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ABSTRACT INTRODUCTION 
This paper focuses on the development of optimal 

deterministic, nonlinearly coupled barge motion models, 
identification of their system parameters and calibration of their 
prediction capability using experimental results.  The ultimate 
objective is to develop accurate yet sufficiently low degree-of-
freedom stochastic models suitable for efficient probabilistic 
stability and reliability analyses of US Naval barges for 
preliminary design and operation guideline development (see 
Part II).  First a three-degree-of-freedom (3DOF) fully coupled 
Roll-Heave-Sway model, which features realistic and practical 
high-degree polynomial approximations of rigid body motion 
relations, hydrostatic and hydrodynamic force-moment 
specifically suitable for barges, is examined.  The hydrostatic 
force-moment relationship includes effects of the barge’s sharp 
edge and combined roll-heave states, and the hydrodynamic 
terms are in a “Morison” type quadratic form.  System 
parameters of the 3DOF model are identified using physical 
model test results from several regular wave cases.  The 
predictive capability of the model is then calibrated using 
results from a random wave test case.  Recognizing the 
negligible sway influence on coupled roll and heave motions 
and overall barge stability, and in an attempt to reduce 
anticipated stochastic computational efforts in stability analysis, 
a 2DOF Roll-Heave model is derived by uncoupling sway from 
the roll-heave governing equations of motion.  Time domain 
simulations are conducted using the (3DOF) Roll-Heave-Sway 
and the (2DOF) Roll-Heave models for regular and random 
wave cases to validate the model assumptions and to assess 
their (numerical) prediction capabilities. 

In the design of ship-to-shore transport cargo barges, it is 
essential to determine barge stability for a range of operational 
and survival sea conditions.  In general, the barges will operate 
in a variety of directional seastates.  However, the most 
unstable scenario is if the barges broach and become broadside 
to the waves in the so called “beam seas” and may incur large 
amplitude three-degrees of freedom (3DOF) -- roll, heave and 
sway motions with the possibility of capsizing [1].  Many 
researchers further reduced the DOF of the systems to that of 
roll only by taking advantage of the dominant roll behavior [2-
7].  Parameters for the coefficients of nonlinear roll motions 
were determined [8] and the roll motions characteristics of full 
scale ships were examined [9].  A stochastic approach to the 
analysis of noisy periodic roll motions was proposed [10]. 

This paper presents a deterministic 3DOF Roll-Heave-
Sway model [7, 11], and a corresponding two-degree-of-
freedom (2DOF) Roll-Heave model [12-13], to predict barge 
motion responses.  These low DOF models, with high-degree 
polynomial approximations of force and moment relationships, 
capable of capturing the important nonlinear characteristics of 
the coupled nonlinear responses for large roll angle motions, 
will be used in the development of efficient stochastic models 
for preliminary design and response predictions under 
operational and survival conditions (see Part II). 

In research conducted earlier at Oregon State University, a 
one-degree-of-freedom (1DOF) system [10] was developed to 
model pure roll motion of a barge in random beam seas.  
Nonlinearities of the model include the righting moment and 
fluid-structure viscous effects.  Hydrodynamic and structural 
damping effects were approximated by a linear term plus a  

  Copyright © 2004 by ASME 1



“Morison” type quadratic term [14].  The righting moment 
included nonlinear stiffness terms to provide a more accurate 
restoring moment at larger roll angles.  This 1DOF model was 
compared with measured barge motion data and was found 
capable of reasonable predictions in terms of statistical 
moments, spectral densities, and histograms. 

( ) ( ) MI
dt
dFmv

dt
d

== ω;                                       (1)

An inertial coordinate system is placed at the location of 
the prescribed body-fixed "roll center" of the barge under static 
equilibrium.  Note the inertial coordinate system coincides with 
the body-fixed (moving) coordinate system initially.  Static roll 
righting moments and heave buoyant restoring forces are 
calculated as a function of the position and rotation of the barge 
about the roll center.  Equilibrium of forces and moments are 
considered about the roll center (the position of which is time 
dependent with respect to the inertia coordinates) with heave 
and sway directions respect to the inertial coordinates. 

In this study, we focus our discussion on a three-degrees-
of-freedom (3DOF) deterministic model including the 
nonlinear coupling effects of roll, heave and sway motions [1, 
11].  This 3DOF model is expected to improve the predictive 
capability at large roll angles over the 1DOF system because 
the heave and sway coupling effects with the roll through 
hydrostatics and rigid body kinematics are included, and 
significantly higher degree polynomial approximations are 
employed.  The equations of motion of the rigid barge 
including hydrostatics are first derived.  Waves are then applied 
and terms modeling the hydrodynamic properties are added.  
Relative motion effects of the barge with respect to the free 
surface are included.  The effects due to hydrostatics are 
represented with sufficiently high degree polynomials in the 
model.  Various degree polynomials were examined to identify 
an optimum fit.  Because the edges of the barge are sharp, fairly 
high degree polynomials are required.  The coupling effects of 
sway on roll-heave response prediction are examined using the 
Roll-Heave-Sway model and a corresponding (2DOF) roll-
heave model with similar parameters. 

The body-fixed coordinates are defined such that X = 
Surge, Y = Sway, Z = Heave, φ = Roll, Θ = Pitch, and ψ = Yaw 
(Fig. 1).  For the (body-fixed) coordinate system origin, the roll 
center is at the center of gravity of barge and the coordinate 
system axes are aligned with the principal axes of inertia.  One 
of the main objectives in this study is to extend the equations of 
motion for a SDOF system in roll to a multi-DOF system.  For 
a symmetric barge in beam seas, the dominant response will be 
in sway, heave and roll.  The surge, pitch and yaw motions 
become negligible [11-13].  Equation (1) now becomes, 
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Equations of Motion 
Two deterministic mathematical models representative of 

the physics of the fluid structure interaction for the barge in 
ocean waves are derived.  The motions of a rigid body in air are 
obtained first and then the barge will be placed in water and the 
effects due to hydrostatics and hydrodynamics will be included.  
Once the complete 3DOF model for the barge motions in beam 
seas is derived, a reduced set of equations of motion (2DOF 
model) uncoupling sway from roll and heave are derived. 

The coupling terms represent the components of centripetal 
accelerations on the body arising from the moving (body-fixed) 
coordinate system and the inertial difference terms represent 
gyroscopic moments arising from the moving system [11].  We 
place the origin of the moving coordinate system at an assumed 
"center of rotation".  These equations show the kinematic 
coupling in the heave and sway equations with extra terms due 
to the vertical location of the center of gravity not coinciding 
with the origin of the coordinate system.  The longitudinal and 
lateral centers of gravity coincide with the origin for the barge 
under study, (i.e. Xg and Yg are zero) and so those terms do not 
appear in the equations. 

Model assumptions -- The underlying physical 
assumptions used in this study for the development of the 
equations of motion are summarized in this section.  The waves 
are assumed two-dimensional and the wavelengths are 
significantly longer than the beam (thus the wave profile is 
linear across the barge).  Wave forces and moments are derived 
about the center of gravity based on static and dynamic 
equilibrium.  The effect of water-on-deck is treated statically, 
being modeled only in the hydrostatic restoring moment.  
Along with this assumption is no bulwarks are present.  
Coefficients of added inertia, added mass and damping are 
assumed constant.  The longitudinal center of gravity (LCG) is 
amidships.  This is consistent with the physical model in the 
experimental test data.  The barge is symmetric longitudinally 
and laterally.  Radiation and viscous damping are modeled 
collectively as a linear and a "Morison" type quadratic term 
[14].  Barge length, beam, displacement, draft, location of 
vertical center of gravity (KG), specific weight of water, and 
roll center are considered variable input parameters.  Effects 
due to a linear mooring stiffness may be switched on or off for 
sway motions. 

Restoring Forces and Moments -- Placing the barge in 
water will add terms due to the hydrostatic "Archimedes" 
buoyant restoring forces and moments.  As the barge heaves up 
and down, the available righting energy of the barge in roll 
changes.  Exact expressions relating the effects of heave on the 
righting moment were derived from analytical geometry.  The 
analytical geometric method for calculation of the righting 
moment and buoyant heave force begins with the complete 
arrangement of possible configurations of the barge in water.  
These cases may be subdivided into combinations of four main 
states (Fig. 2).  As the barge is rotated through the roll angles at 
a value of heave, the method determines which state the 
underwater portion falls within and subdivides it into triangular 
sections.  From these triangles, the center of buoyancy may be 
obtained by averaging all the centroids of each triangle. 

The initial position of the barge is prescribed by a “roll 
center” with respect to the inertial coordinates.  Righting 
moments are computed over the preset range of roll and heave.  
This produces a set of righting moment curves for incremental 

The rigid body dynamic equations of motion for the barge 
are based on Newton's second law that states the rate of change 
of linear momentum equals the applied forces and the rate of 
change of angular momentum equals the applied moments [11]: 
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discrete value of heave.  The heave range is typically set at 
maximum value of the barge being totally out of the water at 
zero roll.  The maximum and minimum roll values are 
determined by sample calculations to see that angle at which 
the righting moment becomes zero.  Analytical expressions of 
roll righting moment and heave restoring force are graphically 
shown in Fig. 3. 

The matrices of analytical roll restoring moment and heave 
restoring force are approximated with sufficiently high degree 
polynomials.  Various high and low degree polynomials were 
tried to determine the optimum fit.  The ones which produce 
errors less than 3 percent at any combined roll-heave positions 
are selected.   A 13th-degree polynomial in roll and 12th-degree 
polynomial in heave were found to be sufficient to qualify the 
general character of the coupled roll-heave restoring moments.  
The polynomial fitted roll-righting moment and heave restoring 
force surfaces are graphically shown in Fig. 4a and b, 
respectively.  The accuracy of the polynomial expressions is 
determined by examining the differences between the "exact" 
analytical expressions and the least square fit.  The polynomial 
fit for heave restoring force results in the following expression 
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Similarly, the polynomial expression for the roll restoring 
moment becomes 
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                                                 To obtain barge motion responses in the time domain 
based on the Roll-Heave-Sway and the Roll-Heave models, 
Equations (5) and (6), respectively, are reduced to systems of 
first order ordinary differential equations and integrated by 
standard numerical methods.  A 4th order Runge-Kutta method 
is selected to solve the equations of motion [15]. 

           (4) 
 
 

 
 
 
 
 
 

 
These stiffness terms include relative motions between the 

moving barge and the wave free surface elevation and wave 
slope changes. 

Placing the barge in still water and adding ocean wave 
excitation introduces terms that represent added mass and 
added inertia due to relative motion accelerations of the barge 

and the wave.  To take into account energy dissipation effects 
due to radiation of waves from the barge and flow separation 
around the hull, the hydrodynamic damping may be modeled as 
relative motion linear and nonlinear terms.  The viscous 
damping for roll is relative to the time rate of change of wave 
slope, where the slope is relative to the sway direction (for 
beam sea conditions). 

Roll-Heave-Sway model -- These additional hydrostatic 
and hydrodynamic force and moment terms are added to the 
governing equations of motions of the Roll-Heave-Sway model 
that become 
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Roll-Heave model -- By assuming the influences of sway 
motion on roll and heave are negligible, the governing 
equations of motion of the 3DOF Roll-Heave-Sway model, Eq. 
(5), may be reduced to a 2DOF model in roll and heave only 
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Numerical Solution Procedure 

 
Regular Waves -- A description of the ocean wave field is 
provided by linear wave theory.  The barges considered in this 
study operate from relatively deep to shallow water.  However, 
the condition of deep water in general produces higher coupling 
effects of heave on roll due to larger vertical wave velocity.  To 
be conservative in our analysis, therefore, deep-water condition 
is assumed.  For linear regular waves with the assumption of 
deep water and consideration of water particle kinematics at 
mean water line (MWL), wave expressions are defined as 
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(7) 
  

 
 
 
 
 
 
 
 
 

Measured random waves -- If measured waves are input to the 
model, the wave properties as in Equation (7) are calculated by 
central difference method.  The second order and fourth order 
accurate formulas are respectively 
 

 
(8) 

 

 

 

Using Equation (8), the water particle kinematics may be 
calculated from the measured wave profile. 

Simulated random waves -- For random waves, the wave free 
surface elevation is represented as a sum of sinusoidal waves 
with random phases (Chakrabarti, 1994) by 
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with parameters determined by the Bretschneider [13] ocean 
wave spectral model represented by  
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Experimental Results 

The Naval Facilities Engineering Service Center (NFESC), 
Port Hueneme, California, conducted several measurements of 
a moored and a partially constrained barge in regular and 
random seas.  Under collaboration with the U.S. Navy, we were 
provided with a set of measured physical model test data for 
U.S. Navy model barges, which consists of motions of a 1/16-
scale barge in regular and random seas.  Free vibration tests of 
the barge in roll, heave and sway were also conducted to 
provide estimates of the viscous damping and linear natural 
periods.  The results indicate that 5.25, 4.00 and 27.14 seconds 
are the natural periods of roll, heave and sway motion 
respectively.  Table 1 summarizes the parameters of a sample 
of physical model test cases employed in this study.  It should 
be pointed out here that the barge examined in this study has a 

vanishing stability of 58 degrees (more details, including the 
GZ curve, are presented in Part II). 
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Test results from regular wave cases are used to identify 
system coefficient for both Roll-Heave-Sway and Roll-Heave 
models.  The tests were conducted with quiescent initial 
conditions (i.e., zero initial displacements and velocities) and 
response data were collected after steady-state periodic 
responses had been achieved.  Time domain simulations of 
varied system coefficients are compared with the test results to 
determine the best match.  The results from random wave case, 
SB25, are used to calibrate the accuracy of model predictions.  

Table 1.  Physical Model Test Cases 

Test 
Case 

Wave 
Type 

H(ft) or 
Hs(ft) 

T (sec) or 
Tp (sec) 

SB25 Random 4.7 8.2 

SB26 Regular 6.0 5.0 

SB27 Regular 6.0 6.0 

SB28 Regular 6.0 7.0 

SB29 Regular 7.0 8.0 

SB30 Regular 6.0 10.0 

SB31 Regular 10.0 10.0 

 

System Parameters Identification 
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The constant parameters including added mass, added 
inertia and radiation damping (see Table 2) in the governing 
equations of motion for roll, sway and heave are identified 
using test results of regular waves of heights from 6 to 10 ft and 
wave periods of 5 - 10 seconds (test cases SB26 to SB31).  
Initial approximate values of all system parameters are obtained 
from a linear potential theory ship motion program developed 
by Paulling [16-18] based on potential theory.  These estimates 
are then fine-tuned to match the predicted response time series 
and phase plots with measured results.  The resulting identified 
system parameters are then used as input to the model in the 
next section to calibrate the accuracy of model prediction for 
the random wave case (SB25).  Because the parameters 
identified are obtained from the 1:16-scaled model test results 
and not from full–scale prototype tests, these resulting 
parameters are theoretically suitable for only the scale test 
model.  Higher Reynolds numbers in the full-scale prototype 
may affect the values of the nonlinear damping coefficient.  
However, based on numerical model sensitivity studies, the 
nonlinear damping did not significantly affect the results for the 
test cases examined in this study.  We believe that parameters 
identified in this section may be extended to the full-scale 
prototype.  

Sample comparison of time histories of the measured 
versus numerical responses (corresponding to test cases SB27, 
29 and 30) are shown in Figs. 5-7.  It is observed that 
practically all the parameters estimated by potential theory, are 
sufficiently accurate for the Roll-Heave-Sway model.  Only 
minor adjustments in the roll added inertia and linear roll 
damping coefficients are needed to match the measured 
response well for the all test cases.  In addition, for the ranges 
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Model Prediction Capability Calibration of wave heights and wave periods considered (SB26 to SB31), 
the identified parameters are practically constant.  A summary 
of the averaged values of the system parameters for regular 
wave excitations is shown in the second column Table 2.  Due 
to wave drift, the steady-state mean position of the barge 
motions is down stream of the quiescent, static equilibrium 
position of the moored barge in the experimental set up, where 
wave elevation was measured.  This leads to a time shift (or 
lag) between the measured wave excitation and barge 
responses.  The wave drift is a function of the wave-height 
squared and wave period, with larger wave drift magnitude 
corresponding to larger wave heights.  The wave drift also 
induced tension in the cables used to prevent the barge from 
drifting down the wave basin.  For large wave amplitude 
excitations (such as SB30, shown in Fig. 7), the almost taut 
mooring cables induced a small super harmonic component in 
the roll response. 

The Roll-Heave-Sway prediction capability of barge 
motions under random wave excitations of the 3DOF model is 
investigated in this section.  (A detailed study of the 2DOF 
model will be presented later.)  The averaged identified system 
parameters of the 3DOF model obtained in the above section, 
with minor adjustments, are used for model predictions for the 
random wave test case.  Measured random waves and simulated 
random waves are both used as input excitations to the model.  
Comparisons between model predictions and experimental test 
results are examined.  The accuracy of the model predictions of 
the barge motions due to random waves is demonstrated using a 
random wave test case SB25 (Hs = 4.7 ft., Tp = 8.2 s).  

 
Measured random waves -- We used the measured random 
wave profile and numerically derived the wave properties for 
input to the analytical model.  The measured wave was filtered 
with a low pass tangent Butterworth filter [15] to remove all 
high frequency wave components above 0.25 Hz (T = 4 sec.) to 
minimize numerical errors in obtaining derivatives and to 
adhere to the modeling assumptions that the wavelength is 
significantly larger than the beam of the barge.  We employed 
the parameters obtained in above section for regular waves.  A 
minor adjustment in the roll linear coefficient from 5% to 8% 
was found to provide most accurate predictions.  

Figures 5 and 6 show that roll is approximately in-phase 
with sway and heave is in-phase with wave for all regular wave 
cases.  Case SB27 produces the largest roll motions because the 
wave period (6 seconds) is close to the barge roll natural period 
of 5.25 seconds, resulting in near resonance. 

It is observed that sway is more difficult to match than roll 
and heave.  This is most likely due to the nonlinear mooring 
cable stiffness, which directly affects the sway motion.  A soft 
mooring in the experiment was required to prevent the model 
barge from drifting out of the instrumentation area.  In this 
study, the model represents the laboratory sway resistant 
mooring force by a linear spring.   Operationally, in the open 
sea, the barge would not be moored except possibly under 
conditions were there might be a cargo transfer from a larger 
vessel.   

Time histories of the Roll-Heave-Sway model predictions 
versus measured results are shown in Fig. 8.  Observe that the 
model provides good estimations for both roll and heave 
motion.  It also predicts sway reasonably well.  As observed in 
the regular wave cases, roll is in-phase with sway while heave 
is in-phase with waves.  Note that as indicated in Figs. 6-8, the 
analytical predictions are in good agreement with the 
experimental results, well into the highly nonlinear region near 
the vanishing stability angle of 58 degrees.  Thus, the analytical 
models are deemed reliable for prediction of stability behavior 
of the barge. 

 
Table 2  Summary of system parameters used in the model 
 
Parameter Regular Wave Measured 

Random Wave 
Simulated 
Random Wave

 H from 6 to 10 
ft 
T from 5 to 10 
sec 

Hs = 4.7 ft 
Tp = 8.2 sec 

Hs = 4.7 ft 
Tp = 8.2 sec 

I44  (slugs-ft2) 2.161E+06 2.161E+06 2.161E+06 

Ia44  (slugs-ft2) 1.30E+06 1.00E+06 1.00E+06 

ζL44 0.05 0.08 0.03 

ζN44 0.008 0.008 0.008 

m (slugs) 2.325E+04 2.325E+04 2.325E+04 

ma33 (slugs) 1.00E+05 1.00E+05 1.00E+05 

ζL33 0.35 0.35 0.35 

ζN33 0.5 0.5 0.5 

m (slugs) 2.325E+04 2.325E+04 2.325E+04 

ma22 (slugs) 2.00E+04 2.00E+04 1.50E+04 

ζL22 0.5 0.5 0.5 

ζN22 5.0 3.0 3.0 

The spectral densities of measured results versus the Roll-
Heave-Sway model predictions are shown in Fig. 9.  Overall, 
the predictions of spectral densities match the measured results 
well.  The sharp peak around the frequency of 0.03 Hz of the 
measured sway spectral density probably reflects the nonlinear 
influence of the mooring cables that is not modeled in this 
study. 

 
Simulated random waves -- Gaussian random waves with a 
significant wave height, Hs = 4.7 ft, and spectral peak period, 
Tp = 8.2 seconds, are simulated by the random wave generation 
process described in a previous section and used as input into 
the simulation model.  The parameters of the sinusoidal waves 
are selected to duplicate the statistical and spectral properties of 
the wave profile specified by the Bretschneider spectrum.  As 
shown in Fig. 10, the spectral densities of the predicted 
responses matched reasonably well with the experimental 
results.  The model prediction in sway is not as accurate as for 
roll and heave because of nonlinear characteristics of the 
mooring cables, which is not modeled in this study.  

 
Sway on Roll and Heave Motions Coupling Effects 

The coupling effects of sway on barge roll and heave 
motions is examined in this section by comparing numerical 
results of the 3DOF and the 2DOF models using the same 
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analytical procedure conducted in the above sections.  Identical 
system parameters are employed in both models (when 
applicable).  Responses to regular and random waves are 
examined.  Fig. 11 shows the time histories of barge responses 
to regular waves with H = 6 ft and T = 6 seconds (Case SB27) 
while Fig. 12 shows the time histories of barge responses to 
measured random waves with Hs = 4.7 ft and Tp = 8.2 seconds, 
respectively.  Fig. 13 shows the spectral densities of barge 
responses based on the 3DOF and the 2DOF models subjected 
to simulated random waves.  Observe that both models provide 
comparable predictions for both regular and random waves.  
However, the 2DOF model appears to produce slightly larger 
roll amplitude than those of the 3DOF model.  

With the identified system parameters from the regular 
wave cases, it is found that the 3DOF model provides accurate 
predictions of barge responses to random waves.  Two 
distinctive processes are used to generate random waves for the 
models.  In the first case, the exact measured random wave data 
is used as input to the numerical models with other wave 
properties derived numerically.  In the second case, a sum of 
sinusoidal waves with random phases is used to simulate the 
wave profiles and associated properties.  Results from both 
cases were compared with experimental data.  All comparisons 
indicate close agreement with the model predictions.  

The coupling effects of sway on roll and heave barge 
motions are examined by comparing numerical results from the 
3DOF and the 2DOF models employing identical system 
parameters.  Results indicate that the two models provide 
comparable roll and heave predictions for both regular and 
random wave cases.  It is observed that, for moored barges, the 
coupling effects of sway on barge roll and heave motions are 
negligible for the range of system and excitation parameters 
considered. 

A preliminary sensitivity study on barge response to 
regular wave excitation is conducted using both 3DOF and 
2DOF models.  Barge responses due to several regular waves 
with various wave heights and wave period are examined.  Fig. 
14 shows amplitudes of periodic roll responses for the barge 
subjected to regular waves with fixed wave height of 6 and 10 
ft., varying the wave period between 6 and 9 seconds.  Roll 
amplitude decreases with increasing wave period because the 
natural frequency for roll motion is 5.25 seconds.  The 3DOF 
model usually produces slightly lower roll response amplitude 
than the 2DOF model.  Fig. 15 shows the roll amplitude 
response as a function of wave height for the 3DOF and 2DOF 
systems.  It can be observed that predictions from both models 
matches well over the range of wave heights considered.  These 
results indicate that the effects of moored sway on roll motion 
could be considered as additional energy dissipation (damping).  
It is observed that, for moored barges, sway does not produce 
noticeable effect on heave motion.  However, under operations 
conditions in the open sea, with no mooring, this effect may not 
be negligible.  For an un-moored barge, the wave-induced drift 
can cause significant sway, and the wave profile and kinematics 
should be evaluated at the instantaneous position of the barge.  
This may introduce important nonlinear coupling among the 
three motions. 

The authors believe that these predictive models should be 
continually improved and kept easy to use as a practical tool for 
the barge designer and (later barge operators) to quickly assess 
optimum conditions for designing barge shapes and 
understanding cargo limitations to mitigate the risk of capsize 
in beam seas.   The models were developed with low dynamic 
degrees-of-freedom in mind for future efficient (especially 
stochastic) computational execution while also trying to capture 
the most important physical parameters for a barge in beam 
seas. 
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Concluding Remarks 

The equations of motion for roll, heave and sway of a 
barge in random beam seas have been derived.  The model was 
developed based on rigid body dynamics, coupled with relative 
motion hydrostatic and hydrodynamic terms.  The analytical 
expressions of the relative motion hydrostatic terms are derived 
based on the four main states for combined roll-heave 
positions.  The relative motion hydrodynamic terms are in a 
“Morison” type quadratic form. The relative motion hydrostatic 
terms, roll righting moment and heave restoring force, are fitted 
with sufficiently high degree polynomials.  A 13th -degree 
polynomial in roll and a 12th-degree polynomial in heave are 
sufficient to qualify the general character of the coupled roll-
heave restoring moments. 
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