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rithm based on the Hilbert transform to nonlinear ocean mooring systems. The
mooring dynamical system consists of a submerged small body and includes a geomet-
rically nonlinear restoring force and a nonlinear dissipation function incorporating
both viscous and structural damping. By combining a recently developed methodology
with a generalized averaging procedure, parameter estimation from the slowly vary-

ing envelope dynamics is enabled. System backbone curves obtained from data gener-
ated by numerical simulation are compared to those obtained analytically and are
found to be accurate. An example large-scale experiment is also considered.

Introduction

Ocean mooring systems are characterized by a nonlinear re-
storing force, a structural damping force, and a coupled fluid-
structure interaction exciting force (Chakrabarti, 1990). The
restoring force includes material discontinuities and geometric
nonlinearities associated with large mooring line angles (Bernit-
sas and Chung, 1990; Gottlieb and Yim, 1992). The hydrody-
namic exciting force includes quadratic nonlinearities and peri-
odic components governed by wave-induced viscous drag, radi-
ation damping, and inertial effects. Coupling of degrees of
freedom further complicates system behavior. Small body sys-
tems (with respect to the flow wavelength) or structures with
slender elements do not alter the incident flow, whereas large
bodies change the flow field in the vicinity of the body (Sarp-
kaya and Isaacson, 1981; Chakrabarti, 1987). Consequently,
small body systems are typically solved directly due to the
explicit form of the exciting force, while large body systems
require an approximation of the exciting force or a simultaneous
solution of the field-body boundary value problem.

Although the hydrodynamic exciting force of small and large
body systems fundamentally differ in their complexity, both
systems incorporate similar elements of coupled nonlinear
damping and inertial mechanism and equivalently incorporate
the nonlinearities of the mooring restoring force and structural
damping force. While the nonlinear mooring restoring force can
be conveniently derived from a potential function describing a
pretensioned geometric configuration, derivation of the exciting
force requires knowledge of force coefficients associated with
the relative motion of the structure. The force coefficients con-
sist of added masses characterizing the inertial terms and damp-
ing coefficients characterizing dissipation due to wave-induced
form drag or radiation damping.

The force coefficients are typically deduced from a set of
calibration experiments where the structural system parameters
are predetermined and the form of exciting force is assumed for
given environmental conditions (e.g., a relative motion Morison
equation for small-body dynamics in a drag-dominated flow
regime) . Among the methods employed to extract the coeffi-
cients are Fourier averaging or least-squares techniques (Sarp-
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kaya and Isaacson, 1981; Chakrabarti, 1987). Furthermore,
spectral-based system identification techniques have been de-
veloped to obtain frequency-response functionsyfor wave force
calculation on a fixed structure and a nonlinear drift force model
(Bendat, 1990).

An alternative method recently developed by the second au-
thor to evaluate structural and damping coefficients and fre-
quency response functions for weakly nonlinear vibration sys-
tems utilizes the Hilbert transform (Feldman, 1985; 1994a, b).
In the past years, the Hilbert transform has been widely used
as a signal processing tool (Bendat and Piersol, 1986; Mitra
and Kaiser, 1993). The Hilbert transform of a time series will
identify existence of a nonlinear component and detect the de-
gree of nonlinearity (Tomlinson, 1987). Examples employing
the Hilbert transform in the ocean domain are in the analysis
of local properties of sea waves and wave groups (Bitner-Greg-
ersen and Gran, 1983; Hudspeth and Medina, 1988) and in the
detection of nonlinear wave buoy motions (Wang and Teng,
1994). Application of the Hilbert transform to both free and
forced vibration of mechanical systems enables the instanta-
neous identification of system parameters based on signal pro-
cessing of both input and output signal measurements of the
dynamical system. Thus, nonlinear frequency-response func-
tions are obtained for both the natural frequency and modal
damping.

In this paper, we apply the Hilbert transform method (Feld-
man, 1994a, b) to results obtained from numerical simulation
of a pretensioned small body mooring system (Gottlieb, 1991).
The accuracy of the mooring system frequency and damping
response curves obtained via the Hilbert transform is verified
by comparison with backbone curves obtained analytically for
both free (Gottlieb et al., 1994) and forced vibration. We then
apply the Hilbert transform to results obtained from a large-
scale mooring experiment (Yim et al.,, 1993). By combining
the resulting damping response curve with an approximate curve
obtained by a generalized averaging procedure (Sanders and
Verhulst, 1985), we obtain estimates for both structural and
hydrodynamical mooring system parameters. We close with a
discussion on the advantages and limitations of the proposed
identification scheme and on directions for future research.

The System Model

The ocean mooring system considered (Fig. 1) is formulated
as a single degree of freedom (surge), hydrodynamically
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Fig. 1 Mooring assembly

damped and pretensioned nonlinear oscillator ( Gottlieb, 1991).
In this study, we consider a symmetric four-line restoring force,
including a geometric nonlinearity for large-angle motion and
neglect the nonlinear convective force. The resulting equation
of motion derived from small body theory is

mX +c¢,X + RX; L, I, k) = F(X,X; ¢4y Cara, w) (la)

where the system mass, structural damping, and mooring line
stiffness are m, c,, and k, respectively. F is the hydrodynamic
damping and inertial exciting force, which is formulated as a
relative motion Morison equation (Sarpkaya and Isaacson,
1981; Chakrabarti, 1987)

F=§ﬂ%U—XﬂU—ﬂ+le+gW—pW£(w)

where ¢, and ¢, are added-mass and drag coefficients, respec-
tively; p is water mass density; s and V are the body drag
projected area and displaced volume, respectively; U is the
horizontal particle velocity based on linear wave theory

cosh k(z + h)

U= 2 = gk tanh lc)
aw inh kb w g kh (lc)

cos wt,

where a, w, and k are the incident wave amplitude, cyclic fre-
quency, and wave number, respectively; z and i denote body
and water depth, respectively; and g is the gravitational acceler-
ation. R is the elastic cable restoring force

ReMax+1| -zl _oxh*th|l 4
L A

where /; (i = 1, 2) and [, are the in-situ mooring line and initial
pretensioned lengths, respectively,

BN D

and L and B are the body length and beam, b and d are the
horizontal and vertical mooring anchor coordinates, respec-
tively.

Rearranging and scaling (x = X/(d — B/2)) the system (1)
results in the following:

(1e)

X+ DX, v,6)+R(x; 0,8, 7)=F(t; p,w) (2a)
where F is the external excitation
F = —kpw? sin wt (2b)
D is the normalized dissipation function
D=yx—6(u—X)|u—-2x|, u=«kwcoswt (2¢)
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S (2Q)witha=0=1,7 =

R is the normalized restoring force

b+ x B —x
R: — —
“{x T[h T Bt I+ (B- x)2]} 2

and «, 8, T are the nondimensional stiffness, geometrical moor-
ing configuration, and pretension parameters

4k _2b-L - A
2d - B’ 2d - B

a_-_ﬁ
m + pVe,

2e-g)

v, 6 are structural and hydrodynamical damping parameters

s 2d - B )
=G P24 Blsca
m + pVe, 4(m + pVec,)
and ky is the forcing parameter
= 2a cosh.k(z + h) , _ PV (1l + ¢,) @i
2d — B sinh kh m + pVe,

Note that the system degree of nonlinearity is controlled by the
geometric mooring parameter (3, the pretension parameter 7, and
the nonlinear damping parameter 6. The pretension parameter 7

= %\/(1 + B?*) corresponds to I, = I, = \/((b - 05L) + (d
— 0.5B)?). The strongest nonlinearity is obtained for taut (7
= 0.5) right-angle mooring (8 = 0), whereas the weakest
nonlinearity is found for small angles (3 > 1) and large preten-

sion (1 < N(1 + g2).

Identification of Moofing System Parameters Using
the Hilbert Transform

Recently, nonlinear frequency and damping response back-
bone curves have been successfully obtained by applying the
Hilbert transform to data generated by simulation of weakly
nonlinear free and forced vibration systems (Feldman 1994a,
b). For convenience, we summarize the main results in the
Appendix and demonstrate that this procedure is valid for the
processing of signals with nonoverlapping spectra (Coulon,
1986). In this section we demonstrate the applicability of the
method for parameter identification of the ocean mooring sys-
tem model (2).

The Hilbert transform is first applied to free vibration simula-
tion results generated by numerical integration of the system
V2/2,y = 6 = 005, k = 0. The
instantaneous envelope is depicted as A(¢) with the response
y(2) in Fig. 2(a). Implementation of the algorithm described
in the Appendix for free vibration (z(z) = 0 in (19)) results
in the instantaneous natural frequency response (A(fo)) and
instantaneous equivalent damping coefficient (A(k,)) of the
system shown in Fig. 2(d). A low-frequency filtration of the
natural frequency and damping response functions enables con-
struction of the nonlinear backbone curves for both restoring
force and dissipation functions (Fig. 2(b)). Note that the degree
of nonlinearity is portrayed by the angle of the backbone curves
and that application of the algorithm to simulation results of a
linearized oscillator will yield vertical backbones anticipated by
analysis of a linear mechanical system (Feldman and Braun,
1993). The offset for the zero amplitude of the damping re-
sponse curve A(hy) = 0 is half the value of the structural
damping parameter hy = y/2, which in Fig. 2(b) (y = 0.05)
is hy = 0.025. The offset for zero amplitude of the frequency
response (A(f) = 0) corresponds to the equivalent linearized
natural frequency. This can be shown by expanding the restoring
force R(x) in (24) about the unique stable fixed point at the
origin

Ri(x) = wix = afl — 27(1 + B3 ¥ x 4)
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Fig. 2 Free vibration (@ = B = 1, 7 = v2/2, y = 8 = 0.05, k = 0)

Note that the linearized natural frequency for a taut mooring
configuration reduces to w3 = aB*/(1 + B?), corresponding
10 wy = M or fo = 0.1125 for the values of & = § = 1 as
depicted by the free vibration of Fig. 2(b). Measurement of
the mooring line angles (3) and pretension (7) enable calcula-
tion of the mooring stiffness parameter () from (4). Conse-
gquently, the added-mass coefficient (c,) can be obtained given
calibration data of the cable stiffness (k).

In order to apply the Hilbert transform to forced vibration
simulation results, we assume a weakly nonlinear formulation
for the dissipation function (2¢). Thus, an equivalent linear
damping over a wave period is obtained.

Dy(x) = yx = 8(u — %) = yx — % tul(u — %) (5)

Consequently, the wave-structure interaction coupling in (2¢)
can be separated resulting in the input/output relationship re-
quired by the quasi-linear formulation of (19). Substitution of
{(5) for (2¢) and rearranging (2a) results in the following:

¥+ Tx+ R(x;a B,7) = Kcos (wt + D) (6a)
where

Bdkw
37

[ 8xé 3n
K = kw® [u* + . ®=tan
Kw \/p ( ™ ) tan (8;(6) (6¢, d)

Journal of Offshore Mechanics and Arctic Engineering

'=y+

(60)

and R(x) remains as in (2d). The Hilbert transform is applied
to forced vibration simulation results generated by numerical
integration of (6) witha = 8 = 1,7 = \/2/2, vy =48 = 0.05,
# = 1, w = 0.65. The instantaneous envelope A(¢) with the
response y(t) generated by a harmonic exciting force (k =
0.24) is shown in Fig. 3(a). Implementation of the algorithm
described in the foregoing for various forcing amplitudes (k =
0.14, 0.24, 0.33) results after a low-pass filtration in discrete
values for the instantaneous natural frequency response (A(f))
and instantaneous equivalent damping (A (ho)) coefficients of
the system which are shown in Fig. 3(5). An alternative input
function which can be used in a controlled experimental envi-
ronment is excitation by a ‘‘chirp’’ function defined by F(t) =
K cos [Q(t)t + ®] where Q(f) = w(0.1 + 2t/ty,). This form
of excitation z(t), depicted in Fig. 4(a), enables an amplitude-
varying response function y(¢) and Hilbert envelope A(?) in
Fig. 4(b). Consequently, continuous forms of both frequency
and damping response backbone curves are obtained from a
single controlled experimental run, as is shown in Fig. 3(b).
The filtered frequency response backbone curve for forced vi-
bration (A(f,) in Fig. 3(b)) was found to be identical to that
obtained for small amplitudes (A < 0.5) in free vibration (A(f;)
in Fig. 2(b)), and differed only slightly for larger amplitudes.

Verification of System Backbone Curves Obtained
From Simulated Results

In this section we compare the backbone curves obtained
from numerically simulated data to those obtaingd analytically
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(b) Natural frequency and damping frequency response to harmonic ex-
citation (x = 0.14, 0.24, 0.33) and to a “chirp” excitation (x = 0.24)

Fig. 3 Forced vibration (a = =1,7=12/2,y=86 =005, p =1, =
0.65)
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0.24, w = 0.65)

in order to verify the accuracy of the identification algorithm.
Our analysis consists of investigation of the influence of each
nonlinear component of the system (2). The natural frequency
of the system (f;) can be obtained analytically by direct integra-
tion of the system Hamiltonian phase plane (v = § = 0). The
total energy of the system can be written as

H=3+V(x) (7a)

where the potential V(x) = f R(x)dx is

V(x) = a{% Wi+ B+ +V1 + (8 - x)z]} (7b)

Consequently, as the natural period of the system can be inte-
grated (Gottlieb, 1991), a closed-form analytical backbone
curve for the natural frequency can be obtained

4 dx 27 1
T=4 f =212 8
o V2[V(x) — V(x)] wo fo ®

where V(xo) is a function of initial conditions. Comparison of
results obtained from the Hilbert transform for weak damping
(y = 6 = 0.01) and zero tension (7 = %\/(1 + (7)) with those
obtained analytically for 8 = 0 and 8 = 1 are shown in Fig.
5(a). Note the Hilbert transform natural frequency oscillates
about the analytical results for large amplitudes and is sensitive
to the degree of nonlinearity. However, the low-pass filter of
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the Hilbert envelope coincides with the theoretical backbone
obtained from (8).

In order to compare the damping coefficient via the Hilbert
transform with results from an approximate perturbation ap-
proach, we restrict our analysis to weak hydrodynamic damping
of a taut small angle mooring system (8 > 1) or a system with
large pretension (7 < 0.5\/ (1 + $?)). The natural frequency
of the linearized restoring force was determined in (4), and a
higher-order expansion enables derivation of a cubic term in
the restoring force. Thus, the weakly nonlinear mooring system
is written as

£+ wix = ¢f(x, %, 1)
= e[—asx® — §x
+ 8(u - %)|u — x| — kuw? sin wt]  (9a)
where

ay = ar(l — 48%)(1 + g*)7? (9b)
and (a3, v, §) = €(&s, ¥, 6), € < 1; u is defined in (2¢).

Free Vibration. For small damping values (y, § < 1) and
weakly nonlinear mooring (a; < 1), we employ a generalized
averaging method (Sanders and Verhulst, 1985) to obtain the
slowly varying envelope evolution equations of the weakly non-
linear system (9). The evolution equations for the amplitude
and phase are obtained for the unforced system («x = 0) by

¥
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Fig.5 Comparison of analytical and Hilbert transform natural frequency
response curves (a = 1, y = § = 0.01)

Transactions of the ASME



averaging over the natural period (2m/wy) where the solution
form to O(e)is x = A cos (wet + ) for e <€ 1.

A= —|Xa 48wy
2 3

3&3 2

¥ = (10a, b)

8wg

Note that (10a) is a function of A only and can be solved in
closed form to yield an approximate expression for the instanta-
neous envelope, after which the phase can be also integrated
(Nayfeh and Mook, 1979).

Ay exp(%yl)
(11)
]
3ny 2

Comparison of the instantaneous envelope via the Hilbert trans-
form and (11) are identical for small values of y, § < 0.1
. (Gottlieb et al., 1994).

AQt) =

Forced Vibration. We now consider the evolution equa-
tions for the slowly varying amplitude and phase for the forced
system. These are obtained by averaging over the forcing period
(27/w) where the solution form to O(e) is x = A cos (wt +
Y) fore < 1.

2
A=-2Xa +wcosW—@~(Isc050+- I¢ sin )
2 2 27
AY = —éA ;3% 40 KpW sin ¥
2 Sw 2

2
- 5—2“’- (Iccos 6 — I sin 8) (124, b)
vl

where A is a detuning parameter

2 2

A=Y T We (12¢)
w
and
IS 27w
<1>=f [k cos wt + A sin (wt + ¥)]|k cos wt
C 0
. sin wt
+ A sin (wt+\Il)l< )dt (124, e)
cos wt

Solution of (12) can be obtained numerically and the steady-
state slowly varying frequency response can be obtained by
calculating the fixed points (A, = 0) of (12) (Gottlieb, 1991).
However, the frequency response backbone of (12) can be ob-
tained from the undamped (y = § = 0) unforced (k = 0) steady
state of (12), which yields the following quadratic amplitude
frequency relationship:

w? — w}

4
AZ:— 13
3 (13)

a3

Comparison of the approximate frequency response from
(13) to that obtained by applying the Hilbert transform to simu-
lations of (2) for a strong geometric nonlinearity (§ = 0) with
moderate (7 = 0.1) and strong (7 = 0.01) pretension and
weak damping (y = 6 = 0.01) are shown in Fig. 5(b). For
convenience, we plot the respective theoretical frequency re-
sponse curves obtained from (8). The results portrayed in Fig.
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5(b) demonstrate the coincidence of the Hilbert obtained fre-
quency response point for weak excitation (k = 0.0225) with
the theoretical results from' the approximate wave excitation
analysis (13) and the exact free vibration analysis (8). An
increase in the magnitude of wave excitation (k = 0.1125)
demonstrates the sensitivity of the Hilbert obtained forced vibra-
tion results to the degree of nonlinearity (v = 0.1). However,
it should be emphasized that the validity of the approximate
frequency response (13) is itself sensitive to the degree of the
nonlinearity, as are all perturbation-based approximations.

Analysis of Experimental Results

We demonstrate the application of the algorithm presented
on results obtained from a large-scale experiment done at the
Oregon State University Wave Research Lab (Yim et al., 1993).
The experimental model consisted of a submerged sphere (di-
ameter = 0.4572 m) moored at a right angle (8 = 0) to the
walls of a two-dimensional basin with moderate pretension (7
= (0.344). The submerged sphere (z = —0.97155 m, h = 2.7432
m) was subjected to both free and forced vibration tests, which
were done by plucking the model in still water (x = 0) and
exciting it via harmonic wave excitation («, w > 0). Single-
degree-of-freedom motion was ensured by constraining the
sphere, which was manufactured with delron bearings, to move
along an aluminum rod. System displacement measurements
were done via string pots connected to the sphere and wave
excitation was measured by an array of resistance-type wave-
gages located fore and aft of the model. '

Free Vibration. The Hilbert envelope (A(z)) obtained
from an example free vibration test demonstrates an almost
linearlike decay characteristic of Coulomb damping (Nayfeh
and Mook, 1979) due to the constrained sphere motion in Fig.
6(a). The filtered backbone curves for both frequency and
damping response are presented in Fig. 6(b). While the content
of Coulomb-like damping is evident by the hyperboliclike shape
of the damping response curve A(hy) in Fig. 6(b) (Feldman,
1994a), an equivalent instantaneous damping force, D(y) =
2hy(A)Y, depicted in Fig. 7(b) enables estimation of the magni-
tudes of both the Coulomb and structural damping components.
Furthermore, the equivalent instantaneous restoring force, R(y)
= w}(A)y, in Fig. 7(a) also reveals the linear behavior of the
restoring force for large amplitudes. Note that due to the charac-
teristics of the Coulomb damping, the frequency and damping
responses cannot be obtained for small amplitudes (y < 0.03,
¥y < 0.05).

Based on the linear behavior of the equivalent instantaneous
damping force for large velocities (¥ > 0.1) in Fig. 7(b), the
hyperbolic structure of the experimental free vibration damping
response can be approximated by considering a weakly nonlin-
ear mooring system (9a), where the perturbation consists of an
equivalent linear damping component modified with an addi-
tional threshold for Coulomb damping

X4 wix = —azx® — T — vsgn (xX) (14)
where v is the magnitude of the Coulomb damping, sgn (X) is
the sign of the body velocity (x), I'" is an equivalent linear
damping coefficient describing both structural and hydrodynam-
ical damping, and «; is defined in (9b). Following the procedure
outlined in the previous section results in the evolution equa-
tions for the slowly varying amplitude and phase

A':_EA.F_ZE_ =_£+_2_f/_lA
2 MWy 2 Tw A
§ = 2% 42 (15a, b)
8&)0
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Fig. 6 Experimental free and forced vibration (8 = 0, 7 = 0.344)

We note that (15a) is only a function of the dissipation mecha-
nisms and that a quasi-linear approximation for the Hilbert
damping response can be obtained in a similar manner to yield

A = —[ho(A)]A (16)
Consequently, by equating the right-hand sides of (15a) and
(16), an approximate relationship for the hyperbolic structure
can be obtained

4 v
A(hy) = —
(o) 7wy 2hg — T

(17)

We now return to Fig. 6(b) and calculate both equivalent linear
damping and Coulomb damping coefficients (I" = 0.062, v =
0.071) based on a constant (mean) natural frequency w, (fo =
0.225).

We note that the magnitudes of both structural () and hydro-
dynamic (4) damping components cannot be obtained under
free vibration, and thus consider the resultant linear damping
coefficient as an upper bound for structural damping (i.e., ¥max
=TI" = 0.062). Furthermore, although the offset for zero ampli-
tude of the frequency response is not available in Fig. 6(b)
due to the Coulomb damping characteristics (A < 0.03), an
approximate value for the mass parameter (¢ = 6.406) can be
obtained from (4) based on an estimated natural frequency
(fo = 0.225). Consequently, an added-mass coefficient c, =
0.5025 can be obtained from (2e) (k = 234.1 N/m, m = 48.06
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kg, pV = 50.04 kg), corresponding to the classical value of
the added mass of a submerged sphere (Chakrabarti, 1987).

Forced Vibration. We now turn to preliminary results ob-
tained from an example forced vibration test under harmonic
excitation. A normalized free surface (z(t) = n/(d — 0.5B),
11 measured) and model output response (y(¢) = y*(¢)/(d —
0.5B), y* measured) are presented in Fig. 8(a, b). Generation
of the free surface was achieved by harmonic excitation of the
basin piston-type wavemaker (for a small amplitude a = 0.034
m and frequency w = 1.6982 rad/s corresponding to T = 3.7
s). However, the required steady-state response of the model
included weak re-reflections (from the beach and wavemaker
itself), imposing a slight variability of the input amplitude at
the free surface (Fig. 8a). Additional sources of variability are
due to higher-order effects produced by the prescribed motion
of the wavemaker itself. We note that the depth parameter kh
= 1.0378 obtained from the linear dispersion relation (1c¢) cor-
responds to an intermediate depth wave, and that the diffraction
parameter kB = 0.173 corresponds to a small body excitation
regime (kB < 1.25) or to a small body size/wavelength =
0.0275 < 0.2. The input exciting force was calculated by multi-
plying the normalized free surface by a factor F,, (F, = p[cosh
k(z + h)/sinh kh]jw® = 2.959) based on linear wave theory
where p = 1.027 was calculated from (2k). The Hilbert trans-
form of input and output results of two tests (kx = 0.012, 0.031)
yields two pairs of discrete values of filtered frequency and
damping responses depicted in Fig. 6(b). We note that the
natural frequency response values A (f;,) are slightly higher than
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Fig. 7 Experimental instantaneous free vibration force responses
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Fig. 8 Experimental input and output measurements (g = 0, 7 = 0.344,
k = 0.031, v = 1.698)

that obtained from free vibration. However, the magnitude of
the damping frequency response A(h,) is much smaller than
that obtained from the free vibration test. The large difference
in the damping frequency response is due to a much smaller
magnitude of the Coulomb damping component, which varied
harmonically under wave excitation. In free vibration, the nor-
mal force and contact area between the sphere and constraining
rod were constant, whereas under wave excitation, the normal
force and effective contact area were smaller as they varied
with the periodic lift force. Furthermore, recall that the results
are obtained from a Hilbert transform of an input measured at
the free surface and not by direct measurement of the exciting
force at the location of the body. The variability the free surface
measurement is depicted by the noisy content of the input signal
spectra demonstrating existence of additional harmonics (Fig.
G(a)) versus the smooth spectra of the response (Fig. 9(b)).

In order to estimate the dissipation parameters, we consider
the evolution equations under wave excitation and obtain an
approximate expression for the possible hyperbolic structure
including structural damping, wave drag, and Coulomb damping

4 v*

A = Sy — T

(18a)

where v* is a modified Coulomb damping and I'* consists of
both structural and linearized wave drag components

86kw

=9+
Y 3r

(18b)
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Substitution of the amplitude and damping frequency data pairs
(A(ho)) into (18) and solving two equations for the two un-
known damping coefficients (v*, I'* ) results in estimated values
for the modified Coulomb damping coefficient (v* = 0.027)
and for the equivalent structural and wave drag coefficient (I'*
= 0.0815). Knowledge of an upper bound for the structural
damping coefficient (yma = 0.06) from free vibration enables
calculation of a lower bound for the wave drag parameter from
(18b) (bumin = 0.48). Consequently, the wave drag coefficient
is calculated from (2i), resulting in ¢; = 0.28. We note that
this value is a lower bound for the drag coefficient and its
sensitivity is a function of the structural and Coulomb damping
estimates. The Reynolds and Keulegan-Carpenter numbers for
this test based on a maximum calculated sphere velocity (0.4
m/s) were Re = 1.2 10° and KC = 3.25. We note that the
corresponding drag coefficient for a sphere based on the equiva-
lent steady flow value (cf., Newman, 1977).is ¢, = 0.43. Fur-
thermore, drag and added-mass coefficients obtained for a sub-
merged sphere in a sinusoidally oscillating fluid (Sarpkaya,
1975) for corresponding KC value are ¢, =~ 0.25 and ¢, ~ 0.55.

Summary and Conclusions

We have demonstrated the applicability of a parameter identifi-
cation algorithm based on the Hilbert transform for nonlinear ocean
mooring systems. By combining a recently developed methodol-
ogy based on the Hilbert transform of both input and output time
domain data with a generalized averaging procedure, parameter
identification from the slowly varying envelope dynamics is en-
abled for both free and forced vibration. Free vibration calibration
results in parameter identification of the system natural frequency
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and damping parameters independent of the equivalent system
mass. Consequently, the added-mass and structural damping coef-
ficients can be estimated. Forced vibration analysis requires, in
addition to simultaneous measurements of input and output, knowl-
edge of the mass and structural damping parameters in order to
estimate the wave drag coefficient.

Verification of the nonlinear system backbone curves ob-
tained from the Hilbert transform of simulated data was per-
formed by comparison with analytical solutions of a mooring
system for a given geometry and pretension condition. The
calculated results were found to be identical to those obtained
analytically for free vibration and compared well with those
obtained by an approximate perturbation approach under wave
excitation. Parameter estimates were obtained from a large-scale
experiment by combining the resulting backbone curves with
those obtained by the averaging procedure describing the moor-
ing system envelope dynamics. The influence of data measure-
ment, variability of system input, and the complexity introduced
by an additional nonlinear dissipation mechanism were also
revealed in the analysis of experimental results.

In closing we remark that a quantitative estimate of mooring
system parameters is enabled from the response backbone
curves obtained via the Hilbert transform method combined
with a theoretical description of the slowly varying envelope
dynamics. Furthermore, while error analysis is identical to that
of other spectral-based identification schemes, the Hilbert trans-
form algorithm enables nonlinear parameter estimates from a
minimal data set. We note that while this identification scheme
is straightforward for single-degree-of-freedom motion, coupled
multi-degrees-of-freedom response requires further investiga-
tion, particularly in the case of nonlinear coupling of fluid-
structure interaction terms.
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APPENDIX

Parameter Identification Using the Hilbert Transform

Following Feldman (1994a, b), we consider the following
quasi-linear system: ’

Y+ 2k (A, W)y + wi(A, U)y = (1) (19)

m

where wo(A, ¥) and iy (A, ) are amplitude and phase-depen-
dent natural frequency and equivalent damping coefficients, re-
spectively, and z(¢) is an external excitation. Furthermore, we
require that both coefficients w3 and A, be functions of a slowly
varying amplitude A (et) and phase ¥(et), so that y(¢) and the
coefficient functions f(et), (f(et) = wi(et) or ho(et)), are
signals with nonoverlapping spectra (Coulon, 1986). Thus, ap-
plication of the Hilbert transform (H[x(z)]) to both sides of
(19) results in a differential equation for the complex analytic
signal forms for both input and output as the Hilbert transform
of f(et)g(t) can be decomposed as Hf(et)g(2)] =
F(e)H[g(1)], where f(et) = wj and g(r) = y(¢) or f(et) =
ho and g(t) = dy(¢)/dt.

Substitution of the output Y (z) = A(¢) exp[jy(t)] and input
excitation Z(t) = B(t) exp[j$(¢)] into (19) results in a com-
plex ordinary differential equation. Separating real and imagi-
nary parts and rearranging terms results in the following:

¥+ 2hy(A, DY + wi(A, V)Y = Z (20)
m
where the frequency and damping response curves are
w3=¢)2—é+2Az +é—l,£+l<P—'£>
A A Ay m Ay
ho=—4—i.+i<2.> (214, b)
A 2 m\2¢§
and
Z(1) . v+ -y
——-=P)+ 1= + 22a, b
Y1) (1) + oM Vi Ty (22a, b)

Note that y(¢), z(t) are the output and input signals, respectively,
and y(r), Z(r) are their real valued Hilbert transforms: Y () =
¥(t) + j¥(1), Z(tr) = z(t) + jz(t). Parameter identification can
also be obtained for free vibration (z(¢) = 0) in (19) where w2
and hy are independent of the mass parameter (m in (20)).

Transactions of the ASME



