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Abstract—This study experimentally investigates the nonlinear response stability and transition
behaviour of a submerged, moored ocean structural system which consists of a spherical buoy and
attached multi-point mooring lines. The system is excited by a periodic wave field in a closed
channel. System nonlinearities include complex geometric restoring (stiffness) force and coupled
fluid-system interaction exciting forces. Experimental set-up, operating procedures and analysis
of the measured results are presented. Characteristic motions observed include harmonic,
subharmonic and ultraharmonic responses, which demonstrate a signature of the intricate pattern
of the nonlinear global behaviour. Good agreements between the measured and most predicted
responses are demonstrated in both time and frequency domains. These results confirm the validity
of the analytical model presented and calibrate the accuracy of the existing numerical;predictions.
Primary and secondary resonances in the response are identified via frequency response curves.
Response bifurcation cascades are observed in the experimental results and the possible existence
of higher-order nonlinear responses is inferred. © 1997 Published by Elsevier Science Ltd.

NOMENCLATURE
a wave amplitude
Ap projected drag area
Ca added mass coefficient
Cp hydrodynamic drag coefficient
Cpy. equivalent linear drag coefficient
C, effective system damping coefficient
Fp Morison drag force
Fy inertia force
g gravitational acceleration
h water depth
k wave number
K spring constant
Il lengths of mooring lines
M mass of sphere
Pao average power of Morison drag force over N cycles
R restoring force
Rimjsy TESONANce number
t time

* Author to whom correspondence should be addressed.
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u fluid particle velocity

Uy collinear current magnitude

X surge displacement

X surge velocity

v displaced volume

& system damping ratio

p water density

v,  peaks in the first and second half cycle in free-vibration tests
w wave frequency

Wy damped frequency in free-vibration tests

1. INTRODUCTION

Analytical and numerical models of nonlinear systems subjected to periodic excitation
have revealed a variety of nonharmonic responses, instabilities and sensitivity to initial
conditions (e.g. Moon, 1987). These predictions have been demonstrated through small-
scale experiments where the system parameters can be accurately controlled, and the
domains of attraction are easily defined and measured. Examples of these ‘table-top’
experiments of nonlinear aperiodic responses can be found in Moon (1987, 1992). Other
examples of small-scale experimental investigations of simple single- and two-degree-of-
freedom systems are reported in Popp and Stelter (1990) and Nayfeh and Balachandran
(1990), respectively.

However, it may be difficult to design large-scale models to obtain chaotic responses.
To the autiors’ knowledge to date, a large-scale fluid-structure experiment to obtain highly
sensitive, nonlinear response (e.g. chaos) in the ocean has not yet been achieved. While
there is an expansive amount of material on nonlinear fluid-structure interaction in the
literature (e.g. Sarpakaya and Isaacson, 1981; Blevins, 1990) describing harmonic small-
amplitude motions, there are only a few papers describing subharmonic responses (e.g.
Lean, 1971; Thompson et al., 1984; Fujino and Sagara, 1990).

A medium-scale experimental investigation of the nonlinear response of a submerged,
moored, complex ocean system is reported here. The objective of this study is two-fold:
(i) to experimentally determine, as much as possible, the existence of nonlinear responses
(e.g. subharmonic, ultraharmonic, ultrasubharmonic, quasi-periodic and chaotic, similar to
those predicted in Gottlieb and Yim, 1992), and the organized response transition in bifur-
cation sets predicted in the analytical study (Gottlieb et al., 1997); and (ii) to assess the
validity of the analytical model of a symmetric multi-point moored structural system sub-
jected to a deterministic exciting field described by small amplitude waves and weak
collinear current. The study presents a description of the submerged, moored ocean system
experiment, classification of model responses and comparison of results to analytical pre-
dictions.

2. SYSTEM CONSIDERED

A general multi-degree-of-freedom, multi-point moored system is modelled by a hydro-
dynamically excited, submerged, rigid body moored by elastic mooring cables with geo-
metric nonlinearity. The mooring lines considered in this study are assumed to be linear,
elastic and taut, and do not vibrate transversely. These simple assumptions are in direct
contrast to the nonlinear, inelastic (hysteretic), and low-tensioned cables examined by
Triantafyllou and Yue (1995), where the cable properties and sag were the major sources
of the nonlinear dynamical phenomena of the system response. The wave fields are gov-
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erned by kinematics and return flow of prescribed periodic waves. The complex exciting
force includes coupled fluid—structure interaction drag and inertial terms. The drag/lift is
quadratic in nature whereas the inertial components consist of a linear O(1) temporal term
and O(e) nonlinear convective terms which become increasingly important near system
resonances (Gottiieb and Yim, 1992).

2.1. Model configuration

The general experimental configuration is formulated with an intention of calibrating
the various nonlinear response behaviours predicted by corresponding analytical models,
including the existence of subharmonics, ultraharmonics and the organized response tran-
sition (Gottlieb et al., 1997).

The experimental models considered in this study are geometrically nonlinear two- and
four-point moored single-degree-of-freedom (SDOF) systems in surge. The models consist
of a sphere on a rod supported by guyed masts six feet above the bottom of a closed wave
channel (Fig. 1). Spheres made of PVC with diameters of 11 and 18 in were used. Two
Delrin bearings were placed on the spheres to reduce the friction and minimize the free-
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Fig. 1. SDOF experimental model (90° configuration).
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play between the sphere and the rod. The spheres were filled with water when submerged.
The in-air weight of the 11 in sphere was 7 Ibs empty and 25 1bs when filled with water.
The 18 in sphere weighed 25 Ibs empty and 106 lbs filled. Springs of various stiffness (10
or 20 Ibs/ft) were attached to the sphere at an angle of 60 or 90° to provide a nonlinear
restoring force (Fig. 2). The restoring force, which contains geometric nonlinearity, can
be derived by a Lagrangian formulation (Gottlieb and Yim, 1992). The damping mech-
anism includes a linear system (structural) component (associated with the system connec-
tions and contact points of instrumentation), and a time-dependent coulomb friction
component (due to the set-up of restricted surge motion). The coulomb friction originates
from the lift force (in heave) and combined drag/lift moment (in pitch). The variability
in the friction force is a result of changing amplitude and direction of normal force due
to the oscillatory nature of the hydrodynamic drag/lift forces.

The initial tension in the mooring cables was varied from 15 to 30 Ibs depending on
the test case. The majority of the tests were performed with relatively low initial tension
(25 1bs) to ensure nonlinear motion response (Gottlieb and Yim, 1992).

2.2. Equation of motion

Assuming the time-dependent effects of the coulomb friction can be lumped into an
equivalent linear system damping coefficient, the equation of motion of the cable moored
system is given by

Mi + Cx + R(x) = Fp(x,x) + Fi(x.%) 1)

where x and & denote the surge displacement and velocity, respectively; M the mass of
the system; R the nonlinear restoring force; C; the effective system damping coefficient;
Fp, and F; the drag and inertial components of the exciting force, respectively.

The restoring force includes the force due to the mooring (Ry) and the force due to
hydrostatic buoyancy (Rg). The spheres used for this experiment were virtually neutrally

R ()

Fig. 2. Restoring force diagram.
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buoyant when submerged. Therefore, the forcing caused by Ry was negligible and is not
considered here. The restoring force R(x) is then given by

I, =1 L+1
R(Y) = Ry = K{4x + IC(Zb SIS ML )

Ll L,
where X is the spring constant and b governs the spring configuration (b = 0 for 90° and
b =1, ,/2 for 60°, respectively). [, , are the spring lengths and [, is the initial spring length.
The exciting force consists of a relative Morison drag (Fp,) and an inertial component (Fy):

Fy :g CoAp(tt — Ol — 3| (3a)
Fy=pV(l + CA)[%L; +(u— % g—ﬂ — pVCAX (3b)
with
cosh(kh)
u= cos(kx — wt) 3c)

ot O G (kR

where Cp, is the hydrodynamic viscous drag coefficient; C, the added mass coefficient;
A, the projected drag area; V the displaced volume. u, represents the collinear current
magnitude; a the wave amplitude; w the wave frequency; k the wave number; p the water
density; g the gravitational acceleration; and # the water depth. ¢

3. ANALYTICAL PREDICTIONS

For convenience of reference and comparison with experimental results in later sections,
analysis and numerical predictions by Gottlieb et al. (1997) are briefly summarized here.

Using the method of harmonic balance, approximate solutions to Equation (1) can be
obtained. Local stability analyses on the approximate solutions are conducted using Hill’s
variational technique, and the primary and secondary resonances can be identified in the
parameter space. In addition to the analytically identified lower-order resonances, the
higher-order are also observed via extensive numerical simulations. With the analytical
and numerical results, a universal pattern underlying the bifurcation set is found to exist
(Fig. 3).

To classify the bifurcation pattern of the nonlinear responses (e.g. subharmonic, ultrahar-
monic, and ultrasubharmonic), a resonance number R, 4 is employed. Using the nonlin-
ear resonance relationship nw = m\/;z_l (where w is the wave excitation frequency; «, the
coefficient of the linear component of the nonlinear stiffness), the first index [n/m] of the
resonance number is employed to classify the characteristic periodic responses. The second
index [j] is used to determine the order of ratios with noncommon factors. Finally, the
third index is used to describe the dimension [d] of the response (i.e. integer deterministic
versus fractal chaotic). i

A bifurcation pattern diagram of system responses can be constructed (Fig. 4) via
numerical simulations and the classification criterion summarized above. The diagram
depicts the existence of periodic orbits throughout the domain described by a variety of
subharmonic and ultraharmonic solutions. Solutions are separated by a common periodicity



H. Lin et al.

328

7€
eEYF
ec k&
oo
* % +
* % +
* % +
* % +
* % +

0.1

0.1

Fig. 3. Superstructure in bifurcation sets.

S - symmetric

AS - asymmetric

w :xapul polsed

Fig. 4. Bifurcation diagram.



Stability of a nonlinear ocean structural system 329

index m. Symmetric (S) and asymmetric (AS) solutions describing pitchfork bifurcation
transition are also depicted. Resonance lines (R,,,,: dashed lines) are added to highlight
solution ordering. This diagram will be used as a guideline for experimental search of
higher-order nonlinear responses as well as a baseline for comparison.

4. EXPERIMENT DESCRIPTION

The experiment was conducted at the O. H. Hinsdale Wave Laboratory at Oregon State
University in a two-dimensional wave channel, which is 342 ft long, 12 ft wide and 15 ft
deep with a hydraulically driven, hinged flap wave board (Fig. 5). A VAX 3400 server
and two VAX 3100 stations with optical communication links for wave generation control
and 64 digital channels were used for data acquisition.

The model tests were divided into four distinct phases. The first phase was with a small
sphere moored at 90° angles; the second with the small sphere at 60°; the third with a
large sphere at 60°; and the last with the large sphere at 90° (Yim et al., 1993).

Data recorded during each test included wave profiles at several locations along the
channel, currents, sphere displacements, and tensions in the springs. The wave profiles
were measured by six resistive type wave gauges. MINILAB, model SD-12, current meters
were used to measure the horizontal and vertical velocities of the water particles. UniMeas-
ure, model P-75A, string pots were used to measure the displacements of the spheres.
Strain gauges were placed on the lines connecting the springs to the spheres to measure
the components of the restoring force. The initial (static) value of the spring tension could
be adjusted by tightening/loosening the springs from the carriage above. Two underwater
cameras were used to provide a second means of measuring the sphere? displacements.
The cameras also provided visualization of the displacements of the spheres.

PLAN VIEW
342" )I‘

12 DRAIN FAUCET
\l/ 1 Q—1

HYDRAULIC PROFILE

/ PISTON

WAVE 15’ Location of Model
18 1 BOARD ocation ot jode
HINGE *

K— 19— }e 40" 249’ 30'9‘
"

Fig. 5. Two-dimensional wave flume.
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Three wave gauges were placed on each side of the model at distances of 1.5, 4.0 and
11.0 ft from the model. The current meter was placed 10 in upstream of the model, 22 in
from the side wall at a depth of 9 in. Two string pots were attached to the sphere for
displacement measurements on opposite sides to offset the force placed on the sphere by
the string pots. Two string pots on the 90° configuration and four string pots on the 60°
configuration were used to measure the elongation of the springs which were used to
determine the restoring forces.

Data describing the wave profile, current and sphere displacement were collected, con-
ditioned, filtered, and stored on a VAX 3400. 14 data channels were used to collect infor-
mation from the measurement instruments.

5. TEST TYPES

5.1. Free-Vibration tests

Free-vibration tests were first conducted to gain an understanding of the hydrodynamic
effects on system damping to provide an initial estimate of the damping coefficients. A
total of 31 tests were conducted in still water.

These tests were performed on both the large and small spheres at the 60° and 90°
configurations by manually displacing and then releasing the sphere and measuring the
response. In addition to hydrodynamic damping, coulomb damping due to configuration
constraints is another source of energy dissipation. However, because the model was neu-
trally buoyant in water, the normal force between the sphere and the supporting rod was
negligible. Hence frictional force was significantly smaller. Damping in this case is caused
mostly by hydrodynamics.

5.2. Continuous search tests

The stability of the response of the nonlinear moored system subjected to periodic exci-
tation can be predicted by referencing the backbone curve of the corresponding analytical
model (Gottlieb and Yim, 1992). To identify changes in response stability, the systems
were subjected to waves with approximately constant amplitudes but with gradually vary-
ing frequencies. Due to the fixed dimensions of the wave channel, wave mechanics
relationships and limitations in wave generating capacity, it was not always possible to
keep the wave height constant as the frequency was varied. Despite variations in the
wave height causing difficulties in interpreting the experimental results, stability changes
in response were clearly observed.

There were four search test runs performed on the large sphere with the 60° and 90°
configurations. In the continuous search mode, the wave frequencies were normally
changed by 0.01 Hz every 2-3 min. Excitation parameters (frequencies and amplitudes)
were manually recorded and would be used in data acquisition tests to further examine
the interesting nonlinear phenomena observed.

5.3. Data acquisition tests

Four sets of data acquisition tests were performed to obtain steady-state responses. The
tests examined can be categorized based on the size of the sphere and the configuration
as: the small sphere with 90° configuration, small sphere with 60°, large sphere with 60°,
and large sphere with 90°.
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Data acquisition tests were initially performed at frequencies and wave heights at which
nonlinear responses of specific characteristics may be expected based on the existing ana-
lytical study (Gottlieb er al., 1997). The small sphere was used in the first two sets of
tests. However, it was observed that for a significant number of the cases tested, the
response amplitudes were not sufficiently large to reach the nonlinear regime. The smaller
(11 in) sphere was thus replaced with the larger (18 in) sphere to obtain larger hydrodyn-
amic forcing and nonlinear system responses. Data acquisition tests were then performed
near frequencies and wave heights at which nonlinear behaviour was observed in the
continuous search tests. The lengths of the tests varied from 5 to 30 min to assure steady-
state behaviours. Because the initial conditions of the search tests were not precisely
known, several tests around these regions with various initial conditions were performed
to identify coexisting nonlinear responses.

6. ANALYSIS OF EXPERIMENTAL RESULTS
6.1. Free-Vibration tests

The energy dissipation mechanism of the model includes system (structural) and hydro-
dynamic damping components. Assuming the system damping remains the same in still
water and under waves, an approximate system damping force can be separated from the
hydrodynamic component based on the data from the free-vibration tests. The equation

of motion of the sphere in still water is obtained by setting the fluid particle velocity u
to zero in Equation (3a):

C
Mi+ Cx + R(x) = p—;ﬁ (= x| — pVCak ‘ @)
Response amplitudes in the free-vibration tests were observed as exponentially decreas-

ing, and the response velocity of the nth cycle can be assumed as
X1 = Vs COS(wat + @) = Yoy 2y OS(6), 0= wyt + ¢ 5)

where v, ,, are the peaks in the first and second half cycles, respectively, and wy is the
damped frequency. Equating the amount of energy dissipated over the entire data record
of a test, the total nonlinear damping force can be represented in an equivalent linear form
to isolate the system (structural) damping.

The average power due to nonlinear Morison drag force over N cycles is given by
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where N represents the maximum number of complete cycles in a free-vibration test. The
average power due to a linear drag force over N cycles is

T 2ar
_ b . pCriAp | . pCriAp |

P = N7 le(e) ——~2 x(6)de + fxl(B) ) x,(6) deé...

0

d
Q2N — Dwr 2N

Cp A Cp1 A
+ f (6) B%xb,(e) a0 + Jﬂ () p—DlexN(e) dO] %)
(2N — D71 @n - 1)77-
pCp A
= 81311\“7‘2 (V%(l) + V%(z)--- + VIZV(I) + V%/(z))

where Cp represents the equivalent linear drag coefficient.

Defining r as an average rate of velocity amplitude decrement (@) = Mgy =
rVyq,y) and equating Equations (6) and (7), the equivalent linear drag coefficient Cp, is
thus given by

8C
Cyp = : D - (8a)
am
with
1+7 1{v v
P AL rg_(izurlz@_.ﬁﬂ) (8b)
L+ 72 N\viqy wq VN

Assuming the motions are not too large, the restoring force R(x) can be equivalently
linearized and approximated by k,x. By rearranging, an equivalent linear version of Equ-
ation (4) can be simplified and rewritten as

Mg+ Coqt + kyx =0 (92)
with

4pCpriAp?

M =M+ pC,\V; C.y=C, + oy

(9b)

For linear systems (e.g. Equation (9a)), damping coefficients can be represented by

ch = chr (103)
with
5 AP a; P
amaer DTN Mg, Cam M =g (10b)

where a, and ay are the positive peaks in the first and Nth cycles, respectively. C., denotes
the critical damping; ¢ the damping ratio; and w, the natural frequency.
Applying Equations (8b) and (9b), the system damping ratio & can be computed as
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G _ 4pCav,Apf
gs - Cu ’ C‘s - Ceq 317 (11)

Fig. 6 shows a typical free-vibration test compared with the exponential decrement
based on the equivalent linearization procedure described above. This specific test was
conducted on the small sphere with the 90° configuration and 25 Ibs initial tension in
springs. The system damping ratio is determined to be 7.0%. Close fitting of the
exponential curves to the peaks of the test indicates that the effects of the quadratic drag
can be effectively modelled by an equivalent linear damping. Note that the effects due to
time-varying, excitation-dependent coulomb damping are lumped in the system damping,
hence the actual system damping coefficients in data acquisition tests vary from case to
case. Nevertheless, the estimated system damping coefficients provide an initial estimate
for further system parameter identification described in a later section.

6.2. Continuous search tests

The first and second search tests were performed on the large sphere with the 60°
configuration. In the first search test, the wave height was kept constant at 0.90 ft and the
frequency was increased from 0.41 to 0.70 Hz with an increment of 0.01 Hz. The response
amplitude steadily decreased as the frequency increased.

In the second search test, the frequency was decreased from 0.70 to 0.13 Hz with a
decrement of 0.01 Hz. The wave height increased from 1.2 to 2.09 ft in going from 0.70 to
0.45 Hz and the response amplitude increased as the wave height increased and frequency
decreased. The search tests were designed to identify specific nonlinear phenomena, which
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Fig. 6. Free-vibration (test PSF, small sphere with 90° configuration and 20 Ibs initial tension); measured data
(solid line) and exponential decrement (dashed line) based on linear approximation.
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could be more frequently observed in large amplitude responses. However, to prevent the
response from becoming too large and damaging the test model, the maximum response
amplitude was maintained at about 36 in by adjusting the wave height as necessary when
the frequency was varied.

The third and fourth search tests were performed on the large sphere with the 90°
configuration. For this geometric configuration, nonlinear behaviour can be achieved at a
much lower amplitude. In the third search test, the excitation frequency first increased
from 0.10 to 1.00 Hz and then decreased from 1.00 to 0.10 Hz. During this test ultrahar-
monic responses were observed from 0.15 to 0.18 Hz and period doubling was observed
from 0.46 to 0.56 Hz. Ultraharmonic responses were also observed from 0.14 to 0.12 Hz
and a possible transition point from ultraharmonic to subharmonic response was observed
at 0.11 Hz.

The fourth search test was intended to further investigate the nonlinear phenomena
observed previously. For instance, the transition near 0.11 Hz from ultraharmonic to sub-
harmonic observed in the third search test was examined here to pinpoint the bifurcation
point. However, steady-state responses observed were strictly ultraharmonic with no ident-
ifiable transition region. The disappearance of the transition may be due to the response
sensitivity to initial conditions and excitation variations.

Figs 7a and 7b show the characteristic frequency response with the 60° and 90° con-
figurations, respectively. As noted previously, to maintain the sphere response sufficiently
large for nonlinear behaviour without damaging the model, wave amplitude and frequency
need to accordingly be manoeuvred at the same time. A nonlinear relationship between
response and excitation in a three-parameter space can be interpreted by plotting amplitude
ratio (response amplitude/wave amplitude) against excitation frequency instead of a stan-
dard frequency response curve (Nayfeh and Mook, 1979). Resonances and nonlinear
relationships between the system response and the excitation are fully revealed in Fig. 7.

It is shown that for the 60° configuration the primary resonance, Ry (cf. Figs 3 and
4), is located near 0.4 Hz and the backbone curve tilts over to the right due to its hardening
stiffness. A secondary resonance, R, (cf. Fig. 3), is also shown near 0.2 Hz, thus loss
of response stability may be observed near the region. Based on the experimental search
test observations, harmonic responses become unstable and transition to ultraharmonic
occurs within the frequency range 0.17-0.25 Hz (cf. Fig. 4).

The relationship of sphere response and wave with the 90° configuration is shown in
Fig. 7b. The primary resonance is located near 0.27 Hz (R,;,,,), and two secondary reson-
ances are observed near 0.14 Hz (R, ;) and 0.53 Hz (Ry5,1), respectively (cf. Fig. 5). Note
that, despite the fact that the primary resonance tilts over to the right, the low frequency
secondary resonance (0.14 Hz) leans over to the left, which agrees with the numerical
result of Parlitz and Lauterborn (1985). Transitions between harmonic and ultraharmonic
responses were observed in the experiment near 0.11 and 0.16 Hz, and ultraharmonic
response dominates the system behaviour within the wave frequency range 0.11-0.16 Hz.
The loss of response stability near resonance regions is analytically predicted (Gottlieb ez
al., 1997). Period doublings were also observed in the experiment near the location of
high frequency secondary resonance (0.53 Hz). Within the frequency range 0.46—0.56 Hz,
period doubling bifurcations were frequently observed, and a signature of bifurcation
superstructure is indicated to exist in the moored system (cf. Fig. 4).
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6.3. Response to periodic excitation
6.3.1. Experimental observations. To demonstrate the variety and complexity of the sys-
{em responses, examples of typical responses are presented in this section (see Yim et al.,

1993 for a detailed description and preliminary analysis of measured data).
In addition to the few ultraharmonic responses observed, the response of the small

sphere with the 00° and 60° configurations mostly behaved in a harmonic fashion (e.g.
see Fig. 8). Some ultraharmonic responses for the large sphere with the 60° configuration
were observed (e.g. Fig. 9). These ultraharmonic responses appeared strongly stable, reach-
ing steady-state within a few cycles of the excitation and remaining throughout the test.

the large sphere with the 90°

Because of its strong complex geometric nonlinearity,
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configuration exhibited the most interesting nonlinear responses as predicted. Both subhar-
monic (e.g. Fig. 10) and ultraharmonic responses (e.g. Fig. 11) were frequently observed.

6.3.2. Comparisons and discussions. The validity of the analytical model (Equation (1))
can be examined by comparing simulated solutions with experimental results. Parameters
of the analytical model are identified for a combination of configurations using simulated
results based on the free-vibration tests and a reverse multiple-input—single-output (R-
MISO) technique (Bendat and Piersol, 1993).

Stiffness coefficients are calculated based on a least-square approximation of the moor-
ing spring configurations. The analysis of the free-vibration tests in the previous section
provides an estimate for the system damping coefficient. The reverse MISO technique
identifies the system natural frequency and estimates the drag and added mass coefficients
by treating nonlinear terms as inputs and inverting the standard linear analysis procedure.
The system damping, drag and added mass coefficients are later fine-tuned via numeri-
cal simulations.

Experimental responses are compared to corresponding simulated solutions (using the
estimated parameters) via time series (Figs 10b and 11b) and energy spectra (Figs 10d and
11d). For both ultraharmonic (Fig. 10) and subharmonic (Fig. 11) responses, the numerical
predicted motions provide good agreement in both response amplitude and phase shift in
time domain. Compared to the measured data, deviations in the energy spectra of the
simulations in both cases are within 10%.

It is well-known that the added mass coefficients and drag coefficients are wave fre-
quency-dependent, which cannot be fully described by the Morison hydrodynamic force.
Therefore, the parameters used for the analytical model need to be identified on a case-
by-case basis. However, the results shown here indicate that the Morison force represen-
tation can capture the hydrodynamic behaviour within the range considered. With suf-
ficiently large size of data collected and parameters identified accordingly, the analytical
model can be expected to provide reasonably accurate predictions.

The existence of harmonic, subharmonic and ultraharmonic responses in the experi-
mental model clearly demonstrates the highly nonlinear nature of the moored system
responses. However, due to physical limitations of the experimental model and laboratory
facilities, the relatively small number of tests conducted, and the restrictive quiescent initial
condition for all tests, no obvious deterministic higher-order nonlinear steady-state nonlin-
ear responses (e.g. quasi-periodic and chaotic) were identified. In spite of these limitations,
the experimental observations (especially Fig. 7) along with the analytical/numerical pre-
dictions illustrated in Fig. 7 indicate that high-order nonlinear responses may reside in the
transient portion or in the domain of attraction other than quiescent initial conditions.

Besides the steady-state nonlinear responses, transitions from one response state to
another, which cannot be explained by deterministic analysis, were observed in the experi-
ment (Fig. 12). Initially, the system response behaved in a harmonic fashion for about
120 s (Fig. 12a) and then transitioned (Fig. 12b) to a subharmonic steady-state (Fig. 12¢).
This transition may be induced by the presence of uncontrollable noise which is caused
by a combination of reflection, re-reflection, wave diffraction by the model, and imperfect
energy dissipation at the beach of the testing facilities. A stochastic analysis approach
taking into account this uncontrollable noise may be needed to further investigate the
observed nonlinear responses.
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Fig. 12. Transition from harmonic to subharmonic in response behaviour (test D2, large sphere with 90°
configuration): (a) transient harmonic; (b) transition from harmonic to subharmonic; and (c) steady-state subhar-

monic response.
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7. CONCLUDING REMARKS

An experimental investigation of the stability of nonlinear response stability and the
transition behaviour of a moored ocean structural system is presented here. Configurations
of the experimental model and parameters of the wave excitation are designed based on
the existing analytical model and predictions.

Nonlinear experimental responses, including harmonic resonance, subharmonic and
ultraharmonic, have been observed. These results corroborate the complex nonlinear sys-
tem behaviour predicted by those of the analytical model. Frequency response curves
demonstrate a nonlinear relationship between the wave excitation and system responses
in parameter space. Primary (Ry.;) and secondary (R 1 R, ) resonances are exhibited
in the curve, and the possible existence of a bifurcation superstructure and route to chaotic
response is implied. Good agreement between numerical simulations and experimental
responses is shown, and the validity of the analytical model is demonstrated. Due to limi-
tations in precision control of the wave field and system parameters, no obvious determin-
istic higher-order steady-state nonlinear responses (e.g. quasi-periodic and chaotic) have
been identified. However, the experimental observations along with  the
analytical/numerical predictions indicate that higher-order nonlinear responses may reside
in the transient portion or in the domain of attraction other than quiescent initial conditions.
Transitions from one apparent steady-state response to another suggest the presence of an
uncontrollable noise component in the wave channel. Stochastic analysis techniques may
be needed to further investigate the noise effects on the nonlinear responses.
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