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Abstract—The three-dimensional coupled behavior during the interaction of buoys with their
mooring systems is numericaily analyzed. A time-domain model was developed to predict the
response of a tethered buoy subject to hydrodynamic loadings. External loadings include
hydrodynamic forces, tethers tensions, wind loadings and weight. System nonlinearities include
large rotational and translational motions, and non-conservative fluid loadings. The mooring
problem is formulated as a combined nonlinear initial-value and two-point-boundary-value problem
which is directly integrated both in time and space. Buoy equations of motion are derived using
small Eulerian angles. Coupling between rotational and translational degrees of freedom is included
and coupling between the buoy and cable is effected by adopting the buoy equations of motion
as boundary conditions at one end for the mooring problem. Numerical examples are provided to
validate the formulation and solution technique: predicted responses of three types of buoy (sphere,
spar, and disc) are compared with experimental results. Copyright © 1997 Elsevier Science Ltd

1. INTRODUCTION

The prediction of the three-dimensional kinetics and kinematics of a buoy-cable system
is a complicated problem. The system behavior is highly nonlinear from the hydrodynamic
and structural points of view. A coupled analysis is needed for this ocean structure, since
motion of the buoy affects motion of the mooring and visa versa.

Numerical methods have been utilized to predict the motions of cable-buoy systems.
The tumped parameter, e.g. Leonard and Nath (1981), and finite element, e.g. Webster
(1975), methods require large memory capacities and long computation times. The direct
integration method, e.g. Chiou and Leonard (1991), adopts a spatial integration scheme
rather than spatial discretization and does not require extensive use of computer memory.
Modelling of wave-body interactions depends on the size of the body relative to the inci-
dent wave length. A floating buoy with small characteristic dimensions may be analyzed
by the generalized Morison equation (Morison et al., 1950; Liaw et al., 1989). Buoy
dynamic equations were applied as boundary conditions for a mooring line by Nath and
Thresher (1975). Patel and Lynch (1983) studied coupled dynamics of a tension buoyant
platform with its mooring tethers; the small rotation assumption for platform motions
was used and nonlinearities due to drag-induced viscous damping were included in an
iterative analysis.

A numerical procedure is presented in the next section to solve the de-coupled cable

§Corresponding author.
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problem, in which the problem is formulated as a two point boundary value problem. In the
third section the nonlinear equations of motion for the buoy are developed and converted to
a form that can be incorporated as boundary conditions in the cable algorithm. Only bodies
with axisymmetric geometries are considered in this study; nonsymmetric loadings and
responses are admitted. however. Analysis is performed in three dimensions so that all
three translational degrees of freedom (heave, surge, and sway) and all three rotational
degrees of freedom (yaw, roll, and pitch) are considered. The buoy is considered small
compared to the incident wave length. An algorithm is developed in a subsequent section
for quasi-linearization of those boundary conditions for use in determining the tether
motions and buoy rotations for the coupled nonlinear system. Comparisons of compu-
tational results with experimental data are provided in the fifth section.

2. CABLE DYNAMICS

The dynamics of the cable are modeled using a numerical algorithm for a hydrodynam-
ically loaded cable problem previously developed by Chiou and Leonard (1991). A sum-
mary of the algorithm is presented here in order to explain the methodology used to
combine the cable and buoy systems. Figure 1 shows the general definition sketch for the
system of cable and body components. A fixed (global) coordinate system is defined with
the origin at the still water line; Sy is the cable local coordinate along the cable scope;
and O is an arbitrary material point on the cable at a distance S from one end of the cable.
The cartesian components of the position of an arbitrary point on the cable at time ¢ are
defined as xS, 1) and the tension components as T(Snt), where i ranges from 1 t0 3.

The cable is under hydrodynamic loading from surface waves and subsurface currents.
The cable governing equations were derived from the equilibrium of dynamic forces on
an infinitesimal length of cable dS at an arbitrary point O along the cable segment. Hydro-
dynamic loading per unit length includes buoyancy, added mass forces and drag forces.

= /40 W

Boundary body

Intermediate body / joint

Boundary body

1
e e ey A ey e e
Fig. 1. Cable general definition sketch (Chiou and Leonard. 1991).
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The strain € is assumed to be small and the cable governing equations can then be written,
in indicial notation, as

o vel ()
as, " U*rey
drT, _ . ..
ds. = —a (]l +€)Q"07 — a l + e0Q'Q" — ay(1 + e)u? + a (1l + €)u’™” )
(0]
- W, 8, + mx,
where
a, = 0.5pDC%

o, = 0.5pDxCY
a; = 0.25pD5(C, + 1)
a, = 025p7D*C,
. T
O = (u + vk_xk)<85k_ %2)/()

Q=i + vk—.m(TfT—*)

T

Q" =\ 00}

Q' =\ Q0.

o T.T,

ui=u k(ﬁik“ T"A)
T.T,

Vf' = xk(sik_ *T'g‘k)

T= V"‘T,-T,- = magnitude of tension

in which the superscripts ¢ and n denote vector components tangential and normal to the
cable axis, m is mass density of the cable, C, is the added mass coefficient, C," and Cp/
are normal and tangential drag coefficients, respectively, and &, = kronecker delta = 0 if
i+ kor=1ifi=k
The cable governing equations of motion are second order partial differential equations

with independent variables time, ¢ and cable unstretched length, S,. For a three-dimensional
space a set of six second order equations is obtained which can be transformed into a set
of twelve first order differential equations. Introducing cable velocity

ox;

a @

Equation (2) can then be written as
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aT’ .
35 = = 00'Q — ax(l + 9QQi~a(l + (4)
[t}
i} i
+ 014(1 + €) ét —W,,SH +m 78[7
Taking the derivative of Equation (3) with respect to S,
ok, d Ox
AL huiiet 5
35, ar a5, )
and substituting Equation (1) into Equation (3), one obtains
ox, 9 7] T, o€ [ T.,3 T,
DAL S = T (- 1- 2 -1 ! 6
3S, ot [(1 e T] G AV R [COS T} ©)

Now. the cable governing equations are given as Equation (4) and Equation (6), in
which new dependent variables of velocity components, &, are introduced. This set of
equations constitutes a combined boundary-value and initial-value problem because of
time evolution. The initial conditions for the problem are required to be specified in term
of S, and two sets of boundary conditions are also needed on each cable end at each
instant in time. Approximation of the time derivatives can be made using an implicit
Newmark-like formula (Newmark, 1959; Clough and Penzien, 1993). This approach con-
verts the problem to a discrete two-point boundary-value problem at each instant in time.
The difference equations for time derivatives can be written at time ¢ in terms of values
at a previous time ¢’ and time step ot =t—1t"" as

ae l ey % X4

FAPTVALEL V(at> @
,a, AI(E) —_ ,L —l(t’)_. I(T_"i> — é —I(E) rr (8
3 cos ™ o | = A cos™ '\ cos T "5 cos™ | )
a'x 1 : I agit !

=y B E O (9’

where 6=(1—a)/a and €', T"', T;"" and &' are values of €, T, T, and X, at time t'’.

This set of nonlinear discrete equations poses a two-point boundary value problem in
the spatial coordinate S,. They can be converted to an iterative set of linear boundary-
value problems using the Newton-Raphson method (Atkinson, 1989). The quasi-linearized
two point boundary-value problems can then be further decomposed into a set of initial-
value problems so that a trial solution can be integrated numerically from one end to
the other.

In decomposing the boundary value problem into a set of initial-value problems, one
may express the solution as a linear combingtion of homogenous solutions ¢x; and 'T)
and a particular solution (°x; and °T)) as

% =k + o, (10)

T,=°T + /T, (1)
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where «, are undetermined coefficients to recombine solutions. Initial values that satisfy
the actual boundary condition can be specified for each initial-value problem.

Solution of the boundary value problem is obtained by successive iteration. In each
iteration, particular and homogenous cable equations are integrated from the starting point
to the terminal point at the other end of the cable. Knowing the boundary condition at
the terminal end. one can evaluate the partial solution to obtain the appropriate coefficients
a, for the linear combination of partial solutions at the starting end or to obtain the new
iterates to xr, and T,

The model has capabilities to solve problems with stationary or moving boundary con-
ditions and force boundary conditions. For the mooring problem, the starting end of the
mooring cable may be held stationary (zero velocity) at the ocean floor

(=0 (12)

At the other end a floating buoy may be attached; in this case the equations of motion
for the tethered floating buoys serve as boundary conditions.

3. BUOY DYNAMICS

The buoy equations of motion constitute the boundary conditions for one end of the
mooring tether. A definition sketch of a buoy floating on the moving water surface and
connected by a tether to the ocean bottom is depicted in Fig. 2. Two cartesian coordinate
systems are defined, a moving (local) coordinate system attached to the buoy, and a fixed
(global) coordinate system with the origin at the mean water line.

The origin of the buoy/local coordinate is located at point G, the center of mass for the
buoy. Point T is the location of the tether connection point and zr is the local position
vector to T from G. Point W is the location of application of point loads from external
sources, e.g., wind, and zy is the local position vector to W from G. Point B is the location
of the center of buoyancy and is the point at which resultant hydrodynamic loads are
assumed to be applied and 7’5 is the local position vector to B from G.

The motion of the buoy can be characterized by the translation vector of the point G,

Fig. 2. Definition sketch of buoy vectors.
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" = {x,, x» x;}7 and the rotational vector of the buoy around its center of gravity G, [
={I, I,, I,}". The rotation vector [ is assumed to be small enough that as the buoy moves
from an initial static equilibrium position to a position at time ¢, the position vector rp of
an arbitrary point P in the buoy can be written as

rp =1+ s+ 0Xsy (13)
where r is the translational motion of point G and s, is the local position vector to P

from G. Then, the acceleration and velocity at a general point P on the buoy can be
obtained from time derivatives of Equation (13).

Fo= i+ Oxsy (14)
Fp= i+ Oxs,' (15)

3.1.  Buoy kinetics

The vector sum of the forces acting on the buoy and of their moments about point G
must equal the inertial force and moment vectors for the buoy, Mg. Where M is the
generalized mass and added mass matrix for the buoy, and ¢'= {787} is the acceleration
of the center of gravity. Thus B

oo | E (T {w LB ‘FJ,} {,FK 6
q_NW NT+.Q }VJ-*-\MI*-NK )

in which the force vectors are: buoy dry weight Wpgy, buoyancy B, hydrodynamic inertia
force F,, hydrodynamic drag force F, the Froude—Kryloff force Fx, wind or other external
force Fy, and tether tension T at the tether connection point. The wind or other external
force is given as a concentrated load which may vary with time. The buoy is assumed
small compared to incident wave lengths. Thus, the added mass coefficient may be taken
as frequency independent and radiation damping neglected.

The external moment of forces is evaluated about the center of gravity, and can be
expressed as

Np=s"pxFp 7

where F, is an external force and s’p is the point of application of the external force on
the buoy. in the local coordinate system. The resultant of hydrodynamic loads on the buoy
is assumed to be applied at the center of buoyancy, the location of which depends on buoy
submergence. Small angular displacements are assumed. In this formulation the center of
rotation is assumed to be at the center of gravity. Components of individual matrices and
vectors are given in the Appendix.

Equation (16) constitutes six non-linear second-order differential equations of motion
for the six degrees of freedom r and / in terms of the external and fluid forces applied to
the buoy and the tether forces restraining the buoy.

The equations of motion may be separated into translational and rotational components.
Since velocity and acceleration of the tether connection can be obtained from the cable
algorithm, one may express 7 and 7~ in terms of velocity and acceleration at the tether
point T using Equation (14) and Equation (15). Thus, the buoy equations of nttion may
be written, in indicial notation, as
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(M, + pVaelCaini) iri— €5321i8) = PVieCany + 16 + Fui=T,

+ (M, = pVie)g8), + (1 + Carni)pVouV, (18)
+ NpilV, = Xri—€zrm8) = 0

“y+ Cars sy« 30Vaed 6 = pVauiCa + vl €cne)]

~ INop W,k = L€iaNDpurion Wil + [zwiFw— 2T, — 268,89, (19)

- S.y(ZWkFWk"ZTka—ZBkBkalk)]ej + Eqk[ZWJFWk’“ZnTk_Mij]
- pgln'p(e/'_gj) = O

where
Wi = €uipn + 80— Zaib; (20)
Mpu = g + Cai s 5)PVaed Ve + (Vo Vi p8Vaerd11)281 @1
and the magnitude of relative velocity at point B and the distance from T to B are
rai = IpiT T (22)
Q = [ (Vimin—e€uzrab) (Vi=X1— €pmirp,b,) 17 (23)

These equations of motion can be incorporated with the cable algorithm by applying
them as boundary conditions at the terminal end of the cable. The translational components
of the equation of motion serve as three boundary conditions for the tether point tensions
and translational velocities at tether connection point T; the rotational components serve
as three auxiliary differential equations for the buoy rotations /.

4. SOLUTION ALGORITHM

Equations (18) and (19) are second-order ordinary differential equations in time which
serve as boundary conditions at the terminus of the cable. To implement these boundary
conditions, these equations can be converted into discrete equations by a Newmark-like
implicit integration scheme as performed on the cable algorithm. Accelerations at time ¢
= t'+ At are approximated as

i = (= X" e =y 1 (24)
0, = (B~ 8" MaAn—v8'", (25)

where 0 = (1 —a)/a and a =1/2 for implicit integration, and x;,", x;/", %", 1", 6/, 6 8/
are known values at a prior time step . The translational and rotational displacements
can be expressed, using the same formulation, as

X = oAt + yxg") + xy (26)

= (B, + y0") + 6" 27)

Then. upon substitution of Equation (24) through Equation (27) into Equation (18) and
Equation (19), quasi-static nonlinear equations at timp t are obtained.

The nonlinear quasi-static equations obtained from Equation (18) and Equation (19)

with approximate time derivatives Equation (24) through Equation (27) are the nonlinear

RPN
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Mearing cable tension - strain reaction

Strain

Tension (1b)

Fig. 3. Tension-strain relationship for mooring cable.

boundary conditions for the tether attached to point 7. Those conditions are written here

in functiona!l form as
ST, xy; 6)=0
hAT,, x7, 6)=0

(28)
(29)

where f; describes force equilibrium and &, describes moment equilibrium. To incorporate
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Fig. 4. Configuration of spar buoy test.
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Heave (ft.)
[

Time (sec.)

~—— Measurement —=- KBLDYNML

Fig. 5. Heave displacement, spar buoy. H=2.5 ft, T=4.0 sec.

these equations with the cable algorithm the nonlinear quasi-static equations need to be
quasi-linearized by the Taylor expansion. The Newton-Raphson method can then be used
to determine improved estimates T;, X7, and 6, given prior estimates T,"’, k7'’ and 0.
Taking Taylor series expansions of the difference equations f; and h; from Equation (18)
and Equation (19) about the functions f;" and k" evaluated at T, xy" and 6; with respect
to increments (7, — T/, (xr; — X7;), and (6,— ), one writes

fi=0=fi+ J;.rtj('lx"lj—-lx;)') + j;rij(T/"T;) + ﬁelj(éj—éf) (30)
hi=0= h + j;ixtj(-'rTj—k;'j) + ‘/.:iTij(Y:i_’I;) + ‘];16[](.0]_6;) 30

Components of the Jacobian matrices Je; Tt Jewg Jipp Jeip andJ},;; are written in
the Appendix.
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Fig. 6. Surge displacement. spar buoy, H=2.5 ft, T=4.0 sec.
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Fig. 8. Tether tension. spar buoy. =25 ft. T=4.0 sec.

Equation (30) and Equation (31) are six linear algebraic equations for nine unknowns
T, %, and 6, in terms of prior estimates T;. 7, and ;. The six unknowns T, X7, are related
to the three boundary conditions at the starting end of the tether through the cable differen-
tial equations. The unknown x; and T, at the tether point are decomposed into homogenous
and particular solutions as in Equation (10) and Equation (11). Upon substitution of Equ-
ation (10) and Equation (11), one obtains six equatigns to be solved for six unknowns «;
and 6, Equation (30) and Equation (31) can be written in matrix form as

[KIF Kie] {a}
Ko Kil L

]

*(32)

Botiom tension (1h)
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where the submatrices are given by
Kir = Uradl{'55), (Bids Ol + UndlUT) CT) PT (33)
Ky = Unad (i) i) Cig)] + Wl (U'T)LCTLCTH (34)
K;a = [‘];"eik] (35)
K:)e = [J4,6,] (36)
= ="} + UraJUig) = (%) + VinJA T =T + 6,161 (37
Py = —{h} + Wnh({xg} = {5} + Ul AT V= (CT) + VR, 18]} (38)
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The solutions algorithm proceeds as follows:
Given a solution at time ¢ to the tether variables T, x;/' at all cable points, in
particular 7;'". ¥7;'" and 9" at the buoy. extrapolate an initial estimate of T}, X7; and

f," at time I.

Integrate the partial particular and homogenous cable equations from the bottom bound-
ary condition to the buoy.

Form matrices in Equation (32) and solve for, a; and ..

. Combine partial solutions using «; and compare T, X5 and 6, to estimate T;. x7; and

6;.

I
_If sufficient convergence is achieved, set T =T, x5 = X5 6" = 6, and return to

step 1; if convergence is not achieved, set T, = T, 7, = Xp,, 6;= 0, and return to step 2.
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5. COMPARISON WITH EXPERIMENTAL RESULTS

To validate the simulation method, comparisons between numerical model predictions
and experimental results were performed. Three cable-buoy systems were simulated and
comparisons made with experimental results taken from selected buoy tests conducted at
the Oregon State University O. H. Hinsdale Wave Research Laboratory in April 1992.
Details of the experimental set up and data collection methods are described in Jenkins
et al. (1995).

The three models tested were a spar buoy, a sphere buoy and a disc buoy. For all
simulations, the mooring line is a 5/16 in. surgical rubber tube, with 2.41 ft initial moor-
ing length. A simple tensile test was performed to obtain a strain-tension relation of the
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Fig. 16. Configuraton of disc buoy test.

rubber tube mooring; the tension-strain curve for this material is shown in Fig. 3. The
experimental data were recovered at 30 Hz: thus a time increment of 0.066 sec. was
selected to match the time increment on the experimental data. A stream function wave
theory was used to simulate the generated wave. An initial 30 sec. duration ramp of wave
amplitude was used to start the simulation from rest. Each case was run for a total of
100.0 sec.: the last 50 sec. of computational results, by which time the system has reached
a steady state condition, are used for comparison.

The first comparison is for a 6.35 in. diameter, 50 in. tall and 45.3 1b weight spar
buoy. The loading is a monochromatic wave train 2.5 ft high with a 4.0 sec. period. A
definition sketch for this problem is shown in Fig. 4. The comparison of the predicted
and measured response are shown in Figs 5_9. Predicted translational displacements agree
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Fig. 18. Surge displacement, disc buoy, H=2.5 ft, T=3.0 sec.

well with measurements; predicted rotational motions do not agree as well, but have the
same quantitative form. The dynamic components of tension at the tether and at the bottom
connection differ from experimental values; tensions are under-predicted because of visco-
elastic behavior of the rubber mooring line which was not simulated by the nonlinear
elastic cable model.

The second comparison is a sphere buoy with 13.5 in. diameter and 17.1 1b dry weight.
The loading is a monochromatic wave train 1.5 ft high with a 2.0 sec. period. A definition
sketch for this problem is shown in Fig. 10. The comparison of the predicted and measured
responses are shown in Figs 11-15. The predicted translational motions are close to the
experimental results at the steady state condition near the end of the record. Pitch displace-

ments are overpredicted and tensions underpredicted.
[ ]
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30

bad

The last comparison is for a 22 in. diameter, 6 in. deep and 21.4 Ib weight disc buoy
which is a commonly used NDBC buoy model. The loading is a monochromatic wave
train 2.5 ft high with a 3.0 sec. period. A definition sketch for this problem is shown in
Fig. 16. The comparison of the predicted and measured responses are shown in Figs 17-
21. Best agreement is achieved with heave displacements, while a lower frequency compo-
nent is predicted in the simulated results for surge and pitch which was not present in the
experiment. A spike occurs in the predicted acceleration record between 20 and 30 sec.
because of failure of convergence at instants in the simulation; this causes rapid changes
in the displacemnet record until dynamic equilibrium is restored. The program recovers

from such failures and solutions are continued which, because of damping

steady-state conditions. Tether tensions are underpredicted.
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6. CONCLUDING REMARKS

A method to compute buoy motions coupled with hydrodynamically loaded mooring
motions has been developed. The equations of motion of a floating buoy were derived
using a small angle assumption. All six degrees of freedom for the buoy are considered.
Coupling between translational and rotational degrees of freedom was included. The
developed equations of motion then serve as boundary conditions for the cable.

The formulation provides a methodology to solve the coupled cable-buoy problem. The
algorithm is based on a cable dynamic algorithm involving large displacements and nonlin-
ear hydrodynamic forces. However, the formulation of the buoy equations of motion
assumed small rotational displacement so that not all nonlinearities were preserved.

The methodology was used to predict responses for three types of tethered buoys; disc,
sphere and spar buoys. Numerical predictions were compared to experimental results. Each
type of buoy was excited by three different regular waves.

The present model predicted translational motions for all regular wave cases which
agree fairly well with experimental data. Rotational motion predictions for the spar buoy,
although they under predict the magnitude of the rotational motion, show a similar form
with the measured one. For the sphere buoy, pitch predictions give larger values than the
measured one. This may have been caused by the fact that the wave period is close to
the system’s pitch resonance period. The predictions for the disc buoy show good agree-
ment with experimental data. All comparisons of the dynamic component of mooring
tension, in regular wave cases, show that the present numerical model under predicts the
measurements. This condition may be caused by visco-elastic behavior of the surgical
tubing in the experiment. This could not be predicted by the cable algorithm.

Some problems were encountered during computation. Some response predictions show
occasional spikes along the time histories because of the effort required by the computer
program to recover from a non-convergent solutien which occurs during computations.

The present study can be extended in several ways. Implementation of a visco-elastic
cable model may provide a better numerical model to predict cable-buoy motion. Eguations
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of motion for the buoy based on a large angle formulation can be developed and incorpor-
ated with the present model so that all nonlinearities in the system are preserved. An
alternative approach in the numerical algorithm to couple buoy and cable problem would
be desirable such that more stable computations can be obtained and non-convergent sol-
utions discarded.
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APPENDIX

In this appendix expressions of external forces and moments for small angle formulation are pro-
vided. Essentially the appendix provides detailed expressions for buoy equations of motion, Equation
(16). The moments applied to the buoy are evaluated at the center of gravity. Hydrodynamic forces
and moments are considered as infinitesimal forces/moments components which are integrated over
the wetted buoy. Added mass components are included in the mass matrix of the buoy equation of
motion and the right hand side of Equation (16) can be expressed as

M+d, 0 o 0 o 0 (%
0 M+4n 0 0 o Ao ||
0 0 M+A, 0 A 0 ¥,
M1 = ; 5 (Al
M=, 0 0o I, o0 0 6,
L 0 0 Aw 0 latAsw 0 0,
0 A, o 0 o 1,;+A%J 8,

e
where M is mass of the buoy and /,,,, is moment of inertia. Ay = P Vwer Canyyp in which p s
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water density: Vyr is wetted volume; and Cy,,,;, is the added mass coefficient in the x, direction
due to motion in the x; direction. Added inertia terms for rotational motion and coupled motions
can be defined as follows:

Miss = Myee = J':%CA(ZI)A(ZI) dz, (A2)

Mg =My =Mys =My = f 2C()A(z) dg
|

Bai (1977) used a finite element method to calculate added inertia coefficients for heave, pitch
and coupled pitch-surge motion. The floating bodies of Bai’s work are spheroids with slenderness
ratios (maximum radius to draft ratio) ranging from 0.1 to 10.0 Bai’s results can be incorporated
herein since this study considered only axisymetric buoys. The surge added mass coefficient for an
infinite fluid is adopted from Lamb (1945). Added mass coefficients for buoys with slenderness ratios
between 0.1 and 10.0 can be obtained by linearly interpolating between values from Bai’s and Lamb's
studies. Bai’s added mass inertia coefficients were computed assuming the center of rotation at
the water plane. Thus, they must be converted to the center of gravity before being used in the
computer program.

Cize = Mool + LoM22 (A3)
Cass = Mool + 22g M6l + AT,

Drag forces are assumed acting at the instantaneous center of buoyancy. Drag moments can be
obtained from a cross product of drag forces with its moment arm which is the distance from the
assumed center of rotation to the center of buoyancy. Then the vector of drag forces and moments
can be written as

Npi(u; + v, —x))

Nps(uy + v,—xy)

} _ Np3(us + v3—x3) (Ad)
0

ZosNp3(us + v3—x3)

ZoaNpo(uy + vy x3)

where Np, = p Ap)Cpy,,0/2, in which Ap,;, is the drag area; Cpyiy the drag coefficient in the x,
direction; and Q the magnitude of (i, + v, — & ).

Consider Froude—Kryloff forces acting on an infinitesimal surface of the buoy. The total force
can be obtained from integration along the wetted surface. The moment arm is the distance from
center of gravity to the particular infinitesimal force. Integration along the wetted surface yields the
total excitation forces and moments vector

(1 + Cay)Viverit
Al + Cop)Vierv
Fx Pl + Caz)Vigerw
) :
PZcs Vwr:r""’ + pCass Vme."

PZ VwerV + pCagaVer?

. .. . -8
The buoyancy acts at the center of buoyancy in opposition to the weight. The restoring moment
for an inclined buoy follows from the moment of excess buoyancy and moment due to the change



464 K. Idris et al.

of immersion. There is no inertia coupling in this case since the center of rotation is assumed to be

at the center of gravity. The buoyancy vector for Equation (16) can be written as

pgVwer
0

ME :

PEVwerZop 0> — pglwe(6:—{5)
PEVwerZip 03— pelyp(8,—{3)
where 9, is the buoy instantaneous angle and ¢ is the angle of wave slope.

(A6)

The tension components at the connection point are formulated in the global coordinate system
so that they can be directly applied in Equation (16). Moments caused by tether tensions are evaluated
at the center of gravity. External force and moment vectors due to tether tension can be written as

T,
T

{ T} T,
Ny Er=0n + 02715 + (—253— 0120 + 02T,

(T + 02— 0:27)T ) + (—20 = 0azs + 63220 T

(= + 02— 07T, + (2py + Orin— O3z) T

(A7)

The Jacobian matrices in Section 4 are obtained as partial derivatives of the above equations with

respect to the various dependent variables. They are tabulated below:
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