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ABSTRACT

The equations of motion for small tethered buoys floating
in a nonlinear wave field have been developed. The coupling
between rotational and translational degrees of freedom is included
in the equations and a three-dimensional response is assumed. The
floating buoy is treated as one boundary condition of the governing
differential equations for the mooring line coupled buoy-mooring
problem. Hydrodynamic forces are calculated from the relative-
motion form of the Morrison equation.

INTRODUCTION

In this paper the coupling effects of rotational degrees of
freedom of tethered floating buoys with the governing equations of
the tether are considered. The cable algorithm is described in the
following section. The equations of motion for tethered floating
buoys in terms of the six degrees of freedom in translation and
rotation, which constitute the boundary conditions for one end of
the tether, are developed. An algorithm for quasi-linearization of
those boundary conditions, which are used in determining the
tether motions and buoy rotations for the coupled nonlinear
system, is developed and presented in a subsequent section.
Validation of the methodology is provided in the final section.

Buoys and their moorings are considered in this work to be
classified as small bodies for which the relative-motion Morison
equation may be adopted (Sarpkaya and Isaacson, 1981). A
coupled analysis is needed for this ocean structure, since the
motion of the buoy affects the motion of the mooring and visa
versa (Berteaux, 1976).

CABLE ALGORITHM

An iterative algorithm of dynamic analysis of hydro-
dynamically loaded cable has been developed by Chiou and
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Leonard (1991) in which the problem is formulated as a two point
boundary value problem. The boundary value problem is then
transformed into an iterative set of quasi-linearized boundary value
problems, which is then decomposed (Atkinson, 1989) into a set
of initial value problems so that spatial integration may be
performed along the cable (Sun et al., 1993). Solutions of each
initial value problem are recombined so as to always satisfy
boundary conditions; then solutions of the boundary value
problem are obtained by successive iteration. In decomposing the
boundary value problem into a set of initial value problems, one
expresses the solution as a linear combination of homogenous
solutions (X r; and 'T)) and particular solutions (°X 5 and °T}).

XT; = "XTi + jXTi ¢y

T, = °T, + o; T, @

where a;’s are undetermined coefficients, X ’s are components of
cable velocity and T;’s are components of cable tension.

Several kinds of boundary condition may be applied on both
ends of the cable. At one end the mooring cable may be held
fixed to the ocean floor and thereby requires zero velocity at the
boundary at all times

X’!‘i(t) =0 &)

At the other end a floating buoy is attached and buoy/body
boundary conditions are applied. In this case the equations of
motion for tethered floating buoys serve as a boundary condition.

EQUATIONS OF MOTION FOR BUOY

A definition sketch of a buoy floating on the moving water
surface and connected by a tether to the ocean bottom is depicted




in Figure 1. Two coordinate Systems, a moving system attached
to the buoy and a fixed (world) system, are used. As the buoy
moves from an initial static equilibrium position to a position at
time t, the position vector of a general point P in the buoy in terms
of world coordinates x; is
X =X
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Then, since the acceleration and velocity at G are Uand Q and the
rotational acceleration and velocity about point G are Rand R
respectively, the buoy acceleration and velocity at a general point
P are

%, - 0 - kxz, ®
X - U+ Rxz, <7>

The vector sum of the forces acting on the buoy and their
moments about point G must equal the inertial force/moment
vector for the buoy, [M] D, where [M] is the diagonal mass matrix
for the buoy, and D is the displacement of the center of gravity.
Thus
MD=F, -T-wW_ +B ®

M 'El M ED * EK

The seven force components on the right hand side of Eq. (8) are,
wind or other force F,,, tether tension T, dry weight Wy = M
g ¢, buoyancy B, hydrodynamics inertia force F, and
hydrodynamic drag E,,, respectively. Components of individual
matrices and vectors are written in the Appendix.

The equation of motion may be separated into translational
and rotational components. The translational components of the
equation of motion serve as three boundary conditions for the
tether point tensions and translational velocities (at point T) and
the rotational components serve as three auxiliary differential
equations for the buoy rotations R;. To implement these boundary
conditions one must first express U; and U] in terms of velocity and
acceleration at the tether point T using Egs. (6) and @,

U-X, -Rxz, ®
U-% -Rxz (10)
T ~-GT

Now the buoy equations of motion may be written, in indicial
notation, as

(Mg +0V . .Cop) (Xy; _eijkzmﬁj]
- pvwaCA(i)(jos)Rj * Fwi - Ti * (Ma)

“PV.80; + (1+C, 0000V, V,
* ND(D(Vi—XTi—EiijTBkRj) =0
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~[I;+C,, 3G3P VeulR, .
- pku(?A(id)(j) [Xy; - €5 ZanR;] '
~ [NDG)Wij]ij - [Ek'pND(k)ZGanik ]Rj
* [ ZowiFu; = Zop T; - ZapBdy; (12)
- 6ij (ZowiFyn - ZonTe - ZeuBdy,) IR
* €[ ZowFun -2y T, “Mg,]
bl (R-5) = 0

where the distance from T to B is
Zog = Zogi - Zcrri 13)

Wy = e Zgp, + ZoaR, ~Z o R, (14)

Mg, = (chi+CA(i»3)(k))vaavk

. (15)
* (ND(k)Vk = PV 0, )Z gy,
and the magnitude of relative velocity at point B is
Q = [(Y, _XTi _EiijTBkRj) (16)

(Vi-Xg - €unaZrpaR )]""

Equations (11) and (12) are second~or<§er ordinary
differential equations in time. Given solutions X', X, X' RS

i

R, R{ at time ', accelerations at time t = t° + At are
approximated as (Sun et al., 1993)
Xy = (XTi - Xizi)/(aAt) %))
- Xy
R, = (R, - R)Y(aAt) (18)

- ,),Ri'

where o = 1/2 for implicit integration and y = (1-a)/a. Using
the same formulation, the translational and rotational displacements
can be expressed as

Xpn = alt(X;, + 'Yxr.'i)+XT.'i 19)

R, = adt(R, + yR))+R; (20)

Then, upon substitution of Egs. (17) through (20) into Egs. (11)
and (12), quasi-static nonlinear equations at time t are obtained as

£, R, T) = 0 @b
for force equilibrium, and

hi(XTx, R, T)=0 (22)

for moment equilibrium.




JUASI-LINEARIZATION OF BUOY BOUNDARY
ZONDITIONS

Equations (21) and (22) are the nonlinear boundary
sonditions for the tether attached to point T. Following the
terative scheme for solving the cable equations for the tether as
fescribed by Chiou and Leonard (1991) and Sun et al. (1993), the
1onlinear boundary conditions need to be quasi-linearized. If
-otational velocities are included, as in Egs. (21) and (22), the
Newton-Raphson method (Atkinson, 1989) can be used to
fetermine improved estimates T;, Xy; and R, given prior estimates
I, X, and R;. Taking Taylor series expansions of Eqgs. (21) and
22) about the functions f; and h; evaluated at T;, Xy, and R, with
-espect to increments (T; - T;), Xy - X 5), and (R; - R,), one
writes

mh
]

o
il

i £ +JFXij,(X‘rj —er,)
+Jy.'rij,(Tj 'Tj,) (23)
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i By + Ty Ky = Xy)
*mej’('l_“j —TJ‘) 24)
Ty (R; =R

Components of the Jacobian matrices are written in the Appendix.

Now, Eqgs. (23) and (24) are six linear algebraic equations
for the nine unknowns T;, X r; and R ; in terms of prior estimates
T,, X5 and R". The six unknowns T;, X r; are related to the three
boundary conditions at the other end of the tether through the cable
differential equations. Then, upon substitution of (1) and (2), one
obtains six equations to be solved for six unknowns o; and R.

Rewrite Egs. (23) and (24) in matrix form as

Kep Ken| o P; 25)
Koe Kue| [R P,
where the submatrices are given by

[Keel = exad [{' X, X} $Xn 1 -
- U PTLETLCTH @9

(Keel = Urocad [{ Xy}, K}, X

- Ul (0T}, 0T, £TH @D
[Keal = Urmal (28)
Ky = Oiams) 29

{p;} = -{f}

+ []Fx.,]({x-r,} - {OXT,'}) 3
Do AT} - T 0
+ ey R}

{P} = -{h}
e JUXGY - X))
)T} -CTD e
+ Ui HR}

In each iteration particular and homogenous cable equations are
integrated from the bottom to the tether point at the buoy, and Eq.
(25) can be solved for the parameters o; and the new estimates to
R, Then, the partial solutions are combined to obtain the initial
values for a final integration.

NUMERICAL EXAMPLES

To demonstrate the capability of the present method, two
numerical examples were computed. Both examples used 3/8 in.
diameter mooring cables with modulus of elasticity 18x10° psi, dry
weight 0.218 Ib./ft., normal drag coefficient 1.2, tangential drag
coefficient 0.02 and added mass coefficient 1.0.

The first example is an oblate spheroidal buoy with 5 ft
horizontal radius, 1.5 ft. vertical radius, and 3378 Ib. dry weight.
The buoy is tethered with a 360 ft. (unstretched length) mooring
in 530 ft. deep water. The loading is a monochromatic wave train
5 ft. high with a 10 sec. period. A definition sketch of this
problem is shown in Figure 2a. The calculated pitch and
displacement are shown in Figure 3. The corresponding velocities
and acceleration are shown in Figures 4 and 3.

The second example is a prolate spheroidal buoy with 1 ft
horizontal radius, 12.5 ft. vertical radius, and 3378 1b. dry weight.
The buoy is tethered with a 252 ft. (unstretched length) mooring
in 300 ft. deep water. The same wave train as in the first example
is applied. A definition sketch of this problem is shown in Figure
2b. The calculated pitch and heave and surge displacements, and
their corresponding velocities and acceleration are shown in
Figures 6, 7 and 8, respectively.

DISCUSSION AND CONCLUDING REMARKS

A method to compute buoy motion coupled with mooring
motion and tension has been developed. The example for oblate
spheroid shows the buoy’s pitch motion is very close to the wave
slope, as expected for a wave follower disc buoy. The proiate
spheroidal buoy shows smaller pitch angle compare to the oblate
one. Heave displacement for the oblate spheroidal buoy is about
the same magnitude as the wave height while the prolate buoy
shows smaller magnitude. In both examples the surge motions
show a drift in the wave direction.
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Figure 2a.  Oblate Spheroidal buoy
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Figure 2b. Prolate Spheroidal Buoy
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Figure 3.  Pitch and Displacements of Oblate Spheroidal Buoy
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Figure 4. Velocities of Oblate Spheroidal Buoy




Prolate Spheroidal Buoy
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Figure 5. Acceleration of Oblate Spheroidal Buoy Figure 8. Accelerations of Prolate Spheroidal Buoy

APPENDIX

Prolate Spheroidal Buoy
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fime {eee) where M is mass of the buoy and I, is moment of inertia.
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Figure 6. Pitch and Displacement of Prolate Buoy _ I
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where Agg = p Vwar Cang» i Which p is water density; Ver is
wetted volume; and C,q is the added mass coefficient in the &
direction due to motion in the g; direction.

Pitch / Heove / Surge Velacity

Time (soc.)

5P Vel (deg./s.) —— e, Vel (f./s.) —— Su. Vel (ft./3.) J

Figure 7. Velocities of Prolate Spheroidal Buoy
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where Npg, = p Ap,Cp,Q/2, in which Apg is the drag area; Cp,
the drag coefficient in the e, direction; and Q the magnitude of ~
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