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Abstract—The rocking behaviour and overturning stability of free-standing offshore equipment
subjected to support excitations is investigated. This study focuses on systems with realistic
slenderness ratios subjected to both horizontal and vertical excitations, Fully nonlinear equations
governing the rocking motion are used in the analysis. Additional nonlinear effects due to the
transition of governing equations at impact. the abrupt reduction in angular velocity associated
with impact energy dissipation, and the coupling of the vertical (parametric) excitation with the
rocking response are examined in detail. Analytical methods and numerical techniques are
developed to determine the response time histories, phase diagrams, Poincaré maps, Lyapunov
exponents, and fractal dimensions. Chaotic and quasi-periodic responses are shown to co-exist
with periodic and overturning responses. Results show that the response of non-slender (fully
nonlinear) systems are more sensitive to perturbations in system and excitation parameters than
their slender (piecewise-linear) counterparts. The transition nonlinearity at impact induces
chaotic behavior, and is the major cause of response sensitivity. Increasing the impact energy
dissipation decreases the sensitivity of the rocking response. For the range of magnitude
considered. increasing vertical excitation increases the sensitivity of the rocking response.

NOMENCLATURE
g, horizontal ground acceleration
aq, vertical ground acceleration
a, amplitude of horizontal excitation
a, amplitude of vertical excitation
A, normalized amplitude of horizontal excitation. A, = a,/(go,,)
A, normalized amplitude of horizontal excitation. A, =alg
B width of block '
d, fractal dimension
e coefficient of restitution
g acceleration of gravity
H height of block
1, mass moment of inertia
M mass of object
r. ratio of vertical vs horizontal excitation amplitude; r, = a,/a,
ry ratio of vertical vs horizontal excitation frequency; r, = w, /o,
R radius of rotation
A three-dimensional trajectory space
s two-dimensional phase space
T, period of horizontal excitation
w weight of object
0 rotation angle of rocking block
L critical angle
6 angular velocity
o normalized angle, © = ¢/9,,
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o normalized angular velocity, © = §/9,,
A Lyapunov exponent

w, frequency of horizontal excitation

w, frequency of vertical excitation.

I. INTRODUCTION

ManNy oFFsHORE surveillance, exploration, drilling and operational equipment on board
ships and floating production systems are not firmly anchored to their supporting base.
Some, in fact, may be considered to be free-standing. These free-standing items of
equipment, which are regarded as rigid objects in this study, may sometimes be set
into rocking motion due to the motion of the supporting structure induced by wind.
wave and current loads (Fig. 1). Overturning of these items of equipment can be costly
and may threaten the safety of nearby workers. Thus an understanding of the rocking
behavior and overturning stability of free-standing objects subjected to base excitations
is essential for developing safe offshore operation guidelines, preserving existing
equipment, and improving analysis and design procedures for new equipment.

The rocking behavior and overturning stability of nigid objects has long been of
interest to engineers [see Ishiyama (1982) for an excellent literature review]. Although
the behavior of the rocking motion is very complex, limited by the state of technology
at the time, earlier stability studies took a simplistic approach and concentrated on
developing an equivalent lateral design force to take into account the dynamic effects
of rocking motion [Ishiyama (1982)].

With the advances in analysis and experimental techniques, significant progress has
been made recently in identifying the unique features of the dynamic rocking behavior.
From the 1960s to the early 1980s, researchers were interested in the dynamic rocking
response of free-standing objects to earthquake excitations. Housner (1963) performed
a probabilistic analysis of the rocking response to simplified earthquake (white-noise)
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Fic. 1. Free-standing equipment on board a compliant offshore structure
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excitations. He pointed out that the stability of slender objects subjected to random
ground motion is much greater than would be inferred from its stability against an
equivalent static horizontal force proposed in earlier studies. Aslam er al. (1980)
conducted a series of experiments on the Berkeley shaking table and found that the
rocking response could be extremely sensitive to system parameters and the detail of
the ground excitations. In fact, for some combinations of system parameters, the
responses were so sensitive that the experiments were deemed unrepeatable. Yim et
al. (1980) examined the sensitivity of the rocking response in a statistical sense, and
conducted a numerical study to identify the parametric dependency of overturning
stability on system parameters and excitation intensity. Their results confirmed that the
rocking response is very sensitive to small changes in system parameters as well as the
detail of excitations, and that statistical trends can only be established with a large
sample size.

Recognizing the severe complexity of the rocking response and averting the ran-
domness in the excitations, researchers since the mid-1980s have been concentrating
on “simplified” rocking systems subjected to simple forms of deterministic excitations.
Spanos and Koh (1984) and Tso and Wong (1989) examined the stability of slender
objects subjected to horizontal simple harmonic ground excitation. Using a piecewise-
linear model they determined the rocking stability of objects and identified safe and
overturning regions in an amplitude—frequency plane. In addition to harmonic
responses, steady-state (bounded) subharmonic responses were detected. Analytical
procedures were developed for determining the amplitudes of the predominant modes.

These recent studies have provided valuable insights into the behavior of slender
rocking objects. However, there are severe limitations on the applicability of their
results in the ocean engineering area. Although the analyses of simplified systems
[Housner (1963). Spanos and Koh (1984) and Tso and Wong (1989)] might be suitable
for some types of land-based structures, they are in general not adequate for modeling
the rocking behavior of free-standing offshore equipment. Because the individual equa-
tions of motion in the simplified systems were linearized, in order for their analyses to
apply, the rocking objects might have to be unrealistically slender (i.e. very large
slenderness ratios). On the contrary, the slenderness ratios of offshore equipment are
in general not large and the effects of geometric nonlinearity may have to be taken
into account. In addition, the analytical methods developed from the simplified
piecewise-linear theory could not take into account the effects of vertical excitation,
which induces nonlinear coupling between rocking response and the (parametric)
excitation. The vertical motion of floating offshore structures such as ships, moored
barges and tension-leg platforms normally cannot be neglected. The combination of
horizontal and vertical excitations at different frequencies (combination tones) may
induce responses that are significantly different from a single frequency excitation
(Nayfeh and Mook, 1979). Recently, in an experimental study, Wong and Tso (1989)
examined the rocking response to horizontal harmonic excitations and found that there
were responses that could not be accounted for by the analytical methods developed
by Spanos and Koh (1984) and Tso and Wong (1989).

The fully nonlinear studies by Yim er al. (1980) and Aslam et al. (1980) were
restricted to statistical behavior of rocking response to earthquake-type transient ran-
dom excitations. Their results cannot be directly extended to steady-state response to
deterministic excitations.
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The objective of this investigation is to examine the major causes of sensitivity of
the rocking response behavior via simple deterministic excitations and to identify and
resolve the unknown responses found in Wong and Tso’s experimental study. The
influence of the nonlinear effects, especially the geometric nonlinearity caused by finite
slenderness ratio and the presence of vertical (parametric) excitation, on the sensitivity
will be studied in detail using recently developed analytical and numerical techniques.

2. SYSTEM MODEL

2.1.  Equations of motion

The free-standing offshore equipment is modeled as a rectangular rigid object sub-
jected to horizontal and vertical base motion excitations (Fig. 2). In Yim er ql. (1980).
the governing equations of motion for the rocking object subjected to horizontal and
vertical base excitations, taking into account all nonlinear effects, were derived. A brief
summary of the derivation is presented here.

{
0 I agy(t) o]

e ag, (1)

FiG. 2. 1dealization of free-standing equipment as a rigid rocking object. subjected 10 horizontal and vertical
excitations.

2.1.1. Initiation of rocking.  Assuming the coefficient of friction is sufficiently large
so that there will be no sliding between the object and the base, depending on the
support accelerations, the object may move rigidly with the base or be set into rocking
about the centers of rotation O and O’. When subjected to base accelerations in the
horizontal and vertical directions, the object will be set into rocking when the over-
turning moment of the horizontal inertia force about one edge exceeds the restoring
moment due to the weight and the vertical acceleration of the object:
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where W is the weight of the object, H and B are the height and width of the object,
g is acceleration of gravity, and a,, and a,, are the horizontal and vertical foundation
accelerations, respectively. The geometric and gravity centers of the object are assumed
to coincide,

2.1.2. Governing equations. The governing equation of motion for the rigid object
with positive angular rotation can be derived by taking moments about corner O:

1,6 + MRa,.cos(6,,—0) + M(g+a, )Rsin(8,—0) = 0 (2a)
where
1, = moment of inertia of the block about O;
M = W/g, the mass of the block;
and R = the distance from O to the center of mass of the block.

8., = cot”'(H/B) is the critical angle beyond which overturning will occur for the
object under gravity alone. Similarly, the rocking about O’ is governed by the equation:

1,6 + MRa,cos(8,,+8) ~ M(g+ay,)Rsin(6,,+9) = 0. (2b)

2.1.3. Impact energy dissipation. Impact occurs when the angular rotation crosses
zero approaching from either positive or negative and the base surfaces recontact.
Associated with the impact is a transition from rocking about one corner to rocking
about the other and a finite amount of energy loss, which can be accounted for by
reducing the angular velocity of the object after impact. As in Yim et al. (1980), the
energy dissipation is represented by an impact parameter ¢ and has the following
relationship

B(r*) = eb(r) (3)

where e = the coefficient of restitution; r* = the time just after impact; and 1 = the
time just before impact.

2.1.4. Base excitations. As in Spanos and Koh (1984) and Tso and Wong (1989),
the horizontal base acceleration is assumed to be harmonic with constant amplitude
and frequency, i.e.

a4, = a,cosm.1. (4a)

To examine the influence of vertical excitation, the vertical base acceleration is also
assumed to be simple harmonic in this study, but with a different amplitude and
frequency to those of the horizontal component:
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4, = 4,Co8m,.L. {4b)

2.2.  Sources of nonlinearity

There are four sources of nonlinearity in the governing equations {Equations (2a)
and (2b)] of dynamic response of the fully nonlinear free-standing rocking object: (1)
the transition from one governing equation to the other at impact when the center of
rotation changes from one edge to the other; (2) the impact energy dissipation which
induces a jump discontinuity (an abrupt reduction) in an angular velocity: (3) the
geometric effect of finite slenderness ratio of the object; and (4) the coupling of the
vertical excitation with the rocking response. These nonlinearities are examined in
detail in later sections. The effects of each individual nonlinearity are sequentially
isolated when possible.

2.3, Analysis procedure

Because the system considered is nonlinear and rather complex, no analytical sol-
utions have been found for the response of the general system governed by Equations
(2a) and (2b). In this study, the response to base excitations is obtained by numerically
integrating the governing equations. The procedure employed is similar to that of Yim
et al. (1980). The condition for initiation of rocking is described by Equation (1). When
motion is initiated, the sign of the ground acceleration a,, determines whether the
equation for positive or negative rotation is to be used for the next time step. The
equation for positive angular rotation is employed for positive a,. and the equation for
negative rotation is used for negative a,,. The same equation is used for subsequent
time steps. The time steps are constant except when the sign of rotation 8 changes.
When such a change occurs, such as during time step ¢; to ¢, ,, this time step is divided
into two parts. Using the equation of motion valid at 1;, the exact time 1, ¢, <= . at
which 6 becomes zero is determined by an implicit iterative procedure. Just before
impact 8(+~) = 0 and velocity is 8(¢"). The energy loss due to impact is governed by
the coefficient of restitution e. Immediately after impact 8(¢") = 0 and 8(r') = (s ).
With these initial conditions, the equation of motion valid for conditions at 1 = r*
immediately after impact is solved over the time interval r* to t, . and subsequent time
intervals until the rotation angle 8 again changes sign. The above-mentioned process is
then repeated. With the time step division at transition, the numerical procedure
remains consistent with the physical behavior at all times and the constant integration
time step is maintained. The numerical solution procedure was implemented in a
computer program using a fourth-order Runge-Kutta integration method.

3. TYPES OF RESPONSES

The responses of the fully nonlinear rocking objects subjected to horizontal and
vertical harmonic base excitations can be categorized into four types. The characteristics
of these responses are described in this section. The mathematical relationships-among
the three bounded responses will be discussed later when the Poincaré map is intro-
duced.

When subjected to harmonic base excitations, for a given combination of fixed
excitation frequencies, if the corresponding excitation amplitudes are too large, the
response of a free-standing object may become unbounded, leading to overturning of



Free-standing offshore equipment 231

the object after a finite amount of time. On the other hand, if the excitation amplitudes
are sufficiently large to induce rocking but not too large to cause overturning, the
response will eventually settle into a bounded motion. Based on classical nonlinear
analysis, it was believed that, under periodic excitations, all bounded responses were
periodic. Thus, past studies of bounded responses had been concentrated on periodic
motions [Spanos and Koh (1984) and Tso and Wong (1989)]. It will be shown in later
sections that there exist two additional types of bounded responses, namely quasi-
periodic and chaotic responses.

For convenience of plotting and interpreting numerical results, it is useful to normalize
the angular displacement and velocity responses by the critical angle as follows:

0 =0/0, (5a)
O = o/e,,. (5b)

These normalized variables are used in all displays of the computed responses.

3.1. Overturning response

For some combinations of excitation amplitudes and frequencies the magnitudes of
the rocking response, starting from quiescent conditions after a finite time period. do
not return to zero but increase without bound with time, i.e.

tim [6(1)] - =. (6)

Physically, these types of responses lead to overturning when the magnitude of the
angular rotation far exceeds the critical angle. Typically, for fixed system parameters,
overturning responses are associated with large excitation amplitudes. The time history
and phase diagram of a typical example of an overturning response are shown in Fig. 3a
and b, respectively. Overturning responses are undesirable and their occurrence should
be avoided.

3.2, Periodic response

A steady-state bounded response of a dynamical system is called periodic if the
motion repeats itself with a fixed time T, i.e.

x(t+T) = x(1) (7)

for all time +. The minimal T which satisfies this condition is called the period of the
motion. It is well known that for linear systems, the period of a steady-state bounded
response is equal to that of the excitation. In other words, the response is harmonic,
or primary resonance. However, for nonlinear systems, in addition to the primary
resonance response, subharmonic, superharmonic and sub-superharmonic (where the
response period is equal to an integer multiple, an integer fraction, and a rational
fraction of the excitation period, respectively) are also possible [Nayfeh and Mook
(1979)). For the range of excitations considered in this study. harmonic and subharmonic
rocking responses are found to occur frequently. The time history and phase diagram

of a typical example of a one-third subharmonic response are shown in Fig. 4a and b,
respectively.
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As discussed in detail in Spanos and Koh (1984), periodic responses are stable. If a
small perturbation in the initial conditions is introduced. the rocking response will
eventually converge to the periodic motion corresponding to the particular system and
excitation parameters. Thus periodic responses are stable, i.e. insensitive to small
changes in initial conditions. In addition, the stability boundaries of periodic responses
are continuously dependent on systems parameters, and it can be shown that except at
the boundary (which are rare occurrences), periodic responses are also- stable with
respect to perturbations in system parameters. Hence, in general, in regions of system
and excitation parameters where periodic responses. occur, the response behavior is
stable and insensitive to small changes in system and excitation parameters.
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FiG. 4. Periodic response: (a) time history and (b) phase diagram; A, = 6.5, 7. = 0.4 and ¢ = 0.925.

3.3, Quasi-periodic response

A new type of rocking response discovered in this study is the quasi-periodic motion,
which is a combination oscillation consisting of two or more incommensurate frequencies
(Moon, 1987). The simplest type of combination oscillation takes the form

X(t) = bicos(wt+d,) + bscos(w,t+d,) (8)

where »; and w, are incommensurate, i.e. w,/w, is an irrational number, and d, and
d, are appropriate phase shifts. In this case, a periodic motion is modulated in some
way by a second motion, which is periodic but with a different period. The time history
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and phase diagram of a typical example of a quasi-periodic response are shown in
Fig. 5a and b, respectively.

Quasi-periodic responses are relatively rare in general and only occur under ideal
conditions (e.g. undamped systems). Their occurrence usually indicates a transition of
the responses of the system between stable periodic motions and “unstable™ chaotic
motions (Thompson and Stewart, 1986).

3.4, Chaotic response

A second new type of rocking response discovered in this study. is chaotic motion.
Its behavior is characterized by a random-like, unpredictable aspect as well as a certain
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order in the motion, although the excitation is straightly deterministic and periodic
(Thompson and Stewart, 1986). The unpredictability arises from its sensitive dependence
on initial conditions (Moon, 1987). Chaotic motion for which trajectories with seemingly
infinitesimal different initial conditions diverge exponentially leads to large differences
in long-term predictions of the response. The time history and phase diagram of a
typical example of a chaotic response are shown in Fig. 6a and b, respectively.

The sensitivity of a chaotic response is demonstrated in Fig. 7, which shows the
rocking responses of two identical systems with an infinitesimal difference in initial
displacement. Note that, as expected, the two chaotic responses having initial conditions
with no perceptible differences diverge rapidly with time.
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Systems with parameters for which chaotic response occur may be considered
unstable, i.e. sensitive to the combination of frequencies and amplitudes of the exci-
tations. It should be noted that sensitivity of the response is excitation-dependent. For
the same given system, its response may be overturning, periodic, quasi-periodic or

chaotic, depending on the frequency and amplitude parameters of the excitation.

4. POINCARE MAPS AND VERIFICATION TECHNIQUES

Based on the physical description of the four types of responses discussed above,
overturning responses can be readily identified by inspection of their time histories and
phase diagrams. However, in general, the difference between periodic response with a
long period, quasi-periodic and chaotic responses may not be obvious from the time
histories and phase diagrams. To clarify the relationships among the three types of
bounded responses, their formal mathematical definitions are presented via the Poincaré
map. Techniques to identify and differentiate the three types of responses are also
introduced.

4.1.  Poincaré maps

The solution curve of the rocking response [governed by Equation (2a) and (2b)} in
three-dimensional space with coordinates

$* = (8,0.0) 9)
is called a trajectory. A Poincaré map is constructed by projecting a selected sequence
of points at discrete time (..., 1, ,.1,.,, 1----) from the trajectory onto the corresponding

two-dimensional phase space:
§* = (6.9). (10)
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For a periodically forced vibratory system, a Poincaré map may be obtained by sampling
(8,6.) of the trajectory at the period of the forcing motion. For a periodic excitation
T, periodic, quasi-periodic and chaotic responses may be defined in terms of the
Poincaré map as follows:

(1) If the following two equations are satisfied

0(t+aT) = 6(r) (11a)
8(r+aT) = 8(r) (11b)

and « is bounded and rational, then the response is periodic. The corresponding
Poincaré map consists of a finite number of fixed points. In particular, if @ = p/q. then
the Poincaré map will contain exactly p fixed points.

(2) If o satisfies Equation (11a) and (11b), and is bounded but irrational, then the
response is quasi-periodic. The corresponding Poincaré map will consist of an infinite
number of points forming one or more closed curves. This may be considered as the
extreme case where the irrational number o is approximated by two infinitely large,
relatively prime numbers p and g, which form a finite quotient.

(3) If no bounded real number « exists that satisfies both Equation (11a) and (11b),
then the response is called chaotic, and the corresponding Poincaré map is called a
strange attractor.

The above mathematical definitions may be further interpreted in terms of iterated
maps. If for example, X,,., = f(X,,) is a general map of n variables represented by the
vector X, then a fixed point satisfies

X = f(X). (12a)

The iteration of a map is often written f(f(X)) = f2(X) (Moon, 1987). Using this
notation, an m-periodic orbit is a fixed point that repeats after m iterations of the map;:
that is

X, = fi"(X,,) (12b)

where m is the minimum integer satisfying Equation (12b). In practice, when the
excitation is periodic with period T, a natural rule for a Poincaré map is to choose

ft, = NT + 7, (13)

where 7, is a time shift. It allows periodic and non-periodic responses to be distinguished.
Let the (g.p) mode be the periodic response with period p/q time that of the excitation
(Spanos and Koh, 1984). If the response is periodic, the points in the Poincaré map
will converge to a finite number of fixed positions. Thus, harmonic, subharmonic and
superharmonic responses appear on the map as equilibrium or fixed points. For instance.
a (1,1) mode will converge to 1 point in a Poincaré map and a (1.3) mode converges
to 3 points. When the response is quasi-periodic, the pattern on the Poincaré map
presents several tori. When the response is chaotic. the Poincaré points generate a
pattern called a strange attractor (Moon, 1987).

The Poincaré maps of one-third subharmonic, quasi-periodic and chaotic responses
are shown in Fig. 8a-c, respectively. As expected, the three responses are shown to
have three fixed point (periodic), closed curves (quasi-periodic), and a strange attractor
(chaotic) which does not resemble fixed points or closed curves,
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4.2. Verification techniques

Two quantitative analysis techniques—Lyapunov exponent and fractal dimension—
are employed to verify the types of responses in this study. These quantitative techniques
are in general much more efficient and definitive indicators of chaotic response than
the Poincaré map.

4.2.1. Lyapunov exponent. The Lyapunov exponent is a quantitative measure of
the sensitivity of a system to initial conditions. It measures the average of exponential
rates of divergence of nearby trajectories in phase space. Since nearby trajectories
correspond to nearly identifical initial conditions, exponential orbital divergence means
that systems with little initial difference (not resolvable within the accuracy of
measurement) will soon behave quite differently leading to rapid loss of predictability.
The Lyapunov exponent A is defined by the equation

d = dﬂzx(t—r,,) (14&)

where d and d, denotes the distance between nearby trajectories at time ¢ and the
initial time ¢,, respectively. For a given time history, the average of measurement
(Moon, 1987) is expressed as

1o 1 d

. I
A= \l/l_Tx NEI: (‘t,-_‘[,-,;) In, dz. (14b)
The sign of a Lyapunov exponent provides a qualitative picture of a system’s dynamics.
One-dimensional systems are characterized by a single Lyapunov exponent which is
positive for chaos, zero for quasi-periodic, and negative for a periodic orbit. In a three-
dimensional continuous dissipative dynamical system the only possible spectra. and the
attractors they describe, are as follows: (+,0,—), a strange attractor; (0,0,-), a two-

torus; (0,—,—), a limit cycle; and (=,—.—), a fixed point.

In general, any system with bounded responses containing at least one positive
Lyapunov exponent is defined to be chaotic, with the magnitude of the exponent
reflecting the time scale on which system dynamics becomes unpredictable. In this
study, a computer program is developed, based on Wolf er a/. (1985), to calculate the
Lyapunov exponents.

4.2.2.  Fractal dimension. The property of a chaotic response in phase space can
be characterized by the fractal dimension of its Poincaré map. A fractal dimension is
a quantitative property of a set of points in an n-dimensional space which measures the
extent to which the points fill a subspace. A set of points is said to be fractal if its
dimension is non-integer—hence the term fractal dimension. A non-integer dimension
is a hallmark of chaotic responses (Thompson and Stewart. 1987). A fundamental
definition of the fractal dimension is derived from the notion of counting the number
of spheres N of size € needed to cover the orbit in phase space. Basically, N(e) depends
on the subspace of the orbit. If it is a periodic or limit cycle orbit then N(e) = €1,
When the motion lies on a strange attractor, N(e) ~ e, Taking the logarithms of the
above statements (Moon, 1987), the fractal dimension can be expressed as:
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d, = tim "BV}

()

Implicit in this definition is a requirement that the number of points in the set be large,
i.e. N> =. In this study, a computer program is developed based on Theiler (1987)
to obtain the a form of fractal dimension of chaotic responses called the correlation
dimension, which is given by:

(N
d, ~ lim lim "8V
et} Ne—as logr

(15a)

(15b)

where C(N,r) is the correlation integral, which can be numerically evaluated as follows
[Theiler (1987) and Moon (1987)]:

No. of distance less than r

C(N.ry = N(),.()f distance aliogether’

{13¢c)

5. RESPONSE BEHAVIOR

The characteristics of the response behavior of free-standing rocking objects are
studied in detail using the analytical and numerical techniques developed above. The
time-histories, phase diagrams, Poincaré maps. Lyapunov exponents and fractal dimen-
sions of the responses are computed. The responses of the simplest possible system
(undamped and slender), whose only nonlinearity results from transition of the govern-
ing equation of motion, is first examined to establish the elements rocking behavior.
The results serve as a baseline reference for determining the influence of other nonlinear
effects. Parametic maps are employed to determine the influence of the other three
nonlinearities—energy dissipation, geometry and parametric excitation, on the rocking
behavior. The frequency of occurrence of chaotic response is used as an indicator of
the sensitivity of the response.

5.1. Response characteristics of undamped systems

The intrinsic characteristics of rocking response. which is caused by the nonlinearity
due to the transition of governing equations of motion alone. can be determined by
examining the simplest (undamped and slender) rocking system. This system assumes
that: (1) the energy dissipation at impact is negligible so that the coefficient of resti-
tution, e, is unity; (2) the rigid object is slender so that the response is independent
of the slenderness ratio; and (3) the vertical excitation is identically zero so that there
is no nonlinear coupling between excitation and response. Under these assumptions.
the responses are found to be either quasi-periodic, chaotic or overturning; no periodic
response exists.

Typical time-histories and phase-diagrams of quasi-periodic and chaotic responses of
an undamped system are shown in Figs 4 and §, respectively. As mentioned earlier.
the time-histories and phase-diagrams of the two types of responses are rather similar.
However, the Poincaré maps of the quasi-periodic response (Fig. 8b) clearly exhibit
the characteristics of tori. The Poincaré map of the chaotic response (Fig. 8c) also
exhibits the characteristics of a strange attractor. The classification of the two types of
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responses are further confirmed by their Lyapunov exponents and the fractal dimen-
sions, which are 0.0 and 2.0, respectively, for the quasi-periodic response, and 0.14
and 2.3, respectively, for the chaotic response.

A parametric map of the response of the simplest system to horizontal excitation
alone, varying period and amplitude of the horizontal excitation (with quiescent initial
conditions), is shown in Fig. 9. As stated above, only quasi-periodic and chaotic
responses are found to co-exist with overturning response. Thus it can be claimed that
the rocking responses of undamped systems are characterized by their sensitivity to
initial conditions and system and excitation parameters.
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FiG. 9. Parametric map of undamped slender systems: chaotic response +. quasi-periodic response . and
overturning response ®. R = 290, H/B = 10 and ¢ = 1.0).

5.2, Response characteristics of damped systems

The effects of energy dissipation (nonlinear damping) at impact on the response
behavior of the rocking system can be determined by examining the behavior of systems
with coefficient of restitution, e, less than unity. Damped systems eliminate assumption
(1), but still retain the large slenderness ratio, and no vertical excitation assumptions
[assumptions (2) and (3)]. Under these assumptions, with quiescent initial conditjons.
the responses are found to be either periodic or overturning, Typical time-histories and
phase-diagrams of an overturning response and a one-third subharmonic response were
shown in Figs 3 and 4, respectively. The Poincaré maps of the periodic response
(Fig. 8a) show the fixed points at one-third that of the excitation. The Lyapunov
exponents and the fractal dimensions are 0.0 and 0.0, respectively, which confirm the
periodic nature of the response.
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FiG. 10. Parametric map of damped slender systems: harmonic response «+, one-third subharmonic response
0 and overturning response ®; R = 290, H/B = 10 and e = 0.95.

A parametric map of the responses of damped systems. varying period and amplitude
of the horizontal excitation, is shown in Fig. 10. As indicated, only periodic responses
are found to co-exist with overturning response. No quasi-periodic or chaotic responses
are found. This observation is confirmed by an extensive numerical search over a wide
range of system and excitation parameters. Because periodic responses are relatively
more stable than quasi-periodic and chaotic responses, it can be stated that the responses
of damped systems are characterized by their stability with respect to smait perturbation
in initial conditions and system parameters.

5.3.  Effects of slenderness ratio

For systems with large slenderness ratios, previous studies (Yim et al., 1980) indicated
there is good agreement between analytical predictions from the linearized system and
the numerical results obtained from the fully nonlinear system. However, large differ-
ences between linearized and fully nonlinear systems may result if the slenderness ratio
is small.

As shown in the response time history (Fig. 11), the slenderness ratio {geometric
nonlinearity) affects not only the amplitude but also the order of the response mode.
As the slenderness ratio decreases from 4 to 1, the response amplitude decreases. In
addition, the mode changes from (1,1) for H/B = 4 10 (1,3) for H/B = 2 and back to
(1,1) for H/B = 0.4. The parametric maps (Fig. 12a,b) show that systems with small
aspect ratios are harder to set into rocking than systems with large aspect ratios, and
various modes can be generated by varying aspect ratios. Furthermore, decreasing the
aspect ratio decreases the region of overturning. In other words. the stability of the
rocking response of an object subjected to external excitation increases with ‘decreasing
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slenderness ratio. Based on extensive numerical results examined, systems with a
slenderness ratio of 5 and higher may be considered “slender”. For these slenderness
ratios, piecewise-linear equations will provide sufficiently accurate results in general.

5.4. Effects of vertical excitation

The analyses and observations presented in the above sections are for systems
subjected to horizontal excitation only. However, in many practical situations, especially
in the offshore environment, the vertical component of the excitation often cannot be
neglected. Thus it is essential to examine the influence of the vertical excitation on the
behavior of the rocking response.

The effects of vertical excitations are examined here for both undamped and damped
rocking systems. In each case, the parametric maps for responses with and without
vertical excitations are compared. In addition, the effects of frequency and amplitude
ratios (between vertical and horizontal excitations) are also examined.

5.4.1. Undamped slender systems. To determine the influence of vertical excitation
on the response behavior of undamped systems, parametric maps of systems subjected
to horizontal excitation only, and the corresponding systems subjected to both horizontal
and vertical excitations, are examined (Fig. 13a,b). The maps consist of responses to
varying amplitudes and frequencies of horizontal excitations. The vertical-to-horizontal
excitation amplitude ratio r,, is held at 0.5 , while the excitation frequencies are identical.
For both cases, the only responses observed are quasi-periodic, chaotic and overturning.
No stable periodic response exists. The parametric maps indicate that much more
overturning occurs for the systems subjected to horizontal and vertical excitations than
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those subjected to horizontal excitation alone. Thus vertical excitation reduces the
overturning stability of the system. The maps also show that the presence of vertical
excitation can change the resulting response types (and hence characteristics), from
quasi-periodic to chaotic and vice versa, in a rather random fashion. There does not
appear to be a describable pattern in how the responses are affected.
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5.4.2. Damped systems

5.4.2.1. Damped slender systems. The presence of vertical excitation induces some
unexpected response characteristics to the damped systems. As shown in Fig. 14a. for
the damped system subjected to only horizontal excitation, the stable responses consist
of only symmetric (1,1) modes and (1,3) modes. The boundary between these modes
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Fig. 14. Effects of vertical excitation on slightly damped rocking systems (e = 0.98): (a) slender system subjected

to horizontal excitation only (H/B = 10), (b) slender system subjected to horizontal and vertical excitation

(H/B = 10}, (c) rocking system with finite slenderness subjected to horizontal excitation (H/B = 2}, ( d) rocking

systern with finite stenderness ratio subjected to horizontal and vertical excitations (H/B = 2); chaotic response

+, quasi-periodic response O, overturning response ®, harmonic response «. one-third subharmonic response ),
even-order subharmonic response 0, and odd-order subharmonic response A; R = 290

and overturning response are smooth. However, when vertical excitation is present
(Fig. 14b), the response behavior becomes much more complex. First, when the vertical
excitation amplitude is relatively large, a number of odd modes become unsymmetric.
Second, unsymmetric even modes, which do not exist when vertical excitation is absent.
become dominant modes of response. Third, the boundaries of each type of response
become scattered. The added complexity of the periodic responses and the frequent,
irregular transitions between different types of responses indicate that the system is
more sensitive with the presence of vertical excitation.

5.4.2.2. Damped systems with finite slenderness ratio. The parametric maps of a
damped system with finite slenderness ratio subjected to horizontal excitation only, and
to both horizontal and vertical excitations, are shown in Fig. 14c and d. respectively.
The responses of the system with only horizontal excitation are symmetric odd periodic
modes. No chaotic response is observed. However. when vertical excitation is present,
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as in the slender case, the parametric map becomes significantly more complex. Chaotic
response, unsymmetric odd and even modes and overturning responses are observed.
The number of symmetric responses are significantly reduced, and unsymmetric periodic
modes become dominant. Furthermore, transitions between different unsymmetric
modes and chaotic response occur frequently. It may be concluded that the presence
of vertical excitation increases the sensitivity of the response significantly in rocking
systems with finite slenderness ratio.

5.4.3. Effects of frequency and amplitude ratios

To examine the effects of varying vertical excitation frequency and amplitude ratios on
rocking response, the parametric maps of an undamped (e = 1), a slightly damped
(e = 0.98). and a damped system (e = 0.9) are presented in Fig. 15a—c, respectively. In
these figures, the vertical-to-horizontal amplitude and frequency ratios (ordinate and
abscissa, respectively) are varied, while the amplitude and frequency of the horizontal
excitation are held fixed. It is observed that the characteristics of the responses can be
significantly influenced by varying the vertical frequency and amplitude ratios in all three
cases.

For the undamped system (Fig. 15a), a large vertical excitation amplitude leads to
overturning response. As the amplitude ratio decreases, (bounded) chaotic response
becomes prevalent. For low values of amplitude ratio, quasi-periodic responses become
predominant. These effects are consistent with that of varying horizontal excitation
amplitude alone. Varying the frequency of the vertical excitation can also change the
characteristics of the response for a wide range of vertical excitation amplitude ratios
around 0.4.

As expected, when damping (e = 0.98) is introduced, albeit very small in magnitude,
the region of chaotic response decreases (Fig. 15b). Quasi-periodic responses com-
pletely disappear and periodic responses become dominant, and the periodic responses
are much more complex than those induced by horizontal excitation alone. The para-
metric map clearly demonstrates that although the parameters of the horizontal exci-
tations are fixed, by varying the amplitude and frequency ratios, the characteristics of
the response can change from overturning to chaotic, and various subharmonics.

When damping is further increased, the regions of overturning responses disappear
(Fig. 15¢). However, chaotic responses still exist among various types of subharmonic
responses, although less extensively. Even-order periodic responses continue to domi-
natc. These observations indicate that parametric excitation (the coupling of vertical
excitation with rocking motion) has a strong influence on the sensitivity of rocking
response.

6. CONCLUSIONS

The response behavior of free-standing equipment in the offshore environment is
found to be much more complex than that examined in previous studies of rocking
systems. Chaotic and quasi-periodic responses are discovered in this study. It is demon-
strated that the major cause of sensitivity of the rocking is due to the transition of
governing equations at impact. For undamped systems, it induces quasi-periodic and
chaotic responses.
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FiG. 15. Effects of vertical excitation amplitude and frequency ratios on the rocking systems with finite stenderness
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On the other hand energy dissipation has a stabilizing effect on the responses. In
fact, based on numerical results, with quiescent initial conditions, quasi-periodic and
chaotic responses do not occur for systems subjected to horizontal excitation alone
when damping is present. Thus, damping lowers the level of sensitivity of a rocking
system.

When the system is subjected to horizontal excitation alone, geometric nonlinearity
(finite slenderness ratio) also has a stabilizing effect, although its influence is not as
significant as energy dissipation. It is observed that the smaller the slenderness ratio of
the object, the more stable the rocking response becomes. In general, the rocking
response is more likely to contain higher modes (and in the limit quasi-periodic and
chaotic responses) when the system has a large slenderness ratio, and a coefficient of
restitution close to unity.

The influence of vertical excitation is rather significant, and not systematic. In general,
vertical excitation increases the sensitivity of the rocking response. The parametric
maps of the systems subjected to both vertical and horizontal excitations are much
more complex than those of the systems subjected to horizontal excitation only. Chaotic
response occurs much more frequently. Because the symmetry of the system is destroyed
when vertical excitation is present, the unsymmetric even modes become dominant
compared with the symmetric odd modes. With vertical excitation, the effect of geo-
metric nonlinearity is much less systematic. Contrary to the case of no vertical excitation,
chaotic response appears more often with smaller slenderness ratio when vertical
excitation is present.

For systems subjected to horizontal excitation only, damping tends to stabilize the
system response by reducing the region of chaotic response and shortening the duration
of transient motion. However, for systems with vertical excitation, the effect of damping
is less systematic. Chaotic response can occur in the case with large damping. The
transient responses do not always reduce monotonically with increasing damping.

This study has clearly demonstrated that, for some combinations of system and
excitation parameters, the rocking response can become extremely sensitive to even
the simplest form of excitations—periodic excitation. Furthermore, the presence of
vertical excitation increases the complexity and sensitivity of the response behavior.
Thus it is not surprising that rocking response can be extremely sensitive to complex,
random earthquake excitations, where vertical excitation is significant, as illustrated by
the shaking table experiments (Aslam ez al., 1980). The unidentified complex responses
observed in dynamic rocking object tests by Wong and Tso (1989) may be the quasi-
periodic or chaotic responses discovered in this study. Since the motions of the support-
ing base of free-standing offshore equipment are induced by random waves and currents.
similar degrees of sensitivity of the rocking response can be expected.
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