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Abstract:  Complex responses observed in an experimental, nonlinear, moored structural 

system subjected to nearly periodic wave excitations are examined and compared with the 

simulations of a newly proposed independent-flow-field (IFF) model in this paper.  Variations in 

wave heights are approximated by additive random perturbations to the dominant periodic 

component.  Simulations show good agreement with the experimental results in both time and 

frequency domains.  Noise effects on the experimental results including bridging and transition 

phenomena are investigated and interpreted by comparing with the simulations of its 

deterministic counterpart.  Possible causes of a chaotic-like experimental result as previously 

observed are also inferred. 
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Introduction 

A wealth of complex nonlinear response behavior, including chaos, of ocean structural 

systems under deterministic monochromatic wave excitations had been studied analytically and 

demonstrated via computer simulations [1-2].  Nonlinearities of the system resulted from a 

combination of geometrically nonlinear restoring force and (quadratic) drag force.  In a 

deterministic setting, local and global stability analyses were conducted, and stability regions of 

various nonlinear responses were identified [1-2].  A fine bifurcation super-structure was found 

[3] and the sequential ordering indices of bifurcation implied the existence of higher order 

nonlinear responses (e.g., ultra-sub-harmonic and quasi-periodic) and possible routes to chaos.  

However, chaotic responses in full-scale engineering systems in the field were yet to be 

identified. 

Small-scale experiments had been carried out to search the existence of chaotic 

responses.  Under such easily controlled environments, experimental chaotic responses were 

found to exist [4].  To closely simulate field conditions, a medium-scale experimental study was 

performed for highly nonlinear ocean structures subjected to periodic and nearly periodic waves 

[5].  An intent of the experimental study was to search and identify nonlinear complex structural 

responses, even chaos in an environment closer to wave fields.  Despite good agreements shown 

between numerical predictions and experimental results, there were experimental observations 

that could not be explained using only deterministic analysis procedures [6], such as an 

"unexpected" transition from (transient) harmonic to (steady-state) sub-harmonic response.  The 

"unexpected" transition was attributed to (unaccounted for) variations in wave heights.  Random 

perturbation components thus needed to be incorporated in the analytical models despite the fact 

that the physical structural system was designed to behave in a deterministic manner in the 

experiment [5].  Because of the random nature of wave fields, the model with perturbed periodic 

wave excitation could more closely simulate structural response behavior in the field. 

Based on the experimental results, analytical theory and numerical results were 

developed to identify and analyze the effects of weak random noise on periodically driven 
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nonlinear moored structures [7].  Analytical results indicated the capability of utilizing response 

probability density functions to depict complex responses including noisy chaos and rich 

nonlinear phenomena such as bifurcations and coexisting response attractors.  A preliminary 

comparison and analysis of experimental results were also conducted [8].  Results of the 

experimental study demonstrated noise effects on responses in the time domain, and assessed 

possible existence of noisy chaos.  As discussed in Part I of this study, in spite of relatively good 

predictions, the previously employed model was not able to fully capture the overall 

experimental response behavior.  Neither super- nor sub-harmonic resonance was identified and 

captured in the simulated results.  More detailed investigations of the experimental results were 

therefore suggested [8]. 

 This study (Part II) focuses on the investigation of the response behavior of a moored 

structure subjected to nearly periodic waves.  The variations of the wave amplitudes are taken 

into account by additive random perturbations.  An independent-flow-field (IFF) model with 

nonlinear structure and nonlinear damping is employed to more closely describe the 

experimental response behavior.  The IFF model is considered the most suitable for the 

experiment in the wave frequency range examined [9] and validated by extensive numerical, 

parametric studies in Part I.  The model adopts an alternate form of Morison drag using 

independent flow field, and adds a quadratic term in the polynomial approximation to the 

restoring force.  Good agreements between numerical predictions and experiment results, in both 

overall behavior and individual response trajectories under regular waves, have been shown in 

Part I.  The objectives of this study are twofold: 1) to investigate underlying intricate bifurcation 

patterns near resonances, and 2) to interpret complex nonlinear phenomena observed, as in [8] 

and discussed in previous studies including perturbation effects on nonlinear responses and 

“possibly noisy chaotic” experimental results. 

 

System Considered 

The multi-point moored structural system considered in this study is formulated as a 
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single-degree-of-freedom (SDOF) submerged rigid body, hydrodynamically damped and excited 

nonlinear oscillator with random perturbations.  The experimental configurations are reported in 

detail by Yim et al [5], and a summary description of the model, including setup and test 

classifications, is presented in Part I. 

 

Equation of Motion 

The response behavior of a nearly periodically driven moored offshore structure can be 

modeled by the following equation  [9]: 

 

)(),()()( txuFuFxRxxCxCxM IDDS ξ++=+′++ &&&&&&&&      (1) 

where x and x& denote the surge displacement and velocity, respectively; M, mass of sphere; R, 

nonlinear restoring force; CS, effective (linear) system damping coefficient (=ζSCcr; ζS, damping 

ratio and Ccr, critical damping); C'D, hydrodynamic damping coefficient; FD and FI, drag and 

inertial components of the exciting force, respectively.  Note the addition of the band-limited 

random perturbation term ξ(t) (cf. Eq.(1) in Part I) in the equation. 

The restoring force (due to nonlinear geometric configuration), R(x), is given by Eq.(2) in 

Part I, and the 90° mooring configuration is again emphasized here.  The exciting force consists 

of a Morison drag (FD) and an inertial component (FI), uuACF PDD 2
ρ

= , and 

xC
t
uCF AAI &&∀−
∂
∂

+∀= ρρ )1( , respectively, where CD is the hydrodynamic viscous drag 

coefficient; CA, added mass coefficient; AP, projected drag area; ∀, displaced volume; ρ, water 

density; and u, water particle velocity. 

The stochastic excitation component is described by a band-limited noise perturbations, 

ξ (t), incorporating all possible randomness in the wave field.  The Rice noise (band-limited) 

representation is chosen here to provide a practical noise model [6].  The simulated structural 

response will be used to compare with experimental data in a later section.  The perturbation 

component, ξ (t), is given by  
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where the aj’s are amplitudes, ωj’s frequencies, and ϕj’s uniformly distributed independent 

random variables in the interval of [0, 2π], respectively.  In the experiment, monochromatic 

waves with random perturbations were generated based on given energy spectrum densities with 

designed noisy intensities. 

 One of the primary intents of the experiment was to investigate the effects of small-

intensity perturbations on the characteristics of nonlinear responses.  Each test was then 

performed sufficiently long to ensure that the transient response had been damped out.  Data 

acquisition tests were initially performed over a range of frequencies and wave heights at which 

interesting nonlinear responses may be expected based on the deterministic testing data.  In the 

deterministic tests, the model with the 90° configuration (cf. Fig.1 in Part I, b=0) subjected to 2 

foot, 2 second waves exhibited sub-harmonic nonlinear behavior.  The wave period of 2 seconds 

was selected for all tests, and the wave amplitudes varied within the range of 1.5 – 2.5 ft.  The 

random noise variance was designed to be “small” ranging within 15% of the total input energy. 

 Under the specified wave excitation conditions described above, a total of 9 tests were 

conducted and the model responses were recorded (Tests D4-13, see Yim et al [5] for detailed 

documentation).  All the tests exhibited both harmonic and sub-harmonic characteristics in the 

response, and possible coexistence was implied.   As indicated in the frequency domain, when 

the wave amplitude was increased, the strength of the sub-harmonic component increased.  

Moreover, analysis in the time domain showed oscillations between the two possible coexisting 

distinct response attractors, i.e., harmonic and sub-harmonic.  

 

Identification of Noise Intensity and System Parameters 

The presence of random and uncontrollable components in the wave excitation is 

incorporated in the analytical model as a band-limited noise as shown in Eq.(2).  Experimental 
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observations indicate that besides the designed (analytically specified) band-limited noise 

component, there exist additional, uncontrollable “random” perturbations due to imperfections in 

the wave generation and bounded wave field.  The effects of these imperfections (caused by 

diffractions, reflections and return currents in the wave flume), together with the analytically 

specified noise intensity in the waves are identified as demonstrated by Yim and Lin [8]. 

 Identification of system parameters M, Ca, CS, CD, C´D, k1, k2 and k3 (see Eqs.(1-2) here 

and Eqs.(2-3) in Part I) of the analytical model are conducted utilizing the model configurations, 

results of free vibration tests, initial estimates of a frequency technique, and extensive numerical 

simulations and comparisons as briefly described in Part I.  The set of ‘best’ constant coefficients 

is identified and given by Table 1 in Part I. 

 

Deterministic Analysis 

Because of the “smallness” of the random perturbations, the deterministic analysis results 

can provide an embedded structure of the global noisy response behavior.  The presence of light 

random perturbations, including tank noise and “designed” perturbations may cause variation in 

response amplitude and/or phase, and it may also lead to various transition behaviors among co-

existing response attractors.  A detailed global and local deterministic analysis could identify the 

embedded response stability structure, indicating possible transition routes and variations. 

 

Frequency Response Diagram 

Comparison of simulated responses and experimental results is shown in Fig.6 in Part I 

and good agreement is observed (see Part I for more detailed discussions).  For interpretation 

purpose, the characteristic behavior and comparisons of the global experimental response 

behavior are briefly discussed here. 

It is observed that the simulated responses match well the measured data in amplitude and 

characteristics over the frequency range examined.  Primary resonance at near 0.26 Hz and 

secondary resonances at near 0.13 and 0.52 Hz, respectively, are closely simulated.  Coexisting 
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harmonic and sub-harmonic responses near 0.5 Hz in the experimental results are also clearly 

demonstrated.  Additionally, the simulated solutions indicate the potential existence of “very-

large-amplitude” harmonic responses in the frequency range of [0.25 0.53] Hz, which was not 

experimentally observed.  The coexisting large-amplitude responses resulted from large initial 

conditions.  Most of the experimental search runs started with the quiescent initial conditions, 

and the model response mostly follows the lower (smaller amplitude) response curve.  The 

“very-large-amplitude” responses are out of the limit of the mechanical configuration designed 

for the experiment and were not captured.  However, for some tests at wave frequency near 0.27 

Hz, potential large motion was indicated.  In those tests, the sphere was led to a very large 

amplitude such that the strings connecting the springs and sphere popped off the pulleys, and 

consequently the test was terminated.  The tendency of reaching the “very-large-amplitude” 

motions may be resulted from a perturbation-induced transition.  With the presence of 

perturbations consisted of tank noise and wave amplitude variations, the sphere was driven to the 

higher response curve (larger amplitude) that is beyond the limitation of the experimental 

configuration.  Attempts of the response to reach the very-large-amplitude motions lead to the 

strings popping out of the pulleys. 

  

Resonance Regions 

Waves of all the periodic-with-noise tests were designed to be of 2 seconds (or 0.5 Hz), 

which is near the sub-harmonic resonance.  A local deterministic analysis is thus conducted with 

varied wave amplitude, and fixed period of 2 seconds to identify possible coexisting response 

attractors and associated transitions.  Two additional numerical analyses are conducted near the 

regions of super-harmonic (0.125 Hz) and primary resonances (0.25 Hz) in attempt to further 

identify unexpected transitions in response characteristics (e.g., small- to large-amplitude 

harmonics, and harmonics to sub-harmonics). 

Sub-harmonic Resonance -- Figure 1 shows a nonlinear relationship between the wave 

and response amplitudes.  The wave amplitude varies from 0.02 to 2.2 ft, and the corresponding 
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response amplitude various from 0.01 to 3.8 ft.  Two response amplitude curves are noted.  

When the wave amplitude is lower than 0.75 ft, the (lower) response curve indicates a unique 

existence of small harmonic response whose amplitude increases with the wave amplitude.  A 

sample small-amplitude harmonic response is shown in Fig.2a.  A stability  bifurcation is noted 

at wave amplitude at 0.7 ft, where the small amplitude harmonics disappear and sub-harmonics 

become dominant.  The sub-harmonics were mostly observed in the experiment with 2-second 

waves.  A sample sub-harmonic response is then shown in Fig.2b.  When the wave amplitude is 

higher than 1.5 ft, the sub-harmonic responses disappear, and small amplitude harmonics re-

appear with amplitude increasing with the wave amplitude.  It is also observed that there coexists 

a large-amplitude harmonic response (a sample as shown in Fig.2c) when the wave amplitude is 

higher than 0.8 ft. 

Primary Resonance -- Figure 3 shows another series of investigation on the relationship 

at wave frequency of 0.27 Hz.  The wave amplitude varies from 0.02 to 2.2 ft, and the 

corresponding response amplitude varies from 0.01 to 3.0 ft.  Two distinct response amplitude 

curves are noted.  Small-amplitude harmonic response exists when the wave amplitude is with 

the range of [0 0.3].  A sample small-amplitude harmonic response is shown in Fig.4a.  Large-

amplitude responses occur when the wave amplitude increases to and beyond 0.2 ft.  When the 

wave amplitude is in the range of [0.2 0.3] ft, small- and large- amplitude harmonic responses 

are indicated to coexist with various initial conditions.  When the wave amplitude increases 

beyond 0.3 ft, the structural response is dominated by large-amplitude harmonics (a sample as 

shown in Fig.4b).  As discussed in the previous section, the coexisting large amplitude harmonic 

response may be the underlying cause for experimentally observed “out-of-limit” motions near 

0.27 Hz. 

Super-harmonic Resonance -- Figure 5 shows the investigation at wave frequency of 0.13 

Hz.  The wave amplitude varies from 0.2 to 2.2 ft, and the corresponding response amplitude 

varies from 0.25 to 1.65 ft.  There only exists one continuous response amplitude curve in this 

case.  The structure behaves mostly in super-harmonic fashion.  However, a turning point of the 
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curve at near wave amplitude of 1.3 ft indicates that although still super-harmonic, transitions in 

response amplitude and characteristics occur.  Sample super-harmonic responses in each stability 

region are shown in Fig.6. 

 The results of the analysis provide a framework for interpretations of noise effects on 

transitions in nonlinear response characteristics.  It is implied that with the presence of random 

perturbations, the response trajectory may travel between the coexisting response attractors, 

namely, sub-harmonics, small- and large- amplitude harmonics.  Comparisons with experimental 

results and interpretations will be elaborated in a later section. 

 

Comparisons and Discussions 

A detailed analysis of the data on the noise-induced inter-domain transitions and the 

noise effects on the response characteristics and system performance is shown in the following 

sections. 

 

Transition Behaviors 

As mentioned, besides the designed additive random perturbations, there is weak 

uncontrollable tank noise present in the wave excitation.  With the tank noise presence, there 

exist unexpected transition behavior even in a “designed deterministic setting” from a steady-

state response to another coexisting, yet distinct, response.  When the noise intensity increases 

with the addition of designed random perturbations, interactions between coexisting responses 

could become more apparent.  The observed transitions of coexisting responses are examined in 

detail by comparing with their corresponding deterministic counterparts.  The interactions of 

coexisting responses are also examined by comparing with simulations and interpreted based on 

the embedded structure exhibited in the deterministic analysis. 

 The time history of an experimental “designed” deterministic response (Test D1) with 

system parameters and excitation details in the stability region of a single attractor is shown in 

Fig. 7a.  Small variations in the response amplitude caused by the weak tank noise are noted to 
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oscillate along its deterministic counterpart.  As shown in the deterministic analysis, there exists 

a single response attractor.  Figure 7b shows a time history of a “designed” deterministic model 

response (Test D2) with system parameters and excitation details in the stability region of 

multiple coexisting attractors.  The response is observed to stay in a harmonic fashion for about 

120 seconds, and then to transition to a sub-harmonic mode.  The deterministic analysis predicts 

that there coexist two distinct response attractors, harmonic and sub-harmonic.  Because of the 

variation in the wave amplitude (from 0.8 to 1.2 ft), the response trajectory accordingly drifts to 

and from the two attractors (cf. Fig.1). 

 The time histories of model responses with two-coexisting attractors to random 

perturbations with moderate intensities are shown in Fig. 8.  It is observed that the response 

attractors are well-bridged due to the presence of designed noise perturbations.  The response 

trajectory oscillates between harmonic and sub-harmonic modes as shown in Fig.8a.  The 

transition phenomenon becomes more pronounced as the noise intensity increases.  The wave 

amplitude varies between 0.2 and 1.0 ft, and the response trajectory rifts between harmonic and 

sub-harmonic response attractors as indicated in Fig.1.  When the noise intensity becomes large 

(Fig.8b), the corresponding response time history becomes more random-like.  The individual 

harmonic and sub-harmonic attractors can barely be traced. 

 

Chaotic-Like Response Behavior 

As demonstrated and discussed by Yim and Lin [8], there exists a seemingly complex 

experimental response time.  By analyzing the response on the Poincaré section and its 

associated Poincaré time history, it is indicated that the response may be a result of noise-bridged 

multiple coexisting responses (four in this case) or noisy chaos.  However, more detailed studies 

on classifying its characteristics are also strongly suggested [8]. 

 The experimental responses are sampled and examined on a Poincaré section.  A 

Poincaré point is sampled at time interval of forcing excitation period to suppress periodicity due 

to the dominant periodic excitation component.  A Poincaré map is formed by a collection of 
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Poincaré points.  Concentration of Poincaré points on the section indicates the corresponding 

attractors. 

 Figure 9 shows the wave profile of the test, which indicates that the dominant frequency 

is at 0.5 Hz with wave amplitude varying within 0.8 and 1.5 ft.  By comparing with the response 

curve obtained from the deterministic analysis (Fig.3), it is implied that there may coexist small- 

and large -amplitude harmonic attractors, but exist no possible chaos or more-than-two multiple 

attractors.   Also, based on the numerical simulations, the initial conditions have to be large (e.g., 

(-3 ft, 3 ft/s)) to reach the large-amplitude harmonic domain.  Note that in the wave profile, there 

are transitions among various wave trains, which commonly occur in long random wave trains 

due to facility limitations.  The transitions in wave profile might cause corresponding phase 

shifts, and numerical simulations random perturbations in wave amplitude with uniformly 

distributed random phases are accordingly conducted to assimilate the experimental result. 

 The Poincaré map of a sample experimental model response (Test D13) is shown in Fig. 

10a.  The scattering of the points implies either noise-bridged multiple coexisting response 

attractors or a single noisy chaotic attractor.  In this case, a Poincaré time history of the response 

(Poincaré points vs. time) may better reveal the response characteristics.  It is shown that there 

are transitions among different steady states.  Specifically, there are seven transitions occurring 

at around the 300th, 425th, 550th, 1,175th, 1,450th, 1,575th and 1,700th second, respectively (not 

shown here due to page limit).  The Poincaré time history is accordingly divided into 8 segments.  

One single attractor is assumed to embed in each response segment, and transitions from one 

attractor to another are attributed to the presence of noise.  It is noted that one of the embedded 

attractors shows structured spreading that resembles the shape of the full-length data (cf. Fig.8 in 

[8]), and is suspected to be noisy chaotic.  Spectral analysis and Lyapounov exponent calculation 

have been applied to these attractors in an attempt to quantitatively identify noisy chaos.  

However, due to the fact that the response is perturbed by a relatively strong noise, no definite 

conclusions can be made with quantitative evidences. 

 Figure10a shows the experimental result sampled on Poincaré section and compared to 
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numerical simulation (Fig.10b).  Good agreement in characteristics and shape is observed.  

Therefore, the strange-attractor like shape might be a combination of effects due to variations in 

wave amplitude and random phase.  It is noted that near the region of 1 ft wave amplitude, long 

transient periods (varying from 500 to 700 cycles of excitation period) in simulations are 

observed.  The long transient periods may also contribute appearing complexity in the 

corresponding experimental result. 

 

Concluding Remarks 

This study presents detailed comparisons of numerical predictions and existing 

experimental results of a nonlinear, moored, submerged structural system subjected to nearly 

periodic wave excitations.  Based on the results presented, the concluding remarks are 

summarized in order as follows: 

1. Good agreement of IFF model predictions with the experimental results indicates the 

validity of the model.  The model predictions are in good agreement with experimental 

results in both time and frequency domains. 

2 Noise effects on the model results are examined and interpreted based on the 

corresponding detailed deterministic analysis.  Results from the deterministic analysis 

depict all possible, multiple coexisting nonlinear responses.  Possible transitions and 

interactions of these attractors are also indicated.  Numerical results show that near the 

primary resonance, small-amplitude harmonics coexists with large-amplitude harmonics.  

It is also shown that there exists only a single response attractor near the super-harmonic 

resonance, and that there coexist sub-harmonics and large-amplitude harmonics near the 

sub-harmonic resonance. 

3 Possible noisy chaotic response is further examined here in detail for its classification.  

Results of the corresponding deterministic analysis indicate neither chaotic response nor 

multiple response attractors existing in the specified parameter space.  The noisy-chaotic 

like response behavior are possibly caused by transitions (varied phase shifts) in the 
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waves.  Simulations accordingly conducted show a good agreement to the experimental 

result in characteristics and amplitude.
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Fig. 1 Amplitude response curve near sub-harmonic resonance (0.5 Hz); CA =0.25, CD =0.1, 

k1 =9.3 (lb/ft), k2 =4.0 (lb/ft2), k3 =4.0 (1b/ft3), C'D =0.02, and ζS =6% 
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Fig. 2 Time histories of sample responses near sub-harmonic resonance (0.5 Hz):  a) small-

amplitude harmonics (wave amplitude of 0.5 ft), b) sub-harmonics, and c) large-
amplitude harmonics (wave amplitude of 0.8ft)  
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Fig. 3 Amplitude response curve near primary resonance (0.27 Hz); CA =0.25, CD =0.1, 

k1 =9.3 (lb/ft), k2 =4.0 (lb/ft2), k3 =4.0 (1b/ft3), C'D =0.02, and ζS =6% 
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Fig. 4 Coexisting harmonic response with wave amplitude of 0.25 ft near primary resonance  

(0.27 Hz); a) small amplitude, and b) large amplitude 
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Fig. 5 Amplitude response curve near super-harmonic resonance (0.125 Hz); CA =0.25, CD =0.1, 

k1 =9.3 (lb/ft), k2 =4.0 (lb/ft2), k3=4.0 (1b/ft3), C'D =0.02, and ζS =6% 
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Fig. 6 Super-harmonics near super-harmonic resonance (0.125 Hz) with wave amplitude =  

a) 1.25 ft, and b) 1.35 ft 
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Fig. 7 Noise-induced transitions on “designed” deterministic experimental responses:   

a) single response attractor (Test D1), and b) coexisting harmonic and sub- 
b) harmonic responses (Test D2)  
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Fig. 8 Noisy experimental responses:  a) small noise intensity with variance ~ 0.01 (Test D7),  

and b) larger noise intensity with variance ~ 0.04 (Test D6) 
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Fig. 9 Possible noisy-chaotic experimental response at wave frequency of 0.5 Hz (Test D13): 

a) wave profile, and b) response 
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       a) 
 

   
       b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10  “Possible” noisy chaotic response on Poincaré map:  a) measured data, and 

b) simulations (CA=0.25, CD=0.1, k1=9.3 (lb/ft), k2=4.0 (lb/ft2), k3=4.0 (1b/ft3), 
C'D =0.02, and ζS=6%) 
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