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ABSTRACT 
A computationally efficient quasi-two-degree-of-freedom 

(Q2DOF) stochastic model and a stability analysis of barges in 
random seas are presented in this paper.  Based on the 
deterministic 2DOF coupled Roll-Heave model with high-
degree polynomial approximation of restoring forces and 
moments developed in Part I, an attempt is made to further 
reduce the DOF of the model for efficient stochastic stability 
analysis by decoupling the heave effects on roll motion, 
resulting in a one-degree-of-freedom (1DOF) roll-only model.  
Using the Markov assumption, stochastic differential equations 
governing the evolution of probability densities of roll-heave 
and roll responses for the two low-DOF models are derived via 
the Fokker-Planck formulation.  Numerical results of roll 
responses for the 2DOF and 1DOF models, using direct 
simulation in the time domain and the path integral solution 
technique in the probability domain, are compared to determine 
the effects of neglecting the influence of heave on roll motion 
and assess the relative computational efforts required.  It is 
observed that the 1DOF model is computationally very efficient 
and the 2DOF model response predictions are quite accurate.  
However, the nonlinear roll-heave coupling is found to be 
significant and needs to be directly taken into account rendering 
the 1DOF roll-only model inadequate for practical use.  The 
2DOF model is impractical for long-duration real time response 
computation due to the insurmountable computational effort 
required.  By taking advantage of the observed strong 
correlation between measured heave and wave elevation in the 

experimental results, an accurate and efficient Q2DOF model is 
developed by expressing the heave response in the 2DOF 
model as a function of wave elevation, thus reducing the 
effective DOF to unity.  This Q2DOF model is essential as it 
reduces the computational effort by a factor of 10-5 compared to 
that of the 2DOF model, thus making practical stochastic 
analysis possible.  A stochastic stability analysis of the barge 
under operational and survival sea states specified by the US 
Navy is presented using the Q2DOF model based on first 
passage time formulation. 

 
INTRODUCTION 
The stability of ship-to-shore cargo barges under various 

sea conditions is important to design engineers, especially those 
of the US Navy.  As discussed in Part I, while a barge in 
general experiences multidirectional sea conditions in the 
ocean, one of the most critical scenarios leading to capsizing is 
beam sea.  A significant number of researchers have examined 
the roll stability of ships in beam seas from a stochastic 
perspective [1-7].  Robert [1, 2] analyzed the roll motion of a 
ship using the Fokker-Planck (FP) formulation to obtain the 
probability distribution of the response.  Robert et al [3] 
proposed an averaging approximation to reduce the order of the 
FP equations from two to one to reduce the computational 
effort.  Dahle et al [4] developed a simple probabilistic model 
and computed the probability of capsizing under specified sea 
states.  Lin and Yim [5] modeled the roll motion of a ship by 
the FP equation and studied the effects of noise on 
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deterministic regular wave loads.  They showed, similar to the 
deterministic cases demonstrated by Falzarano et al [6] and 
Nayfeh and Sanchez [7], the ship motion to be governed by two 
diverse dynamical regions – homoclinic and heteroclinic, where 
the heteroclinic region relates to capsizing.  They also 
examined chaotic response behavior with noise via probability 
density functions.  Kwon et al [8] analyzed the roll motion of a 
ship subjected to an equivalent white noise ocean wave model.  
Their study focused on the mean upcrossing times for a vessel 
with nonlinear righting moment and damping.  Cai et al [9] 
analyzed the nonlinear roll response of a ship to stationary 
Gaussian random waves with non-white broadband spectra.  
The total roll energy was approximated as a Markov process, 
using a modified version of quasi-conservative averaging.  
They treated the capsizing of the ship as a first passage 
problem.   

In this paper we begin the study the barge motions under 
beam sea by first deriving corresponding stochastic models of 
the deterministic coupled Roll-Heave (2DOF) model developed 
in Part I and developing a pure Roll (1DOF) in a following 
section.  The path integral solution is employed to numerically 
obtain the evolutions of barge response probability densities as 
a solution to the corresponding FP equation of these models.  
Importance of coupling effects of heave on roll motion is 
examined by comparing numerical results obtained from the 
2DOF and 1DOF models in both time and probability domains.  
A quasi-2DOF (Q2DOF) model is then developed to take 
advantage of the observed heave and wave elevation 
relationship in modeling the roll-heave coupling effects while 
keeping the number of governing equations to unity.  Stability 
analysis of the barge in terms of reliability against capsizing 
under various sea states is performed using a first passage time 
formulation and the quasi-2DOF model. 

 
Governing Equations for Roll-Heave and Roll Models 
2DOF Roll-Heave Model -- We start with the deterministic 
2DOF model governing the dynamics of fluid-structure 
interaction behavior of a barge in beam sea derived in Part I.  
Recall that the model retains the nonlinear coupling effects 
between roll and heave but removes the tertiary sway effect 
from equilibrium consideration.  The hydrostatic terms are 
represented efficiently and accurately in the form of high-
degree (13th in roll and 12th in heave) polynomials to represent 
the characteristics of restoring force and moment.  
Hydrodynamic terms are in a “Morison” type quadratic form.   

 
             
 
 
      (1) 

 
 
 

This low DOF, high order polynomial model was 
developed taking into consideration the strengths of stochastic 
method to be developed in this study. 

1DOF Roll-Only Model – In anticipation of the heavy 
computational requirement for stochastic analysis of the 2DOF 
model (see later section), an attempt is made here to further 
reduce the dimension of the probability domain by possibly 
employing a 1DOF model.  Assuming coupling between roll 

and heave is negligible, hence the effects of heave on roll 
motion can be neglected, the corresponding Roll-only model is 
derived by neglecting heave-related terms in governing 
equation for roll in Equation (1) 
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The physical assumptions of these models are summarized 
in Part I. 
Random Wave Model – As explained in Part I, although the 
barges considered operate from relatively deep to shallow 
water, the deep-water condition in general produces higher 
coupling effects of heave on roll due to larger vertical wave 
velocity.  Therefore, to be conservative, the deep-water 
condition is employed throughout in this study.  For 
convenience of analysis and simulation of random wave 
excitation, filtered white noise is used to model random wave 
surface elevation.  The linear filter is defined as 

ξηπηβη =++ 2
0

...
)2( fn                                          (3) 

where ξ is Gaussian white noise, which is obtained by 
using a pseudo random number generator.  The transfer 
function and the spectral density function of the output of the 
filtered white noise [5] are 
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The coefficients in Equation (4) are set to satisfy the 

variance and peak period of the Bretschneider spectrum [10] to 
characterize the random waves, and is expressed as 
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Equation (3) is then reduced to a set of two first-order 

stochastic differential equations and combined with the 
equations of motion for the 2DOF and 1DOF models.  This 
stochastic modeling procedure produces, in general, a system of 
six first-order stochastic differential equations (SDEs) of 
motion for the 2DOF model and a system of four first-order 
SDEs for the 1DOF model.  Note that for stochastic study, it is 
important to keep the total DOF of the model low so that the 
dimension of the probability domain remains low, and the 
computational efforts manageable.  However, the degrees of the 
polynomial approximations of the stochastic expressions 
resulting from the high-degree approximating polynomials of 
the restoring force and moment do not significantly influence 
the overall computational efforts when joint probability density 
functions and probability of exceedence are calculated. 
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Time Domain Predictions 

To obtain barge responses in the time domain, the systems 
of first-order stochastic differential equations for the 2DOF and 
1DOF models are solved using standard numerical procedure, 
with the random waves approximated by linear filtered white 
noise.  A 4th order Runge-Kutta method [11] is employed here 
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for numerical integration and a Gaussian distributed random 
number generator is used in the filtered white noise model 
based on Press et al [11]. 
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Probability Domain Predictions  
By assuming the stochastic response is a function of only 

the most recent probability states, a Markov process assumption 
can be applied.  Barge response probability density is 
numerically derived as a solution to the associated Fokker-
Planck equation (FPE) by the path integral solution [12-14].  A 
general nonlinear stochastic system can be written as  

with n = 1,2, … N.  The short-time propagator is also 
discretized into a short-time transition tensor Tkl(τ).  Subscripts 
k and l represent the discretized probability domain at the pre 
and post state respectively.  The short time propagation can be 
numerically implemented by determining the most probable 
position in the phase space and the local random response 
following a Gaussian distribution.  The most probable phase 
position after short-time propagation for each element is 
deterministically computed by the drift coefficients.  The PDF 
at time t + τ can be obtained by summing all the probability 
mass propagated from time t (and normalizing afterward) 

)()()( tXGXFX η+=&                                          (6) 
where   
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The PDF at a desired time can be obtained by applying the 

short time transition in Equation (16) iteratively.  
With f(X,t) representing the PDF, Kν’s (ν = 1,2,…N) are 

the entries in the drift vector K, and Qνµ are the entries of the N 
x N diffusion matrix Q.  To obtain numerical results, the initial conditions are 

assumed deterministic, represented by the product of two Dirac 
delta functions  

            (17) )()(),( 2021010 xxxxtXP −−= δδ   which is represented by a point with area virtually zero in 
the phase space.  For accuracy, the grid size of the discretized 
probability domain has to be sufficiently small.  Moreover, the 
time step (τ) has to be compatible with the associated grid size.  
For a given grid size, too small a time step results in no 
propagation of the probability mass.  However, too large a time 
step is not theoretically appropriate and would lead to 
inaccurate results.   Therefore, the selected time step (τ) in this 
study is the smallest one that produces propagation of 
probability mass for a given grid size.  

The path-integral solution has been developed by Wissel 
[12] to solve the FPE.  It can be represented by a (discrete) 
Riemann sum 
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where µidxi is the (Wiener) measure in the functional space, 
and L* is the Lagrangian.  A short transition can be obtained 
analytically using a first order approximation to Equation (11). 

With specified drift vector and diffusion tensor for the  
The path integral solution is a first order Euler 

approximation [12-14], and one possible numerical evaluation 
based on lattice representation (path sum) [15] can be applied 
to implement the solution numerically.  Using this standard 
numerical procedure, the evolution of the response density can 
be computed. 

FPE, the associated short time propagator (Green’s 
function) is given by [14] 
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2DOF stochastic model – With the Bretschneider random 
waves approximated by a linear filtered white noise process and 
the addition of wave variables into the 2DOF governing 
equations, the set of six stochastic differential equations can be 
presented in a system form as  

 
Using a multi-dimensional histogram representation of the 

PDF, the path sum expressed in Equation (11) can be 
implemented numerically.  The probability domain at time t is 
discretized into a finite number of elements represented by 
function π 
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where the corresponding Fokker-Planck equation is given by 
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The corresponding Fokker-Planck equation is given by 
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where Model Parameters 
The model parameters employed in this study were 

identified in Part I (first numerical column of Table 1) by 
matching numerical predictions with experimental results in the 
time domain for six regular wave model test cases (SB26 to 
SB31).  The parameters were validated by comparisons with 
results from experimental results of a random-wave case.  
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The corresponding short-time propagator is given by 
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1DOF stochastic model 
As before with the Bretschneider random waves 

approximated by a linear filtered white noise process and the 
addition of wave variables into the governing equations, the set 
of four stochastic differential equations for the 1DOF model 
can be presented in system form as 

  
 
                                                  (21) 
 
 
 
 

  

Barge roll responses predicted by the 2DOF and 1DOF 
models using time domain simulation and path-integral solution 
procedure are examined in this section.  Several regular and 
random waves are used as excitations (see Part I for regular 
wave generation).  Figures 1a and b show barge roll responses 
to regular waves with H = 6 ft and T = 8 seconds, and to 
random wave with Hs = 4.7 ft and Tp = 8.2 seconds, 
respectively.  For these cases, numerical results indicate good 
agreement between the 2DOF and the 1DOF models, with the 
2DOF model produces slightly larger roll amplitude.  However, 
the differences increase significantly in those cases with larger 
roll responses, as shown in Fig. 2.  Numerical results from the 
probability domain simulation also indicate the same behavior.  
Predicted roll response densities under random waves with Hs = 
4.7 ft and Tp = 8.2 seconds, and random waves with Hs = 5.5 ft 
and Tp = 5.5 seconds for the 2DOF and 1DOF models after 5 
minutes of exposure time in random waves are shown in Figs. 3 
and 4, respectively.  The corresponding marginal densities of 
roll motion for both models are presented in Fig. 5.  A 
comparison of the results reveals that the 2DOF model 
produces greater density at larger roll amplitude at the same 
exposure time.  Additional numerical results also indicate that 
these differences become more significant for cases with larger 
roll motion.  Based on these observations, the roll motion 
prediction accuracy of the1DOF model examined above is 
deemed unacceptable for practical design, and a more accurate 
yet computational efficient model needs to be developed. 
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Computational Efforts of 2DOF and 1DOF Models 

The computational effort required for the prediction of 
stochastic response of the 2DOF model for a short duration, 
e.g., 10 minute real-time response, using sufficiently fine grid, 
is on the order of two to three months using a well equipped 
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Stability Analysis state-of-the-art Sun Workstation.  For the corresponding 1DOF 
model, the same real time response duration can be solved 
within a few minutes (approximately 10-5 times the 
computational effort of the 2DOF system).  For longer runs for 
low sea state responses analysis (e.g., 10 hours of real time 
response, as discussed in the following sections), the 
computational time required for the 2DOF model is on the 
order of 10 years.  This is obviously unacceptable, thus a low 
DOF yet accurate approximate model, which retains the heave-
roll coupling effects, needs to be developed. 

Stability of the roll motion of a barge over a range of sea 
states under beam sea is analyzed here using the first-passage-
time formulation.  As the barge rolls in random seas, the net 
roll response density propagates with time and eventually exits 
the safe domain.  In this study, net roll is defined as the 
difference between roll angle and wave slope.  Hydrostatic roll 
restoring moment indicates a zero value once net roll exceeds 
58 degrees for the ship-to-shore cargo barge as shown in Fig. 9.  
Reliability against capsizing of the barge is defined as the 
cumulative net roll response density, which lies within the safe 
domain (in this case +58 degrees).  At a given time t, the 
reliability is given by 

 
Efficient Quasi-2DOF Model 

The governing equations of motion of the 2DOF model 
show that the coupling effects of heave on roll are represented 
in two distinctive mechanisms.  First, the relative heave motion 
to wave elevation impact the hydrostatic roll righting moment.  
Second, the heave velocity creates inertia moment caused by 
eccentricity of the roll center and KG.  These relationships are 
explored in detail in this section to develop a computationally 
efficient yet accurate approximate model including the heave-
roll coupling effects. 
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Using the US Navy specification, the range of sea states 1 
through 9 are represented by their average significant wave 
height, Hs, and spectral peak periods, Tp, as shown in Table 1.  
In this study, stochastic excitations according to each sea state 
are applied to the Q2DOF model.  The evolution of the net roll 
response density and reliability for these sea states are 
computed.  Because similarities of responses among various sea 
states, for succinctness of presentation, only representative 
results (sea states 1, 4, 7 and 9) are shown in Figs. 10 through 
13.  The numerical results indicate negligible likelihood of 
capsizing for barges operating under sea state 1 (and similar for 
sea state 2) in 10 hours of exposure time due to low amplitude 
in the wave excitation (Fig. 10).  While the peak period of the 
wave excitations may be near heave resonance, the energy 
dissipation (or damping) in heave is sufficiently large to 
prevent large-amplitude resonance.  This observation was 
verified via direct simulation of motions response from the 
more accurate 3DOF and 2DOF models.   

Typical time histories of barge heave responses to regular 
and random waves based on experimental results are shown in 
Fig. 6.  It is observed that the relative motions between heave 
and wave elevation are small.  Based on this assumption, a 
quasi-2DOF model is developed here with the heave motion 
approximated by wave elevation is derived.  In this case, the 
hydrostatic roll restoring moment is not affected by heave and 
the coupling effects of heave and roll are presented only via the 
inertia moment caused by eccentricity of roll center and KG. 

The quasi-2DOF model can be developed by 
approximating the heave velocity by the vertical wave velocity 
in the equation of motion of the 1DOF model that represents 
heave-induced inertia moment due to eccentricity of roll center 
and KG.  The resulting equation of motion of this approximate 
model is   It is observed that the behavior of the barge roll motion is 

similar for sea states 3 through 6 (see Fig. 11 for sea state 4 
results), and it takes approximately 1 to 3 hours for barges 
operating in these sea states to attain 1% probability of 
capsizing.  Figs. 12 and 13 show the probability density and 
reliability of the barge for sea states 7 and 9, respectively, for 
specific durations of exposure.  These results indicate 
significantly larger probability of capsizing in a short period of 
time. 
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The advantage of the Q2DOF model is that it retains a 
majority of the coupling effects of heave effect on roll motion 
while keeping the DOF of the model at unity.  While the path-
integral solution of the FPE for the 2DOF model requires 105 
times the computational effort of that of the corresponding 
1DOF model, the Q2DOF model solution takes only about 1.5 
times of that of the 1DOF model.   

The probability information of the barge response for sea 
states 3 through 9 is presented in Fig. 14 in a summary form in 
terms of time to reach 1, 2, 5 and 10 percent probability of 
capsizing.  Note that while the expected exposure time declines 
gradually with increasing sea states from 3 to 6, there is a sharp 
drop between sea states 6 and 7.  The rate of decline in 
expected exposure time from sea states 7 through 9 is also 
significantly higher than those from sea states 3 through 6.  The 
probability of capsizing of the barge in sea states 1 and 2 over a 
10-hour exposure is significantly less than 1%, thus results are 
not shown in Fig. 14.  It should be pointed out here that while 
the range of responses of the experimental results employed in 
Part I to validate the numerical models only reached +15 
degrees, we rely on the numerical models to extrapolate to 
results into the highly nonlinear capsizing region here.  This is 
unfortunately necessary as there was no data available near the 
capsizing region due to experimental limitations.  

Time and probability domain simulations of the Q2DOF 
model using regular and random waves as excitation are 
performed to assess its response prediction accuracy (Figs. 7 
and 8, respectively).  These figures indicate a significant 
improvement in the predictive capability of the Q2DOF model 
over the 1DOF model, and the predictive results are very close 
to those obtained from the 2DOF model.  Based on these and 
additional numerical results (not presented here due to space 
limitation), the Q2DOF model is deem sufficiently accurate for 
detail stability analysis of barges. 
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Table 1  Average significant wave height and spectral peak 
period of sea states 1 through 9 
 
Sea 
State 

Significant 
wave height 
Hs (ft) 

Spectral peak 
period 
Tp (second) 

1 0.5 2.4 
2 2.0 4.6 
3 4.0 6.0 
4 6.5 7.5 
5 10.0 8.9 
6 16.0 10.8 
7 30.0 13.6 
8 50.0 17.0 
9 100.0 22.4 
 
Concluding Remarks 

A stochastic analysis of the Roll-Heave (2DOF) and Roll-
only (1DOF) barge motion models is presented here.  With the 
Markov process assumption, associated Fokker-Planck 
equations of the deterministic models presented in [8] are 
derived and the corresponding path integral solutions are used 
to obtain barge response probability densities numerically.   

To determine the importance of the heave-on-roll coupling 
effects, a comparison of the predicted roll motions derived from 
the Roll-Heave and the Roll-only models using time and 
probability domain simulations is performed.  Results show that 
the 2DOF model predicts similar, but slightly larger-amplitude 
roll motion than the 1DOF model under low level of wave 
excitations.  However, the difference becomes more significant 
under higher sea states where roll motion is larger.  The 
prediction capability of the 1DOF model is deemed inadequate 
for practical application.  However, the 2DOF stochastic model 
requires excessive computational time for practical analysis and 
design. 

A close examination of the governing equations of motion 
reveal that heave affects roll motion via the hydrostatic roll 
restoring moment and the initiating inertia moment due to the 
eccentricity of roll center and KG.  Experimental results 
showed that, for the barges examined, the relative motion 
between heave and wave elevation is negligibly small.  Thus, 
the heave impact on the hydrostatic righting moment is 
negligible. 

To address the need for an accurate yet efficient predictive 
model for reliability analysis, a quasi-2DOF model is 
developed by expressing heave in terms of wave elevation to 
preserve the coupling effects of heave on roll motion in the 
2DOF model.  Specifically, heave velocity is approximated by 
vertical wave velocity to approximate inertia moment caused 
by coupling between heave velocity and the eccentricity of roll 
center and KG.  Time and probability domain simulations 
indicate that the quasi-2DOF model retain the predictive 
capability of the 2DOF model and yet requires only 10-5 times 
the computational effort. 

Stability analysis of the barge under the entire range of sea 
states (1 through 9) considered by the US Navy is performed 
using a first-passage-time formulation with the quasi-2DOF 
model.  The response density evolutions are obtained via the 
path-integral solution to the associated Fokker-Planck equation.  

Exposure times that create capsizing probability of 1, 2, 5 and 
10 percent are presented for selected sea states.  Results 
indicate that the reliability of barge is significantly reduced 
when operating under sea states 7 or higher.  Numerical results 
show that for sea states 1 and 2, the probability of capsizing in 
10 hours exposure is significantly less than 1%.  It takes 
approximately 1 to 5 hours for a barge operating in sea state 3 
through 6 to have 1 to 10 percent overturning probability. 
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