Sagara, 1990).
Another single-point configuration, modeling coupled tanker-mooring tower motion, con-
sists of a bi-linear formulation (Thompson et al., 1984) and a least square approximation
of a discontinuous restoring force resulting in a biased Duffing equation (Choi and Lou,
1991). The geometric nonlinearity of multi-point systems has either been approximated
from data (Bishop and Virgin, 1988) or has been incorporated exactly in various time
domain numerical models (e.g. Ansari and Khan, 1986; Chen and Chou, 1986) and a semi-
analytical symmetric four-point system (Gottlieb, 1991) or a quasi-static mooring model
(Bernitsas and Garza-Rios, 1995).

The hydrodynamic excitation includes coupled nonlinear fluid-structure interaction vis-
cous drag and inertial components and requires separate treatment for small versus large
bodies (Sarpkaya and Isaacson, 1981). Small bodies (with respect to flow wavelength) or
structures with slender elements, do not alter the incident flow (Chakrabarti, 1987),
whereas large bodies do change the characteristics of the flow field in the vicinity of the
body and require knowledge of the scattered and radiated potential in addition to the
incident potential. Therefore, small body problems are solved directly due to the explicit
form of the hydrodynamic excitation, and large body problems require approximation of
the hydrodynamic forces or simultaneous solution of the field-body boundary value prob-
lem. Body mooring systems (e.g. semi-submersibles, articulated towers) are generally
solved by a relative motion Morison formulation whereas large body systems (e.g. ships,
floating production systems) are solved by approximate quasi-static maneuvering equations
(Abkowitz, 1972) or by numerical simulation. Numerical time domain simulation has been
the primary tool for solution of both large (Wichers, 1988) and small body configurations
(Bishop and Virgin, 1988). Evidence of strong subharmonic response, period multiplying
route to chaotic motion and quasiperiodic instabilities appear in numerical models of both
large and small body ocean mooring models that are subjected to combined steady and
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fast motion (Virgin and Bishop, 1988; Gottlieb and Yim, 1992; Choi and Lou, 1993).
While the numerical time domain simulations incorporate exact forms of the dissipative
forces, approximate analytical models typically neglect second order forces. Examples of
such forces and their influence on system dynamics are the relative motion quadratic drag
nonlinearities (Gottlieb and Yim, 1993) and second order drift forces in slow motion large
body problems or convective nonlinearities that appear in small body formulations
(Manners, 1992; Gottlieb, 1992). Although these nonlinear solutions exist in a relatively
narrow parameter space, their magnitude is greater than that of the coexisting harmonic
response.

The development of deep water compliant offshore structures requires a comprehensive
understanding of strongly nonlinear ocean systems designed for relatively large displace-
ments. Existing mooring systems analyses are portrayed by complex numerical models
incorporating both structural and hydrodynamic nonlinearities or by idealized numerical
or semi-analytical models where the nonlinearities are approximated and are in part
described by their linearized or quasi-static representation. Identification and control of
system instabilities are not always attainable in the complex numerical models and require
extensive parametric analysis, whereas the linearized models are limited by their restrictive
assumptions and do not always reveal true system behavior. As noted above, the multi-
point mooring systems exhibits a variety of both structural and hydrodynamical nonlin-
earities. Simplification of environmental conditions via equivalent linearization methods
or quasi-static representation and approximations of structural nonlinearities may reveal
only partial qualitative results and will not determine all the mechanisms governing system
instabilities and sensitivity to initial conditions. '

In this paper we employ a Lagrangian formulation to obtain the multi-degree-of-freedom
geometric nonlinearity of a symmetric four point system with the generalized forces con-
sisting of an exciting force in the vertical plane of motion. The exciting force selected is
that of a small body relative motion Morison formulation where the quadratic drag nonlin-
earity is retained exactly. Numerical simulations of the dynamical system reveal complex
periodic and aperiodic solutions which include torus multiplying and chaotic motion. The
onset of instabilities is discussed and a comparison with a limiting decoupled surge model
is performed.

2. SYSTEM MODEL

The multi-point mooring system considered (Fig. 1) is formulated as a three-degree-of-
freedom (surge-heave-pitch), rigid body hydrodynamically damped and excited nonlinear
oscillator. The equations of motion are derived (Gottlieb, 1991) based on equilibrium of
geometric restoring forces and small body motion under small amplitude monochromatic
wave and current excitation. The equations of motion take the following classical form
of three coupled nonlinear second order differential equations:

X+DX)+RX)=FX,. X, X, 0 1)

where R(X) and D(dX/dr) are the system restoring force and structural damping vectors
and F(X, dX/dt, d®>X/d?, 1) is the time dependent exciting force vector. X=(X;, X3, Xs)T
is the system displacement vector representing surge (X;), heave (X;), and pitch (Xs)
motions. Note that (-) is differentiation with respect to time and that the position of the
body centroid at its equilibrium position is the origin of the reference inertial frame. The
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Fig. 1. Mooring assembly

exciting forces are formulated to account for nonlinear relative motions between the struc-
ture and the fluid whereas the restoring forces are formulated via a Lagrangian approach
due to their complexity.

A symmetric multi-point mooring assembly (Fig. 1) yields an antisymmetric restoring
force. Although the mooring lines may have linear elastic properties, the restoring force
(stiffness) will include a strong geometric nonlinearity depending on the mooring angles.
Two characteristic stiffness configurations which incorporate a material discontinuity are
pretensioned and slack elastic cables. The discontinuity in the former case is due to loss
of pretension in two lines whereas the latter case is based on an initial slackness. Both
configurations can be described by a ratio (/) of initial mooring line length (I.) to the
length of the gap to be bridged by that line (). Therefore, slack or pretensioned lines
can be described by I/lo>1 and [/l;<<1 respectively. The case of taut mooring lines rep-
resents the limits of both slack and pretensioned cables (I.=l,). In order to avoid modeling
of the discontinuity by an infinite set of describing functions and to isolate the geometric
nonlinearity, a continuous mooring restoring force (Ryy) is chosen. This force consists of
both taut and pretensioned configurations (I, < Iy) of linear elastic mooring lines which
restrict the motion to the region where all lines retain their initial pretension. The stiffness
nonlinearity can vary from a strongly nonlinear two-point system (b=0) to an almost linear
four-point system (b>>d where b and d are the horizontal and vertical coordinates of the
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mooring point). The total restoring force (R) includes the influence of mooring (Ry) and
hydrostatic buoyancy (Rg).

The mooring restoring force [Ry(X)] is conveniently derived from the potential function
[V,(X)] describing the pretensioned geometrical configuration of an axis-symmetric
small body:

Vil Xy, X3, Xs5) = K{l(X,, X, Xs)—lc]2 + [L(X, Xs, Xs)—lc]z} 2
where
L\?
l,=d+ (2> + (bEX,)? + X2LX, sin Xs—L(b£X,)cos Xs]'?2 3)

and K is the elastic force coefficient, [, (i=1, 2) is the in situ mooring line length and [
is the initial pretensioned length of the mooring line. Note that the choice of the upper
sign refers to /; and the lower sign to [,.

Therefore, Ry (X)=dV,(X)/dX or:

I,—1 I +1
Ry = 1<{4x1 + IC[(Zb—L cos Xs) ﬁ—z —2X, 11 1 2”
1£2 142

R = Klax . L= L+
3 = 3+ 1| L sin X5 —2X; , O]
L, Li,

. . L—1hL . L+l
Ry = Ki2bLsinX; + I| L(X; sin X5+ X3 cos X5) 11 —bL sin Xs N,
142 ! 12
The exciting force (F) is formulated to account for the influence of both nonlinear drag
(Fp,) and inertial effects (F)) exactly. The drag nonlinearity consists of a relative motion
quadratic formulation whereas the inertial force consists of a temporal gradient.

Fp -——g CDIAPI(UI—XI) |U1—X1 ! )
_P - -
FD3 = 5 CD3AP3(U3“X3) ‘Ua‘Xa |
oU .,
Fn=pV(L + Cu) =5 —pVCuky (6)

. U, ..
Fry=pV(1 + Cy3) ? —pVCa3X;5

where
U = U+ cosh[k(X5 + )] kX, wor) )
e T Y D
3 sinh[k(X5 + h)] .
U; = wa T sinh(k ) sin(kX, — wt)

and Cp, 3, C4, 5 are hydrodynamic viscous drag and added mass coefficients; Ap, 3, V are
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projected drag areas and displaced volume; U, is a collinear current magnitude; a, o, k
are wave amplitude, cyclic frequency and wave number; p, g, h are water mass density,
gravitational acceleration and water depth. Note that both projected drag areas (A, ;) and
displaced volume (V) are frequency dependent functions when the body is surface piercing
and that the projected areas are sensitive to the magnitude of body orientation (or pitch -
angle): Ap=B(DcosXs+LsinXs) and Ap,=B(DsinXs+LcosXs). Furthermore, the relationship
between wave frequency and number is determined by the linear dispersion equation:
w’=gk tanh(kh).

The drag and inertial components for pitch (Fps, Fys) can be formulated by integrating
the differential moments (dM), ;) along the length (z": —L/2 to +L/2) of the body: Fps=/
dM(Z) and Fi=f dMJZ) where:

dM s = g BCpsZ (U —2Xs) | U'—2Ks | d7’ ®)

oU” o ,
dM;s = PV{(I + Cas) ? ~Casz Xs}dz

and U'=U,g sin Xs+U, cos X.

The structural damping force (D) consists of independent linearized friction components:
D=CdX/dt (i=1, 3, 5), where the damping coefficients are C| ;5.

The equations of motion are derived by the Lagrange approach:
d (0F\ 09X ,
dr (ailz) dq; =< ®
where £=T —V is the Lagrangian function and 7, V are the kinetic and potential energies.
g, are generalized coordinates and @ are generalized forces not derivable from the total
potential. The displacement vector components are generalized coordinates and exciting
force vector components are generalized forces as they are time dependent. The Lagrangian
function is obtained from the kinetic and total potential energies. The potential consists

of a mooring component (V,, in Equation (2)) and a body force due to hydrostatic buoy-
ancy and gravity [Vg=(pgV—Mg)X3)].

T=A§(X%+X%)+§X§ (10)

V=KX [L(X,, X5 Xs)— L) + (pgV —Mg)X,

i
t

where M, I are the body mass and moment of inertia and /; (i=1, 2), the mooring line
lengths are given in (Equation (3)).

Rearranging and scaling (x=X/d, 6=t) the equations of motion yields the following
autonomous system which consists of seven coupled nonlinear first order ordinary differen-
tial equations:

X=y
y = —Rx)—D(y) + Fp(x, y, 6) + Fy(x, y, 0) (11)

b=0w
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where x=(x,, x3, x5)7, Y=(y,, y3, ¥5)T are the length scaled system displacement and velocity
vectors. Note that the velocity vector retains the time dimension.

For negligible pitch angles the system simplifies to the following:

X1 =y
1 = —Ri(x), X3)—viy1 + Fpi(xy, X3, y1, 0) + Fp(xy, X3, 1, 3. 6)
X5 =y; (12)
Vs = —Ra(xy, X3) = v3ys + Fpa(xy, X3, 1, 0) + Fa(xq, X3, y1, 3, 6)
f=w
where
ll + lz 11_12

- _ — 13

Rl a[xl r( 1112 xl B lllz ( )
L+
Ry =af (1 + o)x;—T| X
L,
Lio=11+(Btx,)* + x3]"7 14)
y y
Fp, = p,,S,(u,-— ai)‘”l— ‘(j | (15)
’
y y '
Fpy = IL353<M3_ '5)'“3_ ”j |
ou ou

F11:ﬂ1w2“a'51,F13=I~L3w2§63 (16)

_ X cosh[k(x; + )] _
u, = fo + y msinh(xh’) cos(kx;—6) a7

_ X sinh[k(x; + M . (61— 6)
3Tk sinh(k) | TR

and
K el L Cu
3T+ pVCaa' T 2d T T 24" P T M+ pVCays
Apis Cpis pV(1 + Cyy5)

k) = = 4 -

1BEY T4 Oy, 8% R0, ps = e (18)

— & v, fo=22 y—ka = kd, i ="
0-—4Kp ’ O_Cl)d’X_ a, K= > ‘_‘d

Note that 8, 7, 0, u, k, x are nondimensional parameters whereas «, v, 6 and w incorpor-
ate a time dimension. The restoring force is characterized by four parameters: « is a scaling



486 0. Gottlieb and S. C. S. Yim

amplitude, 3 describes the geometric nonlinearity in the horizontal plane, T is a measure
of the pretension in the mooring lines and o =1 characterizes non-negative buoyancy.
The inertial exciting force is characterized by the wave frequency w, a limiting wave
steepness parameter y << 7/7 and u,>1 defines positive buoyancy. The damping force
includes hydrodynamic drag & and structural damping .

The system (12) nonlinearities appear in each of the principal equations (dy/d¢) in both
the symmetric restoring (13) and drag (15) forces. Note that for a neutrally buoyant (¢=0)
and strongly nonlinear configuration (8=0), the coupling between surge (x;) and heave
(x3) is reduced to an identical hardening form for the geometric nonlinearity. The degree
of nonlinearity is controlled by the geometric parameter 8 (Gottlieb and Yim, 1992).

3. THE UNMODULATED SYSTEM RESPONSE

The system (Equation (11)) does not have any fixed points in seven-dimensional space
(X, y, 0) because df/dt=w. However, a unique equilibrium position [(X, y).=0] in six-
dimensional space (X, y) can be determined via the associated integrable Hamiltonian
system which yields an elliptic phase space described by the invariant Hamiltonian energy
depicted (in any choice of two dimensions) by stable centers.

1
H(xy, X3, X5, Y15 Y3, ¥s) = ) OF + 53+ y3) + V(xy, x3, x5) (19)

Investigation of the structurally damped [y#0, vy=(y;, v5)"] unforced system
(Fp15=F} 5=0) by local stability analysis is performed by linearizing the system about the
unique equilibrium position (fixed point) at the origin [(X, y).=0]. The associated linearized
system [or vector field: dz/dr=Az where z=(x—X,, y—y.) and A is the derivative matrix
of —R(x) —i'y from (12) evaluated at (x, y).] is structurally (asymptotically) stable if all
the eigenvalues of the describing matrix (A) have negative real parts. Consequently, the
equilibrium solution (x, y)=(x, y). of the nonlinear vector field is asymptotically stable.
The following characteristic equation describes linearized vector field of the system (vy
#0, Fpi1=F; 3=0) about the fixed point [(x,, X3, y;, ¥2)=0]:

M+aX + a2 +ad+a,=0 (20)
where
=Y+
2+ B2
a =Y,y + a{Z + o027 m@} 2n
A+ + v
a; = a[(l PO AT e

272 + B?) . 27 \?
(1 + 32)3/2 1 + BZ
According to the Routh-Hurwitz criterion, the linear vector field near the origin is struc-

turally stable [A; (i=1,...,4) have negative real parts] if and only if the coefficients a;
(i=0,...,4) and the following determinants (D, ,) are always positive:

ao = az[l + o—
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D, = aay—ay, D, = as(a,a,—agas)—aj (22)

Evaluation of the determinants results in the following:

i+ L+ By
(1 + 32)3/2

1 2\2
D, =a(y, + 73)')’173{[(1 + o)y, + y] 27 (4-:1[3_*)—[;;3;‘&}

240+ 3 2 2
+ (W + y§){1 + o271 a +UBZ)52 + (1 +TBZ> }

l+o0+0B*+ B2 1+ + B>?
(1 + BZ)3/2 (1 + BZ)3

Investigation of the coefficients and determinants is done by introducing the pretension
constraint 21 = \/(1+BZ) (i.e. I, = l,). The resulting inequalities show that the vector field
is structurally stable throughout parameter space (a, B, T, 0, v, 3) With the exception of
a neutrally buoyant (0=0), taut (7=1/2) right angle mooring configuration (8=0) which
reveals a higher order degeneracy.

D=y +va)niys + oy + (1 + 0)ys]—2ar

(23)

+ azyl‘y3{[l +(1+ 03 27 + (27)°

4, THE MODULATED SYSTEM RESPONSE

Perturbation of the nonlinear structurally stable unmodulated system by small amplitude
wave excitation (17) for small values of structural and hydrodynamic damging enables
formulation of the dynamical system as a weakly coupled two-degree-of-freedom dynami-
cal system with quadratic and cubic nonlinearities due to the nonlinear drag and restoring
force respectively:

X1+ @i, = €= 9k — Ry (x, x3) + Fi(xy, x5, %, X3, 1)) 24)
¥y + @3 = €] — 3k~ Ra(xy, X3) + Fa(xy, x3, Xy, %3, 1))

where |
@} = y[1-27(1 + B, @} = el(1 + @) =27(1 + B 25)

and (e¥,3)=v:3 [v15 in (18)], (€ﬁ1,3):(F01,3+F11,3) [Fona3 in (15), (16)] and € R, is
obtained from (13).

Simulation of (24) results in stable periodic limit cycle motion about the structurally
stable fixed point. However, for a specific damping threshold, excitation of (24) near reson-
ance (w~w, Of w=~w,) when the two linear natural frequencies are in internal resonance
(mwy=nw,) (cf. ® = w,=w; in Miles, 1984; o=~w,=w,/2 in Nayfeh, 1988; w~w,=w,/3 in
Bajaj and Tousi, 1990) results in an amplitude modulated quasiperiodic solution in the
form of a 2-torus. Furthermore, for even lower damping, the 2-torus may undergo further
bifurcation resulting in chaotic motion following its destruction.

While weakly nonlinear mechanical systems exhibit near resonance amplitude modu-
lations for small excitation levels in a narrow region of parameter space, a large domain
of instability is obtained in a system with strong nonlinearity (cf. Cheng, 1991). An
example model of a strongly nonlinear system with quasiperiodic response is a coupled
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single point mooring of a tanker and articulated tower (Choi and Lou, 1993). Furthermore,
note that periodic response in models incorporating quasi-static maneuvering equations
(via a Hopf bifurcation cf. Bernitsas and Chung, 1990) correspond to quasiperiodic motion
as the periodicity in the ‘slow motion’ corresponds to modulated response in the fast
time scale.

Ini this section we describe results obtained from a numerical simulation of the limiting
strongly nonlinear (8=0) mooring system (12) for a neutrally buoyant condition (g=0)
with weak forcing (x=0.1-0.3) and small structural and hydrodynamic damping
(71,5=0.01, 8=0.05, 0.1). Figure 2 depicts a displacement projection of the physical surge—
heave phase space (x;(x;)) where an ellipse describes steady state periodic motion (Fig.
2a) and complex quasiperiodic motion is shown for two sets of environmental conditions
(Fig. 2b, c). The fundamental torus describing the quasiperiodic response (Fig. 2b, c)
undergoes further bifurcations which consist of tori multiplying. We describe this aperiodic
response via a phase plane projection (y,(x,)) and its Poincaré map [Y,p(X,p): sampled at
each forcing period=2m/w] and power spectra. Note that while a Poincaré map of an
ultrasubharmonic signal will be described by a finite set of points the map of a quasiperi-
odic response consists of an infinite set of points organized on an invariant geometric
shape. Thus, the torus tripling (Fig. 3) and doubling (Fig. 4) are depicted by an infinite
number of Poincaré points on a closed shape. The doubled torus (Fig. 4) undergoes further
bifurcations and quadruples (Fig. 5).

We compare a characteristic Poincaré map obtained for both coupled surge-heave sys-
tem (Fig. 6) to that obtained from a limiting single degree-of-freedom surge model
(Gottlieb and Yim, 1992). Note that while both attractors coexist with periodic solutions,
the strange attractor of the coupled model coexists with a quasiperiodic attractor and as
such is fourfd for a smaller set of initial conditions.

5. CLOSING REMARKS

The investigation of coupled surge-heave motion of a symmetric small-body ocean
mooring system carried out in this study, revealed complex aperiodic response. The
dynamical system, formulated using a Lagrangian approach in the vertical plane of motion,
was characterized by a strong geometric mooring nonlinearity and included a quadratic
relative motion Morison form for the hydrodynamic excitation. Numerical simulations
resulted in periodic and aperiodic solutions which included torus multiplying and chaotic
response. The onset of additional quasiperiodic bifurcations was discovered and a compari-
son of chaotic attractors of both single and two-degree-of-freedom systems was performed
employing a limiting decoupled surge model.

The nonlinear mooring was found to be governed by the geometric and pretension
parameters and similar to results for the surge model, the amount of system dissipation
from both structural damping and hydrodynamic drag control the thresholds and widths
of the stability domains in parameter space. Results indicate that while bifurcation thresh-
olds in both models are controlled by the magnitude of system dissipation, the coupling
of the surge and heave degrees-of-freedom enlarges the domains of instability in compari-
son to those uncovered in previous work for the surge model in the ultrasubharmonic
domain.
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Fig. 5. Quasiperiodic torus quadrupling (a=10, y=0.01, 8=0.1, w=0.85, x=0.3). (a) phase plane, (b) Poincaré
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Fig. 6. Comparison of chaotic attractors (a=1, y=0.01, 8=0.05, w=0.81, x=0.2): (a) single-degree-of-freedom
system;
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