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Abstract—The influence of a quadratic viscous drag nonlinearity in multi-point mooring systems
is examined in this paper. These systems are characterized by a nonlinear restoring force and
a coupled wave-structure exciting force. Stability analysis of system response and its
corresponding Poincaré map define domains of primary and subharmonic resonances and reveal
the existence of coexisting nonlinear solutions. Local and global tangent and period doubling
bifurcations identify possible routes to chaotic motion and their controlling parameters. Thus,
complex dynamics are obtained semi-analytically resulting in identification and control of the
drag-induced instabilities which are not attainable by equivalently linearizing the hydrodynamic
drag force.

1. INTRODUCTION

CompLEx nonlinear and chaotic responses have been recently observed in various
numerical models of compliant ocean systems (e.g. Thompson et al., 1984; Papoulias
and Bernitsas, 1988; Bishop and Virgin, 1988; Sharma et al., 1988; Bernitsas and
Chung, 1990; Choi and Lou, 1991; Jiang, 1991; Gottlieb and Yim, 1992). These systems
are generally characterized by a nonlinear structural mooring force and a nonlinear
hydrodynamic exciting force. The mooring force, which includes material discontinuities
and geometric nonlinearities associated with mooring line angles, has a unique equilib-
rium position which is described by a single potential well. The exciting force consists
of a quadratic wave-structure drag component and a harmonic wave-induced inertial
force.

While weakly nonlinear systems have been studied extensively from both classical
(Nayfeh and Mook, 1979) and modern approaches (Guckenheimer and Holmes, 1986),
complex single equilibrium point systems with a strong nonlinearity are limited in their
scope of analysis. Examples of these systems are the hardening Duffing equation
analyzed by modified multiple scales (Rahman and Burton, 1986) and by the method
of harmonic balance (Szemplinska-Stupnika, 1987) and the subharmonic motions of a
wind-loaded structure analyzed by the general method of averaging (Holmes, 1980).
Stability analysis of system behavior results in bifurcation maps defining regions of
existence of various nonlinear phenomena in parameter space. This analysis can be
performed by directly perturbing an approximate system solution or by evaluating the
stability of the corresponding Poincaré map. Stability of the map’s fixed points corre-
spond to stability of the system’s limit cycles (Wiggins, 1990). Perturbation of an
approximate solution yields a nonlinear variational system which can be linearized to
obtain a generalized Hill's system. Stability of the variational system can be obtained
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numerically by Floquet analysis (Ioos and Joseph, 1981) or by analytically solving the
Hill’s equation (Hayashi, 1964).

Mooring system models which have been investigated to date (e.g. above-noted
references) can be described by two categories. The first consists of models in which
the nonlinear hydrodynamic exciting force is simplified in order to enable analysis of
the highly nonlinear mooring restoring force. A characteristic example is a single
degree-of-freedom harmonically excited nonlinear mooring oscillator. This oscillator
includes a nonlinear function describing the mooring restoring force, whereas the
nonlinear drag force is equivalently linearized (e.g. Bishop and Virgin, 1988; Choi and
Lou, 1991). The second category consists of models incorporating both structural and
hydrodynamic nonlinearities. A characteristic example is a quasi-static multi-degree-
of-freedom single and two point mooring system subjected to steady (Bernitsas and
Chung, 1990) and time varying (Jiang and Schellin, 1989) excitations. In this complex
model the nonlinear viscous drag force was also linearized and combined with the
structural damping associated with the mooring system. Other examples are the analysis
of a quintic polynomial derived for the restoring moment of a rolling ship where the
quadratic damping moment was linearized (Witz et al., 1989) or approximated by a
mixed linear-cubic model (Nayfeh and Khdeir, 1986).

These models exhibit a variety of nonlinear and chaotic phenomena but due to their
complexity, identification and control of the mechanisms generating the nonlinear
stabilities are not always attainable. Furthermore, models employing equivalent lineariz-
ation of the hydrodynamic viscous drag force are valid for unbiased, small amplitude
system response whereas many of the drag-induced instabilities are generated by near
resonant phenomena where the resultant response is not small. Examples of the
influence of the nonlinear drag on various ocean systems can be found in the numerical
analysis of a harmonically excited linearized mooring system (Liaw, 1988) and in the
semi-analytical analyses of a nonlinear mooring system (Gottlieb, 1991), a
wave-structure interaction system (Gottlieb, 1992) and of a free foating articulated
tower (Gottlieb et al., 1992).

This paper describes the influence of the quadratic viscous drag nonlinearity on a
nonlinear ocean system with a taut symmetric variable mooring assembly. In order to
consistently model the nonlinear wave—structure coupling effect, the exact quadratic
drag component is retained and not approximated. Section 2 describes the model
formulation and identification of drag-induced system instabilities. In Section 3, global
stability of the weakly excited system is demonstrated by a Liapunov function approach
and stability of near resonant primary and subharmonic solutions is investigated by
construction and analysis of the Poincaré map. Existence of period doubling is shown
in Section 4, and Section 5 describes the evolution of local and global tangent and
period doubling bifurcations and possible routes to chaotic motion. We conclude with
some closing remarks.

2. SYSTEM MODEL

The mooring system considered (Fig. 1) is modeled as a single degree-of-freedom,
hydrodynamically damped and excited nonlinear oscillator (surge). The equation of
motion includes a symmetric geometrically nonlinear restoring force and an exciting
force modeled by a relative motion Morison equation. The exciting force. which includes
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FiG. 1. Mooring assembly.

a quadratic coupled drag component and a harmonic inertial component, is derived
based on small body motion under small amplitude wave excitation (Sarpkaya and
Isaacson, 1981).

2.1. Model formulation

The restoring force (R) contains a strong geometric nonlinearity depending on the
magnitude of the mooring angle. The degree of nonlinearity can vary from a highly
nonlinear two-point mooring system (b = 0) to an almost linear four-point system
(b > d).

The exciting force consists of a drag component (Fp) and an inertial component
(F,) with frequency independent coefficients. It is derived based on small body theory
which assumes that the presence of the structure does not affect the wave field, hence
waves propagating past the structure remain unmodified. This approach can be justified
for slender body motion in the vertical plane (surge, heave, pitch) where the wavelength
is large compared to the beam of the structure (Newman, 1977):

MX + CX + R(X) = Fp(X.t) + F{X 1) (1a)
where
d* + b*
R=K[X+Sgn(x)b}{l—\/7d2+[X+sgn(X)b]2} (1b)
Fo=3pA,CU = X)U - &I (1)
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14

Fi=pV(1+C,) [_BT] -pVCX (1d)

U = wal, cos(wt) (1e)

M, C, K—system mass, structural damping and stiffness [K = 2EA. /
V/(d*+b?), EA. elastic cable force].

a, w, k—wave amplitude, frequency and number [w? = gk tanh kh].

p, g, h—water mass density, gravitational acceleration and water depth.
A,, V—projected drag area and displaced volume.

C,, C,—hydrodynamic viscous drag and added mass coefficients.
U,—depth (z) parameter [U;, = cosh k(z+h)/sinh(kh)).

Note that (*) is differentiation with respect to time and sgn(X) denotes the sign of X.

The expansion of the restoring force in a least-square sense yields an odd polynomial.
Rearranging and normalizing the equation of motion [Equation (1)] results in the
following first order autonomous system (x = kX, 8 = wt):

where

and

k=y
y==R(x) =y + Fp(y.0) + F{8) (2a)

f=0

R(x)=D ax" n=1,3,5,..,N (2b)

n

(2c)

Fp(y,8)=p S(fcose - i) L/cose - i

F{8) = — pw?fsind (2d)

—— Kn .
M+pVC,’
¢
Y M+pVC,
1 G,
2(1+C,)V
_pY(1+C,)

M+pVC(C,
f=kal,

K, = K,(K,kb kd)

Qg

gtanh kh

Note the following limiting bounds on the mass (p), viscous drag (3), structural
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damping (y) and wave forcing (f) parameters: p = 1 (buoyancy), 8 < 1,y <1, f<
1 [ka < w/7 (limiting wave steepness), U, = 1 (kh > w/10 deep water)].

2.2. Identification of nonlinearities

The geometrically nonlinear restoring force is described by an odd polynomial func-
tion where the degree of nonlinearity is characterized by the magnitude of the ampli-
tudes (a,). The highly nonlinear two-point mooring system (b = 0) is found to be
without a linear term (a; = 0) whereas the weakly nonlinear four-point system is
described with decreasing coefficients and is limited by a linearized mooring configur-
ation (a; = 1, a,>, = 0) corresponding to very small mooring line angles. The quadratic
drag nonlinearity consists of a bias [1/2u8f2], a harmonic exciting component
[1/2n8f2 cos28], a parametrically excited term [n8f cosB (y/w)] and a quadratic damping
term [pnd (y/w)?].

The governing system nonlinearities (N = 3) are quadratic (y?) and cubic (x?) and
the system is subjected to both parametric and external excitation complemented by
a weak bias. Comparison of weakly nonlinear quadratic and equivalently linearized
damping functions (e.g. Nayfeh and Mook, 1979) reveals that their rate of decay is
proportional to the square of the amplitude of the initial disturbance and to the
amplitude itself, respectively. A bias and parametric excitation in weakly nonlinear
dynamical systems have been found to be a precursor for symmetry breaking leading
to period doubling and a generating mechanism for system instabilities even for small
amplitude response (e.g. Salam and Sastry, 1985; Miles, 1988). Thus, instabilities and
chaotic motion in nonlinear ocean mooring systems would appear structurally different
in systems excited by a coupled fluid-structure quadratic drag force vs that excited by
an equivalently linearized drag force. Furthermore, even linearized mooring systems
subjected to nonlinear viscous effects will retain the quadratic nonlinearity, bias and
combined parametric and external excitation.

3. STABILITY ANALYSIS AND THE POINCARE MAP

Global stability of the multi-point mooring system was demonstrated in earlier work
by a Liapunov function approach (Gottlieb and Yim, 1991) for very small excitation
and small amplitude response. A weak Liapunov function {L(x,y)] was found for the
unforced (f = 0), undamped (v, = 0) Hamiltonian system [L(x,y) = y*/2 + V(x)
where V(x) = [ R(x)dx]. Thus, the origin [(x,). = (0,0)] was found neutrally stable
[L(0,0) = 0 and dL/dt = 0]. Modification of L(x,y) to account for structural damping
() and the choice of a sufficiently small parameter (v: 0 < v <), revealed a globally
stable unforced system [L(x,y) positive definite and dL/dt = 0}.

Lxy) = 532 + V() +lxy + 3999 (32)

L(xy) = —v[xR(x)] — (¥ = V)Y | (3b)

This strong Liapunov function describes in phase plane (x.y) an asymptotically stable
hyperbolic fixed point (sink) at the origin. With the addition of wave excitation, the
sink becomes a hyperbolic closed orbit (limit cycle). Although the stable limit cycle
loses the circularity of the sink. it is anticipated by the invariant manifold theorem to
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retain its stable characteristics (Guckenheimer and Holmes, 1986). While this result
ensures that solutions will remain bounded for very small excitation (|Fp|, |F;| < 1),
it does not apply to system résponse with larger excitation or address the coexistence
of nonlinear solutions and their sensitivity to initial conditions. Therefore, local analysis
(in phase space) is required in order to investigate system stability for larger motion.
This is achieved by analyzing the stability of the Poincaré map obtained by characteriz-
ation of the fixed points of the averaged system which in turn correspond to near
resonance solutions of the system itself.

3.1. Averaging and the Poincaré map

In order to evaluate the stability of system response under larger excitation, it is
convenient to consider system response in the context of the Poincaré map where the
solution is stroboscopicaily sampled at each forcing period (T = 2w/w). By employing
the averaging theorem (Sanders and Verhulst, 1985), hyperbolic fixed points of the
averaged system will correspond to periodic orbits of the forcing period. This can be
demonstrated by use of the following invertible van der Pol transformation where q
= (x,y)7 is periodic in ¢ with period 2mm/w, where m is the order of the subharmonic
(m=123, .., M).

(-4 -

where
9 m. 6
cos— — —sin—
m w m
A= (4b)
. 0 m 0
—sin— — —C0S—
w
and
0 . 0
cos— — sin—
m m
A l= . (4c)
W ® 0
——sin— ——CO0S—
m

Thus, the fixed point of the averaged system corresponds to a period m point of the
Poincaré map corresponding to a subharmonic of order m in the system (Wiggins,
1990).

We prepare our system [Equation (2)] for averaging by rewriting the system in the
standard form: dq/dt = F(q) + €G(q) where ¢ << 1 [F = (F(q).F:(q))". G =
(G,(q,9).G»(q.8))7] and by defining a detuning parameter e Q = w*~ma, denoting
nearness to primary (m = 1) and subharmonic (m > 1) resonances. Applying the van
der Pol transformation [Equation (4)] to the system [Equation (2)} results in the
following:

wh:

anc

wh

res
the
dar



- e
~

it

er
n

\[1
q
4
n
RVH

} s resuit

| < 1),
cistence
analysis
notion.
acteriz-
to near

m, it is
ere the

-ploying

. of the
can be
vhere q
Armonic

(4a)

(4b)

(4¢)

t of the
Niggins,

n in the
T G —
jenoting
the van
5 in the

Instabilities and chaos in mooring systems 575
5 sin—
1o - & [R(u,v,8) + C(u,v,8) + Fp(u,v.8) + F(0)] ” (5a)
‘.’ mo WV 13 D 134 e
cos—
m
where
R(u,v,0)=Q ucosE - s'n-o‘ -m? > a, ucosg - vsin—)"+2 (5b)
| WV, m v in— m 2 a,, - o
3
‘; C(u,v,0) = mo y’(usinf)- + vcosg-) (5¢)
' m m

= ! + in— + | * + in— .
FD( u,v,O) pﬁ (mfcose usin vCOS ) meOSG usin— + vCos (Sd)

F{0) = —m?w?p f' sind (5e)

and o4, = €y, Y = €y, d = &b, f = ¢f.
Averaging of the transformed system [Equation (5)] results in the following (N = 3):

ay _ e wy 1 Is(u,v,9)> (—-wzp.f’)
(i:) T 2mo [S(u,v)(v) * mwr(lc(u,v,ﬁ) * Oy 0 (62)
where
3
mw Yy’ —Q+Zm2a§(u2+v2)
S(u,v) = (6b)
Q—Zmzaé(u2+v2) moy'
rmrF (u,v e)sinf-de
(Is(u,V)) = 0 AT m (6C)
Ic(u,v) i 0
J’w Fp(u,v,0)cos—dé
o m

and 3, , is a Kronecker delta function (3,,, = 1 form =1 and 3,,, = 0 for m # 1).

Note that the Kronecker delta function determines the existence of an averaged
forcing term near primary resonance (m = 1). Consequently, subharmonic resonances
(m > 1) are not excited by the averaged inertial forcing.

By employing a polar transformation [J = 1/2(w?+v?), ® = tan~'(v/u)], the aver-
aged system [Equation (6)] can be written as a perturbed Hamiltonian system: dq/d:
= F(q) + 5*G(q,8) where q = (/,®)7. This system consists of an integrable potential
function [F = (F,(q),F2(q))7] perturbed by a damping mechanism [G = (Gi(q.9),
G4(q,0))7], where there exists an invariant quantity (H(q) such that Fi(q) =
—3H(q)/a® and F,(q) = dH/aJ. The potential function consists of the averaged mooring
restoring force excited near primary resonance by an averaged inertial force, whereas
the damping perturbation includes the averaged drag force complemented by structural

damping.
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(6)- (R0 -+ (G0o) &

where '
F,(J,®) = 8, ,f* (27)2 cos®d
F(J,0) = —Q* + a} (27) = 8,.f* (27)~ V2 sin®

G,\(J,®) = —y*(2J) — (21)V2 [15(J,D)cosD+1 A, P)sind]
G,(J,®) = —(21)" V2 [IJ,P)cos® — I5(J,P)sind]

(75)

(7¢)

" .0
(IS(J,cb)): J:’" D(J,¢,9)|D(J,¢’,6)Ism;de ”

14J,®) .
[7” D(J,ID,O)ID(J,(I),G)(cos%de

D(J,®,8) = fcosb — \/Z—Jsin<% + <p) (7e)

and

_ub
W

6*

.o TOY .
7 nd f* = 5pof.

The Hamiltonian energy can be found by integrating the averaged system [Equation
(7). 8* = 0]

HUJ,®) = —Q*J + a3 J> = 8,,, f* 2J sin®. (8)

The structure of the Hamiltonian system (Fig. 2) is described by the characteristics of
its fixed points [dq/dr = 0 : (J,®).] which are the roots of the following equation
[z: = (), i = 1,2,3): '

s 2(9:,) o4 (‘L) . (f—) -o. )

of a3 ‘ol

The structure of near resonance subharmonic response (m > 1) is always characterized
by a unique center [(J,®), = (1/2Q*/a3,4)], whereas the structure of the solution
near primary resonance (m = 1) consists of either unique centers [(J,®), = (ji.91)]
or of two coexisting centers [(J,®), = (j,,m/2) and (j5.3w/2)] separated by a hyperbolic
saddle {(J.®), = (j». 37/2)]. The primary resonance structure defines a classical jump
bifurcation set where existence of unique (f > B#) or coexisting centers (f < %) is
defined in parameter space by the following bifurcation value:
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2 2 2 3/2

Bf = (3) (_(”___a_l)_ . (10)
pw?as

Note that for the linearized mooring system (a3 = 0) there exists a unique center [(J,

@), = (172(f*/Q*)*,w/2)], which is identical to the anticipated response of a linear

harmonically excited, undamped oscillator.

3.2. Primary resonance

Stability of the averaged system near primary resonance (m = 1) is performed
analytically by characterization of the system’s fixed points where the damping pertur-
bation (G(J,®): Equation (7c)) can be written out explicitly:

o)== (G0w) (o)

where
F(Jd)=f" (22)V2 cos®

F(J,®) = -Q* + a3 (2]) = f* (2J)~V%sind (11b)
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G,(J. @) = —y*(2]) - g \/ 2+ 212 sind+(2J) [(27) + {27 sind]

G,(J.®) = - g \/ 24 227 sind + () (f—c\]_‘l_f) . (11c)

Thus, the fixed points are the roots [z; = (2J),, ®,] of the following coupled set of
equations: F(J,®) + 3*G(J,®) = 0. Stability of the fixed points is characterized by
solution of a standard eigenfunction: A\>-p\ + ¢; = 0, where p; and q; are the trace
and determinant of the derivative matrix (evaluated for each fixed point i), respectively.
Asymptotic stability is defined by negative real parts of the derivative matrix. For
small values of 3* we assume a perturbed solution form to [Equation (11)]:

Ji=jite
D, =, +

where (j,4); are solutions to the Hamiltonian system (3* = 0) and (e,m); are o(d*%).
Stability of the perturbed fixed points is then obtained by evaluation of the eigenfunc-
tion coefficients to O(8*):

pi=—y— "I (J,P)

(12)

q: = [Q* = a3(27)])[Q* - 3a3(27)]

8. [U®[.. . f+ 27, sin®
+§5 f —ﬂ—{ﬂ _a3f(2-])iw_}cosfb[ (13)

where
TJ,®) = f2 + 2f \2J, sin®, + (2J,).

Substitution of Equation (12) into the coupled set of equations and their expansion in
a Taylor series for functions of two variables results in the following values of (e.n);

to O(3*):

e, =0

43* - N L=

n = (F) {(f“—’ V2i)? = <Z) Y \/2_11] (14)
where the upper choice of sign refers to / = 1 and the lower choice of sign refers to
i=273.
- Butassin® — =1, —cos® — *7 and as m is of O(8*), stability of the system fixed

points is found to be governed by the following coefficients:

pi= =y = 45" (f £ y2))

9. = [ = a3(2)][Q" - 3a3 (27)]. (15)
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Consequently, (J,®); and (J,®); are the hyperbolic sinks (g,3 > 0) and (J,®). remains
a hyberbolic saddle (g, < 0). While (J,®), is always an attractor (p, < 0), (J,®);
exists only in limited parameter space (f < B?) defined by the following bifurcation

value:

pol (@i mey

Be =3 s 4ud (16)
Furthermore, coexistence of attractors (J,®),; will only occur for stable values of
(J, )3 [P < 0: (f + U2y*)* < (Z5) < (©*/3a3)] and is controllable by the magnitude
of the relative damping, v* (Fig. 3). This result is verified by numerical simulation of
the system [Equation (2)] itself resulting in two coexisting attractors (Fig. 4). Thus,
stability analysis of the Poincaré map, portrayed by the perturbed averaged system
near primary resonance, ensures global attraction for larger excitation values and
describes conditions for coexistence of solutions in the system.

3.3.  Subharmonic resonance

Stability of the averaged system near subharmonic resonance (m > 1) can be
performed by numerically characterizing the system’s fixed points. In order to obtain
approximate analytical stability criteria, upper and lower bounds of the nonlinear

.
= !
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R ]
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: R —
: P !
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4 / N
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: 4
: e , [
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0 i 2 3

Fig. 3. Primary resonant structure of averaged system.

[



580

y (Yp)

O. Gotrruies and S. C. S. Yim

seetdrri i o e en b padasd b vaiane b s ass ke gl

'4‘ T T T L ST I S SR R BN R R O B A S B I |

4444

x (Xp)

Fic. 4. Coexisting attractors (m = 1): phase plane and Poincaré map.

viscous drag component are evaluated. By substitution of the relative motion term
[D(J,®,8): Equation (7e)] with its upper (|V(2J)sin(8/m+®|) and lower (|mfcos6|)
values, the drag integrals [I5 ~(J/,®): Equation (7d)] are calculated and limiting values
for the damping perturbation [G(J,®): Equation (7c)] are formulated explicitly. The
upper (GY) and lower bounds (G*) of the damping perturbation correspond to assump-
tions on the relative magnitude of the ocean system response.

where

or

I\ _(RU®)\ ., G%-U(J,d)))
(eb) - (.Fz(:m)) *e (G@U(be) (172)
Fi(J.®)=0 (17b)
FyJ.®) = —Q* + af (2J)

GHJ.®)=-(y*+£)(2))

GL(J.®) =0 (17¢)
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!

GYU.®) = 1) - (=) @I

4

+ S ooty (W) £(2J) sinm® (17d)

2
GY(J,®) = 8m.2n+1) (m)fcoswb

and 8,, (2,+1) is a Kronecker delta function (B zn+ny = 1 VM =20+ 1, 8pn2ney =
0 Vm # 2n + 1), where n denotes the index of an odd series (n = 1,3,5, ..., N).

Note that the Kronecker delta function determines the existence of additional damp-
ing components for odd subharmonics (m =2n + 1,n =13, ..., N) in GY [Equation
(17d)].

The lower bound (Gt) is valid for small amplitude motions (V2J < mf) and is
representative of drag equivalent linearization techniques [Fp % (U-dx/dr)|U| in Equ-
ation (1c)] whereas the upper bound (GY) is valid for large motions (VU > mf)
corresponding to near resonant response [Fp « (U—dx/dr)|dx/dt|] which is consistent
with the averaging theorem and was previously identified by the detuning parameter
(eQ) = w?—mPay).

The fixed points of near resonant averaged subharmonic system [Equation (17)] are
the roots [z; = (2J); i = 1,2,3,4] of the following equation:

(55 Rt | B it

a3

SRR R SN

Stability of the fixed points is characterized by the following coefficients evaluated for
each fixed point i, respectively:

m\  2mP+2
pi= — (5) 7—375 2J;
2
g = (2037 (20)2 + [2@ 8*) - 4n*a;} (21 + T 4" {27, (19)

The structure of the averaged subharmonic system for very small values of structural
damping (y < 3 < 1) can be described (Fig. 5) by a saddle-node bifurcation as there
exist to O(5*) four possible roots to [Equation (18)] for the following bifurcation value

(f > B2):

gs = mi=4 Q7 (_8_‘:_)~ (20)

a3 a3

Therefore, the fixed points {(J.®);, i = 1, ..., 4] are hyperbolic saddles (g3 < 0) and
attractors (p24 < 0. g2.4 > 0). Furthermore, the linearized system (a,>; = 0) reveals
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Fie. 5. Subharmonic structure (m = 3) of averaged system.

existence of two roots (f > B:), which are a stable attractor (p; < 0, g; > 0) and a
saddle (g < 0)

m2—4Q* '
S = e

Note the narrow domain of existence for the subharmonic solution of the linearized
system vs that with the nonlinear restoring force (Fig. 5). Numerical simulation of the
system [Equation (2)] verifies the existence of subharmonic response for the values
predicted above (Fig. 6). Thus, stability analysis of the Poincaré map defines coexist-
ence of solutions near subharmonic resonance.

4. EXISTENCE OF PERIOD DOUBLING

In order to investigate the stability of solutions which are not necessarily near
resonance. a local variational approach is employed. This consists of perturbing an
approximate system solution and evaluating its stability by analyzing the general Hill's
system obtained from linearization of the corresponding variational. The results identify
two domains of stability loss of the mT periodic solution. The first corresponds to the
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Fi. 6. Subharmonic solution (3T): (a) phase plane and Poincaré map, (b) power spectra.

resonant tangent bifurcations which were found by generalized averaging in Section 3
and the second consists of a period doubling bifurcation.

4.1. Periodic solutions

An approximate system solution can be obtained by a variety of methods (e.g.
Nayfeh and Mook, 1979) but the method of harmonic balance (Hayashi, 1964) is
chosen in order to account for the even harmonics induced by the bias created by the

nonlinear viscous drag

.9
xO = AO + z A,’/m COS(l ; + "I’,'/m)

i

) . . (.9
Yo=— Z iAiim Sm(l m + ‘yilm) (22)
where Ao, A;/m. Vi are solution amplitudes and phases, [ is the order of approximation
(i =123, ..., ) and m is the order of subharmonic.
The unknown amplitudes and phases are obtained by substitution of the approximate
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solution [Equation (22)] into the system [Equation (2)], squaring the resultant equation
and comparing terms of equal harmonic order. Thus, the system is transferred into a
finite nonlinear set of algebraic equations:

Sj(Ao, Ay Yim) =0 ‘ ' (23)

where j = 12,3, ..., 2I+1 [see Appendix Al for detail: S;; j = 1,2,3].

Solution of the set with an iterative Newton—Raphson procedure results in a frequency
response relationship (w-A,,) (Fig. 7). An unsymmetric solution includes even and odd
harmonics [xo(f), yo(t) # xo(t+mT/2), yo(t+mTi2); T = 2m/w)], whereas a symmetric
solution consists of only odd harmonics.

A low order solution (/ = 1) for a linearized mooring system (0tp>; = 0) or for a
weakly nonlinear smail angle mooring configuration. yields the anticipated amplitudes
and phase of a biased linear oscillator:

318
Ao = \/: B2 (f2 + 2fAsin¥, + AD)
8 e 31

Note th
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Subst
simplify



10

1t equation
Ted into a

(23}

« frequency
>n and odd
symmetric

J) or for a
amplitudes

Instabilities and chaos in mooring systems 585

] Frequency response
R « »— — Stability curves (linear)
] — — Stability curves (nonlinear)
0.8 7
‘ § \
% I
& - \
2 0.6 -
7
Ay ]
0.4 -
0.2 4
b !
YIIT]IlII|l\l'lll‘|]l|l|lllll]ll![llll||
0 0.5 1 1.5 2
0]
Fic. 7. Stability diagram of T periodic solution.
2
@
Al - p‘Z 2f 2 (24)
V(o —?)? + (yo)
2
- "W
\Pl = tan 1 (" ) .
Yo

Note that the bias is identified by the drag parameter even to this order.

4.2. Variational system

Local stability is determined by considering a perturbed solution (x(¢), y(t)) where
(xo(), yo(r)) is an approximate solution and (&(z), m(r)) is a small variation

x(1) = xo(1) + €(t) (25)
y(t) = yo(£) + n(1).

Substituting the solution (x(¢), y(¢)) in the equation of motion [Equation (2)] and
simplifying the resulting equation, leads to the following nonlinear variational system:
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€=1 (26a)
# = P(n.0) + O(e,8) |
where '
P(n,8) = —yn
+ ;:.8( fcost — MP) ‘ fcosf — )—,9(—9“—22 (26b)
- p.S(fcose - )—,95”—9)) fcos® — yo_f:)l‘
0(e.9) = =2, an{[xo(8) + €] — x5(8)}. (26¢)

n

Linearizing the variational [Equation (26)] yields a linear ordinary differential equation
with periodic coefficient functions H, 2[xo(t), yo(t)] = Hy[xo(t+mT), yo(t+mT)].
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E=m (27a)
4 = Hy(yo) m + Ha(xo0) €
where
3 9
H, = -y-22 l foosd — y—"—(—)‘ (27b)
w o)
Hy= -2, na,x3'(8). (27¢)
Substituting the approximate T periodic solution [m =1, Equation (22)] in Equation
- (27) and expanding H, 2(x0,yo) in Fourier series [H, ()] leads to a general Hill’s
14 variational system:

(28a)

€ =T
. A= Hy(8)n + Ha(9) €
ov r spectra. [(1)

where
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3 .
H(8)=-v- 2% €1 cosd + &g, sind] (28b)
H(8) = {o + D, Lgcosj8 + L sinjo ' (28¢)
J

and § = £(Ao ALV, § = {(AoAiY); = 12,3, ., J [see Appendix A2 for (&,
0}

4.3. Stability and period doubling

The particular solution to Equation (28) is € = exp(vt)Z(t). Application of Floquet
theory (Ioos and Joseph, 1981) yields two solution forms: Z(¢) = Z(t+T), Z(t) =
Z(t+2T), which are due to the odd and even terms in Equation (22), respectively.
Thus, two unstable regions are defined. The first unstable region, corresponding to
Z(t) = Z(t+T), is identified by the even terms (m=1:j=246, ..) in Equation
(28) and coincides with the vertical tangent points of a primary resonance on the
frequency response curve. The second unstable region, corresponding to Z(t) =
Z(t+2T), is identified by the odd terms (m=1:j=13,5, ...) and reveals a secondary
resonance which consists of a period doubled solution.
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The boundaries of the unstable regions can be obtained by applying the method of
harmonic balance to Hill’s equation [Equation (28)] for €(¢) at the stability limit

(v=0)
€(8) = bo + 2, bjcos(jo +¥)) Z(t+T) (29a)

e(8) = 2 b; cos(%e + qr,.,z) . Z(t+27). (29b)

The condition for a non-zero solution results in a determinant [A(w?) = 0] from
which two hyperbolic stability curves defining the unstable primary and secondary
resonance regions [A(w?) < 0 for v > 0] are obtained. Intersection of approximate
stability curves with the frequency response curve define in parameter space the domain
of stability loss of the T periodic solution. The first stability region is obtained by the
first solution form [Equation (28a)] and corresponds to the primary resonance. The
second stability region is obtained by the period doubled solution form [Equation
(28b)] and defines the secondary subharmonic resonance (Fig. 7)
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s =[to- (& - dem+ g+ (5 (30)

S 5\2
+ sgn(o) % (Ec1lsi + Esilcr) — (Ez—) (851 + &)

where o = £-cos¥, + £5sin¥, and sgn (o) denotes the sign of o.

Numerical simulation of system [Equation (2)] response at the stability limit reveals
the transition from a T periodic solution to a period doubled one depicted by the
appearance of a strong bias and even harmonics both in the phase plane and power
spectra (Fig. 8).

The stability criterion can be simplified for a weakly nonlinear small angle mooring
configuration or for the linearized mooring system (a,>, = 0: Lo = ay, Loy = {1 =
0) resulting in a narrower unstable region (Fig. 7: linearized restoring force)

Alo?) = [al - (g)r + (129)2 - <“—25> (f2 + 2fA,sin¥, + A3). (31)
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FiG. 9. (Continued).

Thus, the unstable region defining the secondary resonance can be shown to be confined
between two hyperbolic functions [A(w) = 0, ¥ < 8) and is found to be sensitive to
the magnitude of the response as indicated by:

day — w°
2ud

Note that the stability region of the undamped system [y,3=0 in Equation (30)] is
defined by the following criterion: w? = 4L,—2V (L& + (%), which is identical (to first
order) to the secondary resonance stability region of the Duffing equation (Szemplinsk-

Stupnika, 1987).

5. BIFURCATIONS AND ROUTES TO CHAOS

The subharmonic stability equation [Equation (17)] and the variational equation
[Equation (27)] reveal regions where the mT periodic solution loses its stability. The
transition to and from these steady states is defined by saddle-node (tangent) and
period doubling (flip) bifurcations. These bifurcations are local and occur at the
boundaries of the stability regions defined by Equations (20) and (30). respectively.

Ayxf+ (32)
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Numerical integration of the system near the stability boundaries reveals the existence
of continuing bifurcations and chaotic solutions. The numerical results are portrayed
by phase plane diagrams (x,y), Poincaré maps [Xp,Yp] where the mT subharmonic is
depicted by a finite number of m points and the power spectra [S,(w)] where the
order of the subharmonic is that of the peak with the largest energy content.

5.1.  Period doubling cascade

In order to investigate stability of the 2T subharmonic, the solution [M = 2; [ = 2
in Equation (22)] is substituted in the variational equation [Equation (27)] to obtain
a subharmonic Hill’s equation:

€= (32a)
N = Hy(8)n + Hx(0) €

where

3 |< e ., .8
Hi(0) = ~y =252 | 3 e cosj 3 + Els sinj3 (320)
W 5
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- , .. 9
Hy(8) = Lo+ 2 Licr cosj5 + §jsi2 Y5 (32¢)
J

and £/,, = &2 (Ao AnY)), Lz = LA AuY)i j = 12,3, ..., J [see Appendix A3
for (§'7§')/]-

As in the previous stability analysis, a low-order three term solution generates two
unstable regions. The first region, Z(1+2T), is identified by the cosf term in Equation
(32) whereas the lowest order unstable region, Z(t+4T), is identified by the period
doubling term cos(8/2). Thus, the subharmonic Hill's equation suggests the possible
cascade of period doubling. If the period doubling sequence is infinite, the resulting
motion is chaotic (Thompson and Stewart, 1986). Numerical simulation of system
response identifies a 4T subharmonic which continues to double and become chaotic
(Fig. 9). While the mT subharmonic repeats after m intervals, the chaotic attractor does
not, consequently generating a fractal map. The chaotic attractor is also characterized by

a continuous spectra showing its “random like” behavior.
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5.2. Tangent explosions and transition states

Numerical investigation of the transition states near the predicted tangent subhar-
monic bifurcations [Equation (20)] reveals lengthy transient solutions and sensitivity
to initial conditions associated with the abrupt change from neighboring periodic
motions. This route to chaos can be described by contraction of the mT subharmonic
(see Figs 6 and 10, m = 3) that results in a chaotic attractor before settling to T
periodic motion. The sharp transition does not always lead to a chaotic attractor, but
appears as lengthy transients depicted by the Poincaré section [Np,X p] which describe
the evolution of the map from initial conditions to a final periodic or chaotic steady

state (Fig. 10).

5.3. Controlling mechanisms

Investigation of the controlling mechanisms for the global bifurcations identified is
performed by numerical investigation of the parameter set near the bifurcation values.
Period doubling is found to be sensitive to the magnitude of the weak bias [O(ndf)]
generated by the nonlinear drag term. Comparison of these results to system response
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in which the nonlinear drag was equivalently linearized [resulting in linear damping
and change in phase to the harmonic excitation: Gottlieb (1991)] does not reveal the
subharmonic instabilities. Consequently, equivalent linearization of the hydrodynamic
drag force will not account for even subharmonic instabilities. The odd tangent instabilit-
ies are controlled by the nonlinear mooring force [O(atn>1)] and are only slightly
modified by the parametric excitation [O(apdf)]. Furthermore, local period doubling
and subharmonic tangent instabilities were found in a linearized mooring configuration.

However, these instabilities were not found to be sensitive to initial conditions.

6. CLOSING REMARKS

Stability analysis of a multi-point mooring system in a drag-dominated environment
is investigated. The system is shown to be globally stable for small excitation but
reveals coexisting periodic solutions and sensitivity to initial conditions for larger
excitation. Local and global bifurcations. identifying routes to chaotic motions are
determined semi-analytically. Controlling mechanisms of drag-induced instabilities and
chaotic states are identified.

The system is characterized by a variable geometrically nonlinear restoring force and
a coupled wave-structure exciting force consisting of quadratic drag and harmonic
inertial components. The system, which incorporates the exact relative motion quadratic
drag nonlinearity, was formulated to enable isolation and investigation of the influence
of the nonlinear drag. The variable restoring force changes from a linear to a strongly
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nonlinear formulation and the drag force includes a bias, parametric excitation and a
quadratic nonlinearity.

Two semi-analytic methods describing local and global bifurcations of the mooring
system are derived and verified numerically. The methods incorporate stability analyses
techniques from dynamical systems theory identifying local bifurcations which are
further investigated numerically to determine existence of global bifurcations and
chaotic states. The first method consists of formulating and investigating the stability
of a corresponding Poincaré map and is used for analysis of near-resonant tangent
bifurcations. The second method assumes nonresonant solution forms and investigates
their stability by a variational approach in order to obtain period doubling phenomena.

Two routes to chaotic motion evolving from the subharmonic period doubling and
tangent bifurcations are identified. The first is a continuous route via a period doubling
cascade. whereas the second is abrupt and is accompanied by lengthy transients. The
controlling mechanism found for the period doubling is the weak bias [O(ndf?)]
generated by the nonlinear drag term, whereas the odd tangent instabilities are con-
trolled by the nonlinear mooring force [O(a,>1)] and are only slightly modified by
the parametric excitation [O( 13f)]. Consequently, equivalent linearization of the hydro-
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dynamic drag force will not account for even subharmonic instabilities which need to
be considered in the analysis of strongly nonlinear ocean mooring systems in a drag-
dominated environment. '
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APPENDIX
Al. Amplitude equations [Equation (23)}:
Sj(A07AiIm7 ‘yi/m) =0
where I = 3, M = 1: 8 = Ay + Acos(wt+¥y)
o1 , 3
RG + E(R%s + Ric+ Ric+Ric) - g(lﬂs)z(ﬁc +8%)=0

2RoRic + Rac(Ric + Ryc) =0 (Ala)
2RoR s = RisRyc = 0

3 A
Ry = oA + a;(Ag + EA%)
Az

\

1 s
(ay — w?)A + 3a3<A(2)A| + —A%) + pw’fsin¥,

RlC 4

RIS = "(D‘yAl - }szfcos\yl (Alb)

3
Ryc = iasAoA%
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Rac =  as]
Sc¢ = feos¥,
Ss = fsin¥, + A;.
A2. Coefficients for harmonic variational system [Equation (28)]:
Ea =f+ Aysin¥,
£ = A cos¥,

to= o + Jas(243 + 4D

{c1 = 6a3ApA, cos¥,y
{s1 = 6a3A404, sin¥,

3
{c2 = 5 a3Afcos2¥,

5 = = 03A} sin2 ¥,

[ RRVE

A3. Coefficients for harmonic variational system [Equation (32)}:
1 .
§cn = §A1/2 sin¥,,

1
E2 = iAuz cosV

Ecr=f+ Aysin¥,
gﬂ = Al COS‘I’l

1l

3
o= —oy — ias(ZA(Z) + A}, + A

Len = —33[2404, 208 W12 + AypA, cos(W) — ¥y,0)]
3a3[2A0A 12 sinW¥ 2 + Ar2dy sin(¥, — ¥y.2]

Lsi

1
{cr = "3<13{§A%/2 cos(2¥,,2) + 2404, COS‘%}

{s1 = 3a3 BA%/Z sin(2¥,2) + 2404, Sin‘l’l]-

599

(Alc)

(A2a)

(A2b)

(A3a)

(A3b)

B it sl




