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Abstract:  An independent-flow-field (IFF) model selected in this study to investigate the 

nonlinear response behavior of a medium-scale, experimental, submerged, moored structure is 

validated via parametric studies.  Bifurcations in experimental responses are frequently 

observed and the associated nonlinear primary and secondary resonances are identified in 

frequency response diagrams.  Distinct from previous investigations, this study intends to 

identify a set of “best-fit” constant coefficients for predictions and comparisons over the entire 

wave frequencies examined.  It is concluded that the small-body, IFF model predicts reasonably 

well the nonlinear, moored and submerged structural response subjected to regular waves. 
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Introduction 

Complex nonlinear response phenomena of a submerged, moored ocean structural system 

subjected to periodic excitations, including nonharmonic responses, instability and sensitivity to 

initial conditions had been investigated in details  [1-4].   Analytical predictions and numerical 

results indicated the existence of nonlinear responses including harmonic, sub-harmonic, super-

harmonic and higher order nonlinear responses, even chaos.  

Design of large-scale models incorporating nonlinear restoring forces and fluid-structure 

interactions in search of highly nonlinear responses may be difficult.  Nonetheless, a medium-

scale experiment investigating response behaviors of the submerged, moored structural system 

had been conducted [5].  Preliminary studies of such experimental results verified the existence 

of nonlinear characteristic responses (e.g. sub- and super-harmonics).  Existence of an 

underlying bifurcation structure in the experimental responses was demonstrated in the 

corresponding frequency response diagram [6].  Coexistence of harmonic and sub-harmonic 

responses was also shown near secondary resonance [6]. 

A preliminary study of the experimental results had been carried out employing a simple, 

standard Morison (SM) type nonlinear model [7].  The geometric-nonlinear restoring force was 

approximated by two-term polynomials (linear and cubic) at static equilibrium.  The wave-

frequency dependency of the hydrodynamic properties was taken into account by identifying 

system parameters for each and every of the sample tests.   Numerical predictions were in 

reasonably good agreement with experimental results.  The authors, however, found from their 

numerical search results that there was no single set of constant parameters (coefficients) that 

would closely predict the response behavior over the entire frequency range of the experimental 

results considered.  They recommended that an alternative model be developed and more 

detailed comparisons be performed [7]. 

 In identifying a model to improve prediction capability of the experimental results, an 

investigation on modeling and parameter identification of the experiment had been recently 

carried out [8].  In their study, noisy experimental results near sub-harmonic resonance were 
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used for identification with two nonlinear small-body hydrodynamic Morison type models 

chosen for comparison. The nonlinear restoring force of the proposed models, different from the 

previous standard Morison (SM) model, was approximated by a three-term polynomial 

(including an additional quadratic term) near dynamic equilibria, i.e. equilibria near the maxima 

of structural motions.  Model predictions and experimental results were compared in both time 

and frequency domains.  Numerical results indicated that the independent-flow-field (IFF) model 

with nonlinear-structure and nonlinear damping was the most suitable for the chosen 

experimental results.  Feasibility of applying the IFF model with constant coefficients to the 

experimental results over the entire wave frequency range considered was yet to be assessed. 

 This two-part series study continues the investigation based on the small-body theory in 

examining the experimental response behaviors of the single-degree-of-freedom (SDOF) model 

subjected to regular waves.  Knowing the frequency-dependency in the hydrodynamic properties, 

a major intent of the study is to identify a simple, nonlinear model with constant coefficients 

closely predicting and capturing complex, nonlinear structural response behavior in a periodic or 

nearly periodic fluid domain.  The objectives of this paper (Part I) are threefold: 1) identify a 

“best” set of constant coefficients of the deterministic IFF model, 2) validate the model by 

comparing with experimental results, and 3) compare the predictions of the IFF model with those 

of the SM model in previous studies.  With the validated IFF model, the companion paper (Part 

II) will investigate underlying intricate bifurcation patterns near resonances, and interpret 

complex nonlinear phenomena observed and discussed in previous studies. 

The IFF model consists of an alternative form of Morison hydrodynamic damping 

(independent-flow-field), and a three-term-polynomial (including an additional quadratic term) 

approximation to the nonlinear restoring force.  The IFF model employs a linear superposition of 

two independent flow fields separating the wave motion and the structural response.  Response 

stability analysis is conducted by employing a harmonic balance method.  System parameters 

suggested by Narayanan [8] identified in a noisy environment near sub-harmonic resonance are 

used in this study as initial estimates to further identify model parameters subjected to 



 

 

 

4

deterministic wave excitations with frequency over a much wider range.  A “best” set of constant 

system parameters are later fine-tuned and identified based on extensive parametric studies and 

comparisons over the entire wave frequency range examined.  Comparisons are conducted for all 

tests to assess the validity of the model, and representative samples are chosen for demonstration 

purpose.   Causes for some “out-of-limit” responses observed in the experiment are inferred 

based on numerical results. 

 

Experimental Model 

While details of the experimental model and setup of a single-degree-of-freedom, 

hydrodynamically excited, submerged sphere moored by elastic mooring cables with geometric 

nonlinearity had been reported by Lin and Yim [7], for convenience of discussion, a brief 

description of the experiment is summarized in this section. 

 The experimental model considered is a geometrically nonlinear two-point moored 

single-degree-of-freedom (SDOF) system in surge.  The models consist of a sphere on a steel rod 

supported by guyed masts six feet above the bottom of a closed wave channel (Fig. 1).  The 18-

inch diameter sphere, made of PVC, was virtually neutrally buoyant when submerged.  Springs, 

with stiffness of 10 or 20 lb/ft, were horizontally attached to the sphere at angle of 60° or 90° to 

provide a nonlinear restoring force [5].  In this study, only the more nonlinear configuration (i.e. 

90° or b=0 in Fig. 1) is investigated in detail to better demonstrate intrinsic nonlinear response 

characteristics.  The restoring force, which contains a geometric nonlinearity, can be derived by a 

Lagrangian formulation [4].  The damping mechanism includes a linear system (structural) 

component (associated with the model connections and contact points of instrumentation), and a 

time-dependent coulomb friction component (due to a combination of hydrodynamic damping 

and the presence of the rod to refrain motion in surge).  The coulomb friction originates from the 

lift force (in heave) and combined drag/lift moment (in pitch).  The initial tension in the mooring 

cables varied from 15 to 30 lbs. depending on the test case.  A majority of the tests were 

performed with relatively low initial tension (25 lbs.) to ensure nonlinear motion response [7]. 
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Analytical Model 

IFF Model 

Employing the independent-flow-field (IFF) Morison damping and lumping the time-

dependent coulomb friction into an equivalent linear system-damping coefficient, the equation of 

motion of the cable-moored system is given by [8] 

 
),()()( xuFuFxRxxCxCxM IDDS &&&&&&&& +=+′++       (1) 

where x and x& denote the surge displacement and velocity, respectively; M, mass of sphere; R, 

nonlinear restoring force; CS, effective (linear) system damping coefficient (=ζSCCR; ζS, damping 

ratio and CCR, critical damping); C'D , hydrodynamic damping coefficient; u, fluid particle 

velocity; FD and FI, drag and inertial components of the exciting force, respectively. 

 The nonlinear restoring force includes the force due to the mooring (RM) and the force 

due to hydrostatic buoyancy (RB).  The spheres used in this experiment were virtually neutrally 

buoyant when submerged.  Therefore, the forcing component caused by RB was negligible and is 

not considered here 
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where K is the spring constant, and b governs the spring configuration (Fig.1, b=0 for 90°), l1,2 

are the in-situ spring lengths, and lC is the initial pre-tensioned spring length.  It was found that 

3-term polynomials, including a quadratic term, provide a good approximation to the restoring 

force near dynamic equilibria [8] 
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The natural frequency Τn of the model is approximated near
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The exciting forces, consist of a Morison drag (FD) and an inertial component (FI) are, 

respectively, given by 
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where CD is the hydrodynamic viscous drag coefficient; CA, added mass coefficient;  AP, 

projected drag area;∀, displaced volume; ρ, water density; and u, water particle velocity. 

Wave-frequency dependency of the hydrodynamic parameters is noted in the previous 

studies, and identification of a simple, small body, nonlinear model with frequency-independent 

constant coefficients to capture the overall response behavior is attempted here.  Extensive 

numerical simulations and comparisons with experimental results are conducted here to access 

the validity of the IFF model.  

 

Parameters Identification 

System parameters of the IFF model are first employed an initial estimates by Narayana 

based on a frequency domain identification technique on sample measurements of noisy sub-

harmonic experimental test cases [8].  The initial estimates are later fine-tuned via comparisons 

with each and every experimental result in the time domain.  A ‘best’ set of constant coefficients 

is hence identified (see Table 1), and with which the model predictions are consistent in good 

agreement with experimental results.  Extensive parametric studies in response frequency 

diagrams will further validate the model with the set of parameters in later sections. 

 

Stability Analysis 

Employing the method of harmonic balance and solving the corresponding Hill’s 
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equation by applying the Floquet theory, the stability boundary of harmonic responses near 

resonances can be obtained (e.g. [1]).  The stability boundaries near the primary resonance are 

given by 
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where a is the approximate response amplitude and δ the damping parameter. 

The stability boundaries near the secondary sub-harmonic and super-harmonic 

resonances are, respectively, given by 
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Bifurcations and higher order nonlinear phenomena can be expected within the regions of 

instability.  

 

Experimental Results 

Tests Performed 

Experimental tests conducted can be classified by two major categories as continuous 

search tests and data acquisition tests.  The continuous search tests were intended to examine the 

overall behavior, and the acquisition tests record detailed information of model response under 

specified wave conditions.  A brief description of each test category is reported as follows. 

Continuous Search Tests -- Stability of the response of the nonlinear moored system 

subjected to periodic excitation can be predicted by referring to the backbone curve of the 

corresponding analytical model [4].  To identify qualitative changes in response, the sphere was 
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subjected to waves with approximately constant amplitudes but with gradually varying 

frequencies.  Note that because of wave generation limitations and designed wave conditions, the 

wave height could not be kept constant at all times.  The wave height varied between 2.89 ft 

(0.47 Hz) and 0.37 ft (0.27Hz). 

 There were two search test runs performed on the 90° configuration.  In the continuous 

search mode, the wave frequency was increased or decreased by 0.01 Hz every two to three 

minutes.  In the first search test, the excitation frequency first increased from 0.10 Hz to 1.00 Hz 

and then investigated in the lower frequency range between 0.14 and 0.10 Hz.  The second 

search test with specified wave frequencies of interest was intended to further examine the 

nonlinear phenomena observed previously.  Both sub-harmonic and super-harmonic responses 

were frequently observed.  A transitional phenomenon, e.g. from small-amplitude harmonic 

steady state to large-amplitude sub-harmonics also appeared in tests under the wave frequency 

near 0.5 Hz. 

Data Acquisition Tests -- Data acquisition tests were performed to obtain steady-state 

responses with the results of the continuous search tests as a pre-cursor to identify nonlinear, 

sensitive regions.  The length of the tests varied from 5 to 30 minutes to assure steady-state 

behaviors. 

 

Observations 

Resonances -- Relationship between wave excitation and response can be demonstrated 

via frequency response diagrams [9].  Figure 2 shows the characteristic frequency response based 

on the results of continuous search tests.  Note that to maintain the sphere response sufficiently 

large for nonlinear behavior without damaging the model, both wave amplitude and frequency 

need to be accordingly maneuvered at the same time.  Thus, the relationship between excitation 

and response should be depicted in a three-parameter space.  The relationship can be 

demonstrated in a 2-D diagram by plotting the amplitude ratio (response amplitude/wave 

amplitude) against excitation frequency.  Three possible resonances are indicated by the humps 
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located near 0.13, 0.26, and 0.52 Hz, respectively (Fig.2).  It is noted that nonlinear relationship 

between the response amplitude and wave amplitude is also embedded in the diagram presented. 

Also note that a conventional hydrodynamic presentation of amplitude-frequency relationship 

had been attempted using parameters of amplitude ratios vs. (wavelength × wave height).  In 

such presentation, the underlying bifurcation structure was not clearly revealed.  Therefore, the 

frequency response diagram is chosen for interpretations and comparisons throughout this study.   

 As shown in Fig.2, primary resonance is found to locate at near 0.26 Hz and secondary 

super-harmonic and sub-harmonic resonances are observed at near 0.13 Hz and 0.52 Hz, 

respectively.  A jump phenomenon is observed at near the primary resonance where possible 

transitions of response stability are implied.  Data-acquisition test D14 was hence performed 

with wave frequency at near 0.27 Hz (Fig.3).  The wave amplitude was noticed transitioning 

from around 0.13 to 0.18 ft after around 200 seconds, and the response amplitude consequently 

increased from around 0.5 to 0.8 ft.  The much more significant increase in the response 

amplitude compared to the variation in wave amplitude indicates a possible transition from a 

small-amplitude response state to a large-amplitude response.  Co-existence of multiple 

responses is then implied.  The response finally settles to the large-amplitude response mode, 

which indicates that between the two coexisting and competing response attractors, the larger-

amplitude harmonics is of stronger stability [10]. 

 The frequencies of secondary super-harmonic and sub-harmonic resonances, at around 

one-half (0.13 Hz) and two times (0.52 Hz), respectively, of that of the primary resonance (0.26 

Hz) again verify the analytical prediction by Gottlieb et al. [6].  Transition from harmonic to 

super-harmonic response was first observed in the experiment at near 0.11 Hz and from super-

harmonic to harmonic response at near 0.16 Hz.  Stability boundaries are accordingly estimated 

(Fig.2).  The system behavior within the wave frequency range of 0.11-0.16 Hz is super-

harmonic. 

Analytical predictions of stability boundaries based on Eqs.(6)-(8) are also shown in 

Fig.2 by solid lines.  The analytical prediction, which clearly depicts the stability regions in the 
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secondary resonances, however does not seem to be in line with the experimental results near the 

primary resonance.  This may be due to the fact that in the ranges near the secondary resonances, 

the experimental wave height was kept near constant and the resulting amplitude-frequency 

relationship more closely follows the standard form (with fixed excitation amplitude).  However, 

due to the limitation of the facility, notable (sometimes significant) variations in wave heights 

were observed in the frequency range near the primary resonance.  As a result, the frequency 

response diagram presented is modified by a strong nonlinearity between wave and response 

amplitudes.  Nonetheless, a jump (gap near 0.3 Hz) predicted by the analysis is present in the 

experimental results as noted. 

Coexistence and Transitions -- Transitions to period doubling were observed in the 

experiment near the location of high frequency secondary resonance (0.52 Hz).  Near the 

resonance, the system mostly behaves in the period-2 sub-harmonic fashion.  To further the 

investigation in possible bifurcation cascades near the secondary sub-harmonic resonance, some 

data acquisition tests were performed.  Figure 4b shows a sample structural response (Test D2) 

with wave frequency of 0.5 Hz.  Transition is observed from a harmonic response state to 

another larger-amplitude harmonic state and then a steady-state sub-harmonic response.  Two 

distinct harmonic and a sub-harmonic response attractors are hence indicated to coexist near the 

sub-harmonic resonance as analytically predicted by Gottlieb and Yim [4].  The transition is 

possibly induced by tank noise as previously indicated, and the sub-harmonics are assessed to 

have the relatively stronger stability [10]. 

Large Amplitude Motion -- It is also observed in the search test when the wave frequency 

is near 0.27 Hz, the sphere is excited into a very large-amplitude motion.  The amplitude that the 

sphere tends to reach is beyond the limitations of the mechanical configuration such that the 

wires connecting the sphere and springs were dislodged from the pulleys, and the data collection 

was terminated [5].  The cause for such an amplitude jump, which has not been discussed in 

previous studies, is investigated here. 
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Comparisons Between Predictions and Experimental Results 

Detailed comparisons of experimental results and numerical predictions are illustrated in 

the frequency response diagram and time domain in this section. 

 

Frequency Response Diagram 

Comparisons of simulations of the IFF model with experimental results are shown in 

Fig.5, where experimental results are denoted by “o” and simulations by “+”.  The simulations 

are steady-state solutions from the analytical model (Eq.(1)) subjected to the measured wave 

excitations with 50 initial conditions varied from (-7 ft, -7 ft/s) to (7 ft, 7 ft/s). 

It is observed that the IFF model simulations match well with the measured results in 

amplitude and characteristics over the frequency range examined (Fig.5).  Primary resonance 

near 0.26 Hz and secondary resonances near 0.13 and 0.52 Hz, respectively, are closely 

simulated.  Coexisting harmonic and sub-harmonic responses near 0.5 Hz in the experimental 

results are also clearly demonstrated.  The simulated solutions also indicate the potential 

existence of “very-large-amplitude” harmonic responses in the frequency range of [0.25 0.53] 

Hz.  The coexisting large-amplitude responses are resulted from large initial conditions.  Most of 

the experimental search runs started with the quiescent initial conditions, and the model response 

mostly follows the lower (smaller amplitude) response curve.  The “very-large-amplitude” 

responses are out of the limitation of the designed mechanical configuration of the experiment, 

and cannot be realized in the test runs.  However, for some tests at wave frequency near 0.27 Hz, 

the sphere was led to such a large amplitude level that the strings connecting the springs and 

sphere popped off the pulleys, and consequently the test was terminated.  The tendency of 

reaching the “very-large-amplitude” motions may be a result of perturbation-induced transitions.  

With the presence of perturbations (tank noise and wave amplitude variations in this 

experiment), the sphere was driven to the higher response curve (larger amplitude) beyond the 

limitation of the experimental configuration.  The reaching of very-large-amplitude response 

leads to the strings popping out of the pulleys.  The good agreement between the predictions and 
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measured data however, suggests the applicability of the small body theory to describe and 

predict the model response behavior. 

 Compared to previous studies [6,7], the IFF model clearly shows significant 

improvements in simulation and prediction of experimental responses, especially near super- and 

sub-harmonic resonances.  The simulation results also provide a complete depiction of the global 

behavior of the system. 

 

Time History 

Data acquisition tests are conducted at wave frequency near resonances, namely, 0.13, 

0.26 and 0.52 Hz for detailed examination of more “nonlinear” and “sensitive” responses 

observed in the search test.  Model simulations are intended to match the experimental results in 

amplitude and characteristics, and also to determine possible causes for transitional phenomena, 

e.g. from small-amplitude harmonics to large amplitude harmonics as shown Fig.3 and from 

harmonics to sub-harmonics as shown in Fig.4. 

 Comparison of numerical predictions and experimental results of coexisting two distinct 

harmonic responses at wave frequency of 0.27 Hz (Test D14) is shown in Fig. 6 (cf. Fig.3).  An 

example of  transition from small-amplitude harmonics to large-amplitude harmonics in Test 

D14 is noted in Fig.3b.  The transition at around the 150th second is possibly caused by the 

variation in wave height from around “0.25 ” ft to “0.33 ” ft as shown in Fig.3a.  The amplitude-

variation caused transition is verified by numerical results in the frequency response diagram (cf. 

Fig.5).  Numerical results confirm and assimilate the coexistence of small-amplitude and large-

amplitude harmonics near the primary resonance.  

Comparison of numerical predictions and experimental results of coexisting harmonic 

and sub-harmonic responses at wave frequency of 0.50 Hz (Test D2) is shown in Fig. 7 (cf. 

Fig.4).  A transition from a small-amplitude harmonics to large-amplitude sub-harmonics in Test 

D2 is noted in Fig.4b.  The transition at around the 80th to 120th second is possibly caused by the 

variation in wave height from around “1.5 ” ft to “2.4 ” ft as shown in Fig.4a.  The amplitude-
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variation caused transition is verified by numerical results in the frequency response diagram (cf. 

Fig.5).  It shows the multiple coexistence, near the secondary resonance of small-amplitude 

harmonics, sub-harmonics and large-amplitude harmonics, depending on wave amplitude and 

initial conditions.  With quiescent initial conditions, when the wave amplitude increases, the 

structural response may transition from small-amplitude harmonics to sub-harmonics or even 

large-amplitude harmonics.  With fixed wave height, when the initial conditions are larger, the 

transition in response stability may also occur.  The coexisting very large-amplitude harmonic 

response might be experimentally realized when the experiment scale is sufficiently large. 

 Comparison of the simulation and super-harmonic experimental result at wave frequency 

of 0.13 Hz (Test D3) is shown in Fig. 8.  The numerical results indicate there exists only one 

response attractor at the frequency.  Good agreement in characteristics and amplitude is observed 

between the experimental and numerical results as shown in Fig.8b. 

 

Concluding Remarks 

The validity and prediction capability of an IFF, small-body model with constant system 

parameters simulating a medium-scale nonlinear moored structural experiment are assessed in 

this study.  Based on the results presented here, the following concluding remarks are offered: 

1. The IFF model has been shown here to provide significant improvements in response 

prediction capability when compared to similar SDOF models considered in previous 

studies. 

2. Numerical simulations are in good agreement with experimental results in both overall 

behavior and individual response trajectories.  The good agreement validates the IFF 

model as well as verifies the applicability of the small body theory for the experimental 

results considered. 

3. Simulations of the frequency response diagram capture the resonances, jump 

phenomenon and coexistence as exhibited in the experimental results.  Good agreement 

between simulations and experimental results is also shown through time history in 
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response characteristics and amplitude. 

4. Numerical simulations also indicate the existence of very-large-amplitude harmonic 

responses.  Under the perturbations of tank noise and wave amplitude variation, the 

sphere is sometimes driven to this response attractor, leading to large amplitude motions 

observed in the experiment. 

5. Experimentally observed transition phenomena, e.g. from small-amplitude harmonics to 

large-amplitude harmonics and from harmonics to sub-harmonics, are also numerically 

simulated.  The coexisting response attractors and their possible interactions and 

transitions are identified based on the frequency response diagram from the simulations. 
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CA CD k1(lb/ft) k2 (lb/ft2) k3 (lb/ft3) C'D ζS 

0.25 0.1 9.3 4.0 4.0 0.02 6% 

Table 1 The ‘best’ set of constant coefficients of IFF model 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Experimental model of a submerged, hydrodynamically damped and excited nonlinear  

structural system 
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Fig. 2  Comparison of experimental results (‘o’) and analytical prediction (‘     ’) in normalized frequency response diagram; 

CA =0.25, CD =0.1, k1 =9.3 (lb/ft), k2 =4.0 (lb/ft2), k3 =4.0 (1b/ft3), C'D =0.02, and ζS =6% 
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Fig. 3 Transition from small-amplitude harmonics to large-amplitude harmonics at wave 

frequency of 0.27 Hz (Test D14); a) wave profile, and b) sphere displacement 
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Fig. 4 Transition from harmonic response (0.5 Hz) to sub-harmonic response (0.25 Hz) at wave  

frequency of 0.5 Hz (Test D2); a) wave profile, and b) sphere displacement 
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Fig. 5 Comparisons of experimental results (‘o’) and IFF model predictions  (‘+’) in normalized frequency response diagram; 

CA =0.25, CD =0.1, k1 =9.3 (lb/ft), k2 =4.0 (lb/ft2), k3 =4.0 (1b/ft3), C'D =0.02, and ζS =6% 
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Fig. 6 Coexisting responses near primary resonance at wave frequency of wave frequency of  

0.27 Hz (Test D14); a) small-amplitude harmonics, and b) large-amplitude harmonics;  
experimental results – solid lines and simulations – dashed lines 
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Fig. 7 Coexisting responses near sub-harmonic resonance at wave frequency of 0.5 Hz  

(Test D2); a) small-amplitude harmonics, b) sub-harmonics (experimental results –  
solid lines, simulations – dashed lines), and c) large-amplitude harmonics (simulation) 
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Fig. 8 Comparison of super-harmonic response at wave frequency of 0.13 Hz; a) experimental 

result (Test D3), and b) comparison (experimental – solid line, simulated – dashed line) 
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