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PRACTICAL METHODS OF EXTREME VALUE
ESTIMATION BASED ON MEASURED TIME SERIES FOR
OCEAN SYSTEMS
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*Ocean Engineering Program, Department of Civil Engineering, tDepartment of Mathematics, Oregon
State University, Corvallis, OR 97331, U.S.A.

Abstract—Three practical methods for computing the expected maxima of Gaussian time series
for ocean system analysis are developed. These methods utilize Pierce's sampie scaling concept
to overcome the maxima counting and correlation difficulties, but minimize the associated
complexity and uncertainties. The first (Direct) method removes the dependence on the
envelope for maxima estimation of the time series by directly operating on the time series itself.
The second { Poisson clumping) employs the notion of sample scaling factor, but requires neither
computing the envelope nor segmenting. The third (Log-fit) is a simple logarithm curve fitting,
using the slowly varying, logarithmic growth property of the expected maximum. The accuracy
and computational efficiency of these methods are examined. The Direct method and the
Poisson clumping method are found to have comparable accuracy. Employment of the envelope
does not improve the accuracy of the estimate in practice. Hence, the Direct method and the
Poisson clumping method should be preferred. The Poisson clumping method is more efficient
than both the Direct method and Pierce’s method because of its straightforwardness in
implementation. The Log-fit method is the simplest to implement, and computationally the
most efficient. Its accuracy is acceptable for many engineering preliminary designs.

1. INTRODUCTION

In THE design of ocean structural systems, detailed analytical models are often difficult
and costly to develop due to the complexity of the systems. General purpose computer
programs are usually employed to perform precursory parametric studies to develop
preliminary design models. Experimental tests are routinely performed in model basins
to provide statistical data for estimating the life-time extreme and fatigue loads of the
preliminary structural systems. The time series of the structural responses are analyzed
using standard data analysis packages to extract design parameters of the structural
systems for selected sea-states. Due to the physical and economical limitations of model
tests, the experimental time-series of each sea-state are generally of significantly shorter
duration than those anticipated over the field/service life of the structural systems.
Analytical and/or numerical methods have to be employed to extrapolate statistical
parameters of the responses to the desired durations. The extrapolated extreme load
estimates are then used in the final design of the structural systems.

Despite the abundance of research work in this area, a simple practical method for
estimating the extreme loads is not yet available. Major difficulties for developing such
a method include the lack of a consistent procedure for: (1) identifying “major peaks”
(local maxima) and “major zero crossings” (especially for the case of wide-band time
series); and (2) accounting for the correlation between nearby maxima.

A method proposed by Pierce (1985) made significant progress towards resolving
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220 Soromon C. S. Yim et al.

these two problems. By analyzing the associated envelope of the time series, the
need for identifying and analyzing individual maxima is removed. By determining an
equivalent number of independent samples of the envelope. the method accounts for
the interdependence among nearby maxima and converts the complicated extreme value
distribution of the original time series to that of a simple process with identically and
independently distributed sample points. However. Pierce’s method is not conceptually
simple, and the code development effort and the amount of numerical computations
can be quite involved. The envelope function of the time series has to be computed
using a digital filter. The expected maxima used in determining the sample scaling
factor may be dependent on the detail of the computation procedure (segmenting the
original time series). There is no simple procedure to determine an “optimal” segments
number.

This paper presents three alternate methods and examines their accuracy compared
to Pierce’s method. The goal is to develop simple, practical methods that utilize the
concepts proposed by Pierce for overcoming the maxima counting and correlation
difficulties. and to minimize the complexity and uncertainties in the computations.

2. PROBLEM STATEMENT AND BACKGROUND

The problem of estimating the expected extreme value of a stochastic response of
specific duration in the field given a representative record of relatively short length
from a model test can be mathematically stated as follows. Given a known (measured)
time series {x;} of p points, how can the maximum value M,, of other time series with
n points with the same statistical properties be estimated?

This problem is interesting because the results involving extreme values often are
asymptotic in nature, that is, the probability density of M, for large n approaches a
specific distribution (Gumbel, 1958: Galambos, 1978; Leadbetter et al., 1983; Castillo,
1988). However, this value of n may often be too large for practical applications.

It is well known that if {X;}7 is an independent and identically distributed (iid)
sequence of random variables with distribution function

F(x)=P(X=x) (1)
then, a new random variable, M, equal to the maximum of the Xis, that is

M, = max X;, (2)

1=i=n
has a distribution function
G, (x) = P(M,<Xx)
=P(X,<x,...,X,<X)
=P(X, <x).. CP(X,<X)
= Fr(x). (3)

By the Fisher and Tippett theorem, the limiting distribution for G.(x) converges to
one of the three (Frechet, Weibull, or Gumbel) extreme value distributions (Leadbetter
et al.. 1983). To take advantage of the asymptotic properties of the distribution of the
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extreme value, the time series considered are usually assumed to be stationary, zero
mean, and Gaussian.

To describe the probability distribution of the extreme value of a time series, it is
necessary to determine the rate of occurrence and the correlation structure of the local
maxima. For a narrow-band process, there is only one maximum per zero up-crossing.
Thus in early studies of extreme value distribution, a narrow-band auto-spectrum and
statistical independence of maxima of the time series are assumed (Longuet-Higgins,
1952; Cartwright and Longuet-Higgins, 1956). The average number of maxima per unit
time can then be computed from the mean zero-crossing period. In addition, the
maxima are assumed to be statistically independent, in which case the probability
density function of the maxima approaches the Rayleigh distribution. Hence, the
extreme value distribution of a time series of given duration can be determined by
order statistics in terms of zero-crossing period and mean, which are obtained by
straightforward analysis of the given time series.

For wide-band processes, there is no straightforward method for determining the
rate of occurrence of the local maxima and their correlation structure due to the
multiple number of maxima between zero crossings. Cartwright and Longuet-Higgins
(1956) and Ochi (1973) showed that if the maxima are assumed independent, in the
limit, the distribution of the maxima approaches the Rice distribution (Rice, 1944,
1945; Ochi, 1990), which is controlled by two parameters—the variance and a bandwidth
parameter. If the time series is narrow-band, the bandwidth parameter approaches
zero, and the distribution of the maxima approaches the Rayleigh distribution. If the
time series is wide-band, the distribution of the maxima approaches a truncated normal
distribution. To evaluate the bandwidth parameter, it is necessary to either compute
the distribution of the velocity and acceleration histories, or the first three non-zero
moments of the spectral density function. However, these higher parameter methods
are found to be sensitive to measurement noise due to the need to approximate velocity
and acceleration traces (or higher moments in the frequency domain). Because of its
sensitivity, the Rice distribution is not often employed in practice.

To circumvent the maxima counting difficulty and to avoid extrapolating high
moments, the notion of analyzing the associated envelope function of the time series
was examined (Tayfun, 1981; Naess, 1982; Pierce, 1985). Given that the time series is
Gaussian, the distribution of the envelope is Rayleigh regardless of bandwidth. The
sample distribution is fully characterized by computing the variance of the envelope.
To account for the correlation among samples, a sample scaling factor needs to be
determined. For this purpose, Pierce proposed to divide the envelope function of the
time series into a number of sufficiently long segments such that the maximum from
each segment can be considered independent. The maximum value of each envelope
segment is then determined and the maxima are averaged to yield an expected
maximum. The theoretical number of independent maxima that produce the mean
expected maximum is computed from the Rayleigh distribution. The ratio of this
theoretical number of samples to the actual number of samples in the envelope segment
yields a sample-scaling factor. With both the distribution and sample-scaling factor
determined, the expected maximum of an arbitrary time series of given duration can
then be computed using order statistics.

While Pierce’s envelope method succeeded in circumventing the difficulties of maxima
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222 Soromon C. S. Yim et al.

counting and correlation structure among samples, improvements are needed in two
areas. First. the method can computationally be rather involved, requiring a digital
filter to compute the Hilbert transform to obtain the associated envelope function.
Second, there is no apparent rule for selecting an optimal number of segments in
computing the time scaling factor, or a minimum length for each segment to determine
the expected maximum. For a time series of fixed duration, increasing the number of
segments improves the accuracy of the expected maximum estimate, but at the expense
of reducing segment length and hence the independence of the maxima of nearby
segments. On the other hand, increasing the segment length improves the independence
of the maxima of nearby segments, but at the expense of reducing the number of
segments and hence the accuracy of the estimate of the expected maximum. These
competing interests have to be balanced. It is possible that for a range of segment
lengths, the expected maximum may be insensitive to the exact value used. However,
this range may be dependent on the parameters of the time series considered. At
present this range, if it exists, has to be determined numerically by trial and error.

In this study, three simple alternate methods for computing the expected maximum
of a time series of a given duration are presented. The first method removes the
dependence on the envelope for maxima estimation of the time series by directly
operating on the time series itself. The second method employs the concept of using
sample-scaling factor, but does not require computing the envelope or segmenting. The
third method is a simple logarithm curve fitting, which is straightforward and quick to
implement. The effectiveness of these methods in estimating the expected value of the
maxima of time series are examined. These proposed alternative methods, and a review
of Pierce's envelope method, are presented in the following sections.

3. PIERCE'S ENVELOPE METHOD

Pierce’s method for estimating the extreme value of an arbitrary bandwidth Gaussian
process from a single measured ( p-point) time series can be divided into three main
components. First an envelope function of a measured time series is computed. Second,
using the ( p-point) envelope function, a quantity called the sample-scaling factor (SSF)
is found. Third, using the sample-scaling factor, the maximum value of a time series
of arbitrary length (n-points) from the same ensemble is estimated.

The envelope
If x(¢) is a Gaussian time series, let the analytic envelope, a(t), be defined as

r(1) = yx(1? + y(e)? (4)
where
=1 Jgds (5)

is the Hilbert transform of x(r). Since x(1) is Gaussian, y(t) is also Gaussian, being
limits of linear combinations of x() for various ¢. It can be shown that x(t) and y()
are uncorrelated and independent (Bendat and Piersol, 1986). The distribution of r(t)
is that of a Rayleigh random variable. This is so because X and Y are iid N[0,1] random
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variables (Ochi, 1990). The analytic integral in Equation (5) is usually computed using
a digital filter (Pierce, 1985).

The sample-scaling factor

The sample-scaling factor (SSF) can be computed with the following steps:

(I) Divide the envelope function into a number of n,-point segments and compute
an empirical expected maximum value E[M,] for the selected segment length.

(II) Determine an effective number 7, of independent sample points in a segment
based on E[M,] and the Rayleigh distribution of the envelope function.

(111) Compute the sample-scaling factor n./n,.

Step I is accomplished by first subdividing the analytic envelope (of size p) into m
segments (sub-intervals), of length n, = p/m. The maximum value of the time series
within each segment is determined and then averaged over all segments to get the
E[M,). In other words, if the envelope function is given by {e(n)}4-., then define
M), i=1,...,mby

M(i)=max[e(n)|n=1+[;ﬂ(z’—l),. . L’in] i} (6)

where [ ] denotes the greatest integer function.
The expected maximum for a time series with length n, is given by

E[M,] = % i M(i). (7)

Note that if / is small then there will be few terms in the average given by Equation
(7) and the estimate will be poor. Conversely. if m is very large then the maximal
within the subintervals will not be independent.

An effective number of independent sample points is then determined using infor-
mation about the distribution of the envelope process and the theoretical expected
maximum value. Let M be the maximum of the process in a segment. For large numbers
of segments (that is, for m large), E[M,] approaches the theoretical expected maximum,

which is given by

E[M,]= r P(M,>t)dt. (8)

]

If the points in the segment are independent, then this distribution is easily computed.
Let the probability distribution of the extreme value (maximum) of the n-point envelope

segment be

Fu () = P(M.<1). (9)
Then

Fu (1) = Fx(t)" (10)
where

Fy()=P(X=1) (1)
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is the probability distribution of the envelope function. So, the expected extreme value
is given by

o

E[M(n)] = f [1 - Fx(ty"] dr. (12)
0
An effective number of independent sample points, n., for the segment length
considered is determined by choosing 7, such that the difference between the empirically
computed expected value and the theoretical vaiue based on the assumed probability
distribution, D(n), given by Equation (13) below, is minimized.

D(n) =|E[M.(n)] - E[M.]|. (13)

The ratio of the theoretical number of independent points 7, to the total number of
sample points in the segment, n, = p/m, yields the SSF, which is the quotient of the
effective number of samples and the actual number of samples,
SSF = e = e
n, p
As discussed above, if the time series is Gaussian then the envelope is Rayleigh. In
this case

(14)

F()=1-e"?" 120 (15)

where

o = E[X] \/% (16)

Now substituting Equation (15) into Equation (12) we get

%

E[M.(n)] = f [1-(1-e2y]dr. (17)
0

Figure 1 shows an example of the graph of Equation (17) for o = 1. Figure 2 shows

the relationship between the expected extreme value E [M,] and the effective number

of independent points n in the form of a graph of y = E[M.(n)}.

Extreme value estimation

To estimate the extreme value of a time series of length n, the effective number of
independent points contained in a time series is first obtained by multiplying the length
n by the SSF. Equation (17) can then be used to compute the theoretical expected
maximum value E[M,(n«SSF)] based on the effective sample length nxSSF.

4. ALTERNATIVE ESTIMATION METHODS

Pierce’s method has been shown to yield reasonably accurate estimates for both
simulated time series and experimental data. However, the method is conceptually and
computationally involved due to the need for an envelope function and segmenting.
For wide-band processes, the method tends to over-estimate the expected maximum
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due to the fact that the maximum of the associated envelope function of a time series
can be significantly greater than the maximum of the time series itself (Pierce, 1985).

Upon re-examining the theoretical basis of the method, it is noted that the technique
of analyzing the associated envelope is a convenient, but not necessary, tool. Only the
sample-scaling factor is needed to compute the estimate of the maximum. In fact, since
the time series is Gaussian, it is better to work directly with the time series itself. Two
alternative maximum estimation methods based on rescaling the effective sampling rate
directly or indirectly through the sample-scaling factor are proposed in the following
sections. Because these methods do not operate on the envelope function, they are
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anticipated to be insensitive to the bandwidth of the time series. thus eliminating the
tendency to overestimating the maximum for wide-band time series.

Direct method
The Direct method is similar to Pierce’s method except that computation of the
sample-scaling factor is directly based on the Gaussian time series itself instead of the
associated envelope function. The three steps for computing the sample-scaling factor
are modified to operate on the time series as follows:
(1) Divide the time series into a number of n,-point segments and compute an
empirical expected maximum value E[M,] for the selected segment length.
(I1) Determine an effective number 7, of independent sample points in a segment
based on E[M,] and the Gaussian distribution of the nime series.
(III) Compute the sample-scaling factor n./ny,.
As in Pierce’s method, the expected maximum value, E[M,], is the average of the
maxima over all segments of the time series is given by Equation (7). However, M(i),
i = 1,..., min this case is defined by

M(i)=max{x(n)[n=1+{%} (i—l),...,[%}i} (18)

where {x(n)};_, is the given time series.

The effective number of independent sample points is determined using information
about the distribution of the rime series and the theoretical expected maximum value.
Assuming the sampling points are independent. then E[M,] is equal to the theoretical
expected maximum. which is given by

%

E[Me(n)]=[ (1 - Fr)]de. (19)

4]
Again choosing that value of n. which minimizes the difference,
D(n) =|E[M.(n)] = E[M.]| (20)

gives an effective number of independent points. Since the time series is Gaussian, the
probability distribution function is given by

X 1 R .
Fla(x) = f — exp(—y*/20%) dy. (21)
-x \/211'0'

Substituting Equation (21) into Equation (19) yields

E[M.(n)]= J' (1 - ( j L exp(—y*/20%) dy) ) dx. (22)
0 V-x \Imo ’

The absolute value of X has been used in Equation (21) since one seeks to predict
the largest deviation from the mean in any direction. In Pierce’s method the envelope
accounts for this by definition. The graph of Equation (22) is shown in Fig. 3.

Once the effective number of samples 7, in a segment is determined, the sample-
scaling factor can then be computed by
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Fic. 3. Expected maximum value as a function of the number of independent points for the non-envelope
process.

SSF = ¢ = (23)
a P
The expected extreme value of a time series of arbitrary length n can be computed
using Equation (22) with argument n+SSF.

Poisson clumping method

Another alternative to Pierce’s envelope method is the Poisson clumping method
(Aldous, 1989), which uses the concept of rescaling the sample rate, but does not rely
on segmenting the original time series.

An “extreme event” is often meant as an event occurring with small probability as
opposed to an event of “large” or “small” size. However, in many cases, such as
the problem discussed here involving the maximum of Gaussian time series, these
interpretations coincide. When extreme events are considered rare the following heuris-
tic approach may be adopted.

Consider the set of sample times, S,, for which the time series exceeds the value b,
that is,

S, ={t|X,=b}. (24)
Since X, is Gaussian, then for large b, S, is distributed sparsely, that is, a rare or
extreme event. This point set is a collection of intervals whose initial points form a
Poisson process. This is well known and a consequence of the “Law of Rare Events”.

Using a Poisson process to model this phenomenon, an extreme value estimation
method may be developed. Let S, be distributed as a Poisson process with rate A,
given by the following fundamental identity

where C, (the clump size) is the length of the intervals where the process exceeds the
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value b. The parameter A, may be interpreted as a scaling factor of the rate of
occurrence of independent samples. Now define M, as the maximum of the time series
in the interval [0,¢]

M, =max{X,|0<s=1} (26)
and T, as the first (minimum) time that the time series exceeds the value b,

T, =inf{s|X,= b} . (27)
Based on these definitions, the following statements

(M, <b],[T,>1].[8,N[0.1] =0] (28)

all indicate the same event. This is so because [M, < b] means the value b has not
been observed by time ¢, so for s € [0.7], X, is smaller than b, or (S, N [0,] = 0]
Furthermore, this is equivalent to the statement that the first time b is observed is
beyond time ¢. By definition T}, is this first time, so [T, > ¢].

Now by the Poisson assumption, the probability that the process does not exceed the
value b in the time interval [0.f] is

P(S, N[0,t]=0)=¢e""s. (29)
So
P(M,<b)y=e ™ (30)
and by Equation (25) thus
—tP(X, = b)}
P(M,<b)= —— 31
(M, <b) exp{ 5 (31)
So the remaining task is to estimate E[C,] as a function of the amplitude b.
E[(M|]= J P(M,=b)db
0
= J [1-P(M,<b)]db (32)
0

[l

As shown in Fig. 4, this can be accomplished numerically by fixing a value of b and
finding all the intervals where the time series exceeds this value. Then average over all
the lengths of these intervals and plot this average vs b (see Fig. 5). Fitting a curve of

the form
y=Ab"" (33)

to these data and substituting this in for E{C,] in the above integral for E{M,] yields
an approximation of the expected maximum for given t. This curve with a power law
tail is a good fit for this and also in the case of other Gaussian processes.
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Log-fit method

A possible empirical relationship between the time series duration and the expected
extreme value is that of a log-linear form. As in Pierce’s method the extreme value
can be derived by considering sub-intervals, and computing the maximum of the time
series over these sub-intervals, then averaging over all sub-intervals.

E(M,) = zM (34)

Repeating this method for an increasing sequence of sub-interval lengths gives a
logarithmically increasing sequence of average maxima. Plotting these average maxima
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vs sub-interval length gives points which can be approximated by a logarithm (see Fig.
6)

wn

E{M,]=BInL. (33)

The extreme value can then be extrapolated to the relevant value of r using this
logarithmic relationship.

To improve the efficiency of computation, a nesting strategy is employed. wherein
each iteration of the procedure the number of comparisons are reduced by a factor of
one-half. That is, if at stage . M{" and M{" are the maxima in two adjoining intervals.
then at stage n + 1, M("*! is the maximum over the union of these intervals.

Summary

The main similarities and differences of these four methods can be summarized as
follows. Pierce’s method involves enveloping the time series to smooth out fluctuations
and emphasize maximum values. This method is unique in that it does not deal with
the time series directly whereas all the other methods do. All the methods except the
Log-fit use information about the distribution of the time series to estimate its expected
extreme value. Pierce’s method and the Direct method are related in the sense that
they both seek to determine a number [ where the distribution of

M, = max X, {36

l=i=s/
is the same as

M, = max X, (37

l=i=p
where in Equation (36) the X;s are taken to be independent, thereby simplifying many
of the calculations. The Poisson clumping method uses the concept of rescaling the
sample rate to account for dependency of nearby maxima without segmenting the time

Expected maximum

Logarithm of window length

FiG. 6. Line fit to maximum vs log of time series segment length.
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series. The Log-fit method uses no distributional information about the X;s and simply
uses the slowly varying, logarithmic growth properties of M, to estimate EM,. From
a practical point of view this technique is crude but the simplest and quickest to
implement.

5. EVALUATION OF ALTERNATIVE METHODS

The performance of the alternative methods are evaluated using simulated time
series, and the results are compared to Pierce’s envelope method in this section.

Evaluation procedure

The prediction capability of the three alternative methods are evaluated as follows.
Ensembles of time series of specific duration with various bandwidth parameters and
spectral density functions are generated. Each time series is then divided into two
segments., with the second segment having a length equal to twice that of the first. The
first segment is used to determine the parameters of the particular process using the
four methods. The predicted extreme values of a duration equal to the second segment
are compared to the simulated maximum of the second segment of the saine time series.
The mean and standard deviation of the resulting errors from the four methods are
computed and compared.

Time series simulation

Two types of Gaussian time series are generated. The first type simulates the response
of a linear oscillator to white-noise excitation. The time series of the response are
obtained by passing Gaussian white noise through a second-order linear filter. The
bandwidth parameter of the time series of the linear oscillator is controlled by varying
the normalized damping coefficient of the oscillator (see the Appendix for detail).

The second Gaussian time series simulates random waves in the ocean. They are
obtained by superposition of sinusoids with amplitudes specified by: (1) the
Pierson—-Moskowitz spectrum, and (2) the JONSWAP spectrum (Sarpkaya and Isaac-
son, 1981). One-thousand cosines with unequal frequency spacings but equal spectral
area are employed. The randomness is represented by the random phases in each
sinusoid, which are uniformly distributed over the interval (0, 27) (Borgman, 1967).
The ensembles of time series with various dominant wave periods are examined. The
shape factor for the JONSWAP spectra is assumed to be 3.

For each specific set of parameters an ensemble of 30 independent time series
(150,000 sample points for the linear oscillator, and 60,000 points for the ocean waves)
are generated. For convenience of comparison, the time series are normalized to be
zero mean and unit variance. The sample maximum over the last two-thirds of the time
series is found for each of these time series. All the methods are then applied to the
first third of the time series and their estimate of the expected value of this measured
sample maxima, along with the relative error are found. All these quantities are then
averaged across the ensemble and means and standard deviations computed.

Comparisons of results and computational efficiencies

Linear oscillator. Figure 7 shows the mean relative error of each method vs the
bandwidth parameter for time series of the response of a linear oscillator, where
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It is observed that the relative errors for Pierce’s envelope method, the Direct method.
and the Poisson clumping method are all about 6% or less, indicating that all thre:
methods are sufficiently accurate for engineering applications. While Pierce’s and thz
Poisson clumping methods are close to each other throughout the range of bandwidiz
parameters considered, the Direct method is consistently more accurate than the other:
two. The Log-fit method, while not as accurate as the other three, produces predictions
that are within 10% of the true value, and are about 8% for most cases. Thus. thz
Log-fit method may be useful for preliminary estimation because of its simplicity.
Figures 8 and 9 show the mean and the standard deviation of the predicted maximz
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Fic. 8. Comparison of mean estimated expected maxima to simulation; linear oscillator.
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for all the methods as well as the simulated time series. Note that for the system
parameters considered. the Direct method consistently produces the best estimate
among all the methods, while Pierce’s method tends to overestimate the true maxima
and the Poisson clumping method tends to underestimate the true maxima. The Log-
fit method again produces reasonable, but less accurate, estimates than the other three
methods. All four methods appear to be insensitive to the randomness of the time
series. The standard deviation of the estimated maximum of the four methods are
consistently much smaller than that of the simulated time series.

QOcean waves. Figure 10 shows the mean relative error of each method vs dominant
wave period. For the JONSWAP spectrum (with a shape factor equal to 3), the time
series are narrow-band. All four methods have similar degrees of accuracy. For the
Pierson-Moskowitz spectrum, the time series are more broad-band. The Direct and
the Poisson clumping methods for dominate periods of 8 sec and higher are more
accurate than Pierce’s and the Log-fit methods. In all cases, the Direct method consist-
ently produces the most accurate estimates, and the Direct and the Poisson clumping
methods have similar trends.

Figures 11 and 12 show the mean, and standard deviation of the predicted maxima
for all the methods and the simulated ocean wave time series. The results indicate that
the Direct and the Poisson-clumping methods tend to produce estimates that are lower
than the simulation results, while Pierce’s and the Log-fit methods tend to overestimate
the simulated maxima. As in the linear oscillator case, the estimates computed from
Pierce’'s, Direct and Poisson clumping methods are not very sensitive to the individual
time series (small standard deviations), although the simulated maxima have rather
high standard deviations. This is due to the fact that the three prediction methods
utilize information from all the relative peaks, rather than just the highest peak (absolute
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maximum), in each time series. The Log-fit method produces estimates with relatively
high standard deviations, indicating a strong sensitivity to the absolute maximum.

Overall efficiency

The overall efficiency of the four methods are rated by comparing the relative efforts
required to develop the numerical codes and, to a lesser extent, the amount of CPU
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mately 500 CPU sec per run. Including five segmenting iterations per run, the Direct
method takes half as long as the Pierce’s method (350 and 700 sec, respectively). Thus,
it is observed that the Log-fit method is computationally an order of magnitude more
efficient than the other three methods. However, since these procedures are needed
only once for each sea-state or model test, the total amount of computationai effort
needed for a complete analysis and design of a system is insignificant compared to the
code development efforts.

6. CONCLUSIONS

Three practical methods have been presented and their accuracy and efficiency
examined in this study. None of the three methods require the identification of “major
peaks”. The Direct and the Poisson clumping methods rescale the sample rate to take
into account the correlation between nearby maxima. The Log-fit method does not
utilize distribution information about the time series but simply uses the slowly varying,
logarithmic growth property of the expected maximum. Based on the observations from
the above section, it can be concluded that:

1. For the simulated time series considered, Pierce’s method, the Direct and the Poisson
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clumping methods have approximately the same accuracy in estimating the extreme

value. The Log-fit method is less accurate.

Employment of the envelope does not improve the accuracy of the estimate =

practice. In fact, it tends to induce a bias to the estimator as the bandwidth of thz

time series increases. Therefore, the Direct and the Poisson clumping methocs.
which do not rely on the envelope function, should be preferred in general.

3. The Poisson clumping method is more efficient in the sense that it is straightforward
to apply, without having to determine the optimal segment length of the su>
intervals.

4. The Log-fit method is the most straightforward and computationally efficient. Iz
accuracy is acceptable for most engineering preliminary design applications.
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APPENDIX: LINEAR OSCILLATOR TIME SERIES GENERATION

The time series of the response of the linear oscillator to white noise excitation are generated

as follows:
A normal random variable can be generated using the uniformly distributed variables Uy, U

~ u[0,1] from the following

X, = y—2logU, cos(2wU>) (Ala)
X, = y—2logU, sin(2wUs) (Alb)

then X,, X> have standard normal distributions, that is, X;, X2 ~ N[0,1]. A uniform random
number generator of the form

U(i+1) = 16,807 X U(i) mod(2*! — 1) (A2)

with a period of approximately 3.93 million is employed.
Gaussian time series have been generated via a second-order auto-regressive process

x(t) = dx(t—1) + dax(t=2) + a, (A3)

where {a,} is a sequence of iid normal random variables (see Box and Jenkins, 1970). In order
for this process to be stationary it is required that &, and &, lie in the region

o+ P2 <1
o+ by <1 (A4)

o] < 1.
For this process to exhibit pseudo-periodic behavior it is required that



238 SorLomonN C. S. YIM et al.

& + 4, <0 1AS)
Box and Jenkins (1970) showed that the following choices of ¢, and &,

by = 2 exp(—27fo€d) [cos2mfyl 1 A6a)

b2 = —exp(—4mfofd) £ A6b)

simulates the response of a second-order linear oscillator with natural frequency f, , and czmping
ratio £; d is the sampling rate.

All time series generated have a dominant frequency of 0.05 cycles/sec and a sampling rate of
2 sec (resulting in approximately 10 points/period). A damping parameter, which has the ztfect
of determining the dependence structure of the time series is then fixed. The time semas are
generated with a filter parameter ranging from 2.5% damped (narrow band) to 120°% Zzmped
{wide band).




