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Abstract. A methodology for systematic investigation and incorporation of highly
nonlinear sensitive behaviors into reliability analysis and design of ocean structural
systems using modern geometric and stochastic techniques is summarized in this
paper. The representative systems examined are characterized by a nonlinear
restoring force and a coupled fluid-structure interaction exciting force. Regular
wave excitations are first examine to demonstrate the complex nature of nonlinear
responses. A deterministic analysis procedure which includes the method of
harmonic balance to solve for approximate solutions, a variational method for their
stability analysis, and a Melnikov approach (global stability) to identify the existence
of complex nonlinear (and possibly chaotic) motions is demonstrated. Locations of
nonlinear primary and secondary resonances are identified in the parameter space.
Highly nonlinear phenomena are identified and routes of response transition to chaos
are demonstrated. The presence of random excitation components is next taken into
account to assimilate nearly periodic wave excitations. A stochastic analysis
procedure which includes a stochastic Melnikov approach and the Fokker-Planck
formulation is then presented. A criterion based on the stochastic Melnikov process
demonstrating the noise effects on chaotic response is developed. The Fokker-
Planck equation is derived and solved for response probability density functions to
interpret the response behavior from an ensemble perspective. The systematic
stochastic analysis procedure is also applicable for response analysis to purely
random excitations. An experimental study assimilating nonlinear behavior of an
ocean system is briefly summarized and its results are compared against both
deterministic and stochastic analytical predictions. Experimental results from
deterministic models verify the existence of the primary and secondary resonances
as analytically predicted. Nonlinear responses, e.g., harmonic, subharmonic and
ultrasubharmonic, are also observed. Experimental results from stochastic model
demonstrate noise-induced transitions between distinct response modes, e.g.,
harmonic and subharmonic. Engineering applications, e.g., system reliability, are
demonstrated using probability density functions as a measure. The systematic
analysis and design methodology provides a means to integrate existing seemingly
independent deterministic and stochastic design procedures.



1. Introduction

With the demand for economical rapid transportation, installation and
deployment of strategic facilities in increasingly shallow water and difficult to
maneuver territories, the overall physical sizes of a new generation Naval and
industrial ocean systems have been decreasing steadily. These systems include
moored and free-floating ships, barge, buoys and platforms. Large system response
often result under moderate to high sea states and the behavior of these systems is
highly nonlinear and sensitive in nature. Examples of sources of severe nonlinearity
of these systems include the relatively weak lateral restoring force of tension-leg
platforms (TLPs), nonlinear upright moments of ship roll motions and light mooring
lines on buoys which can become slack during dynamic motions of moored
structures, giving rise to a discontinuity in stiffness (Thompson et al. 1984).
Another sources of nonlinearity arises from the quadratic nature of the
hydrodynamic loading effects and parametric couplings in the inertia forcing
(Gottlieb and Yim 1993).

Because of the complexity of these nonlinear system behavior in general,
a great number of studies have been concentrated on deterministic response to
periodic wave excitations. In particular, the intricate nature of system behavior has
been thoroughly investigated. These studies assume that responses to periodic
excitations are periodic and concentrate on developing solutions that take into
account the contribution of resonance, ultraharmonic and subharmonic components.
In addition to the nonlinear periodic responses identified by classical analyses,
recent studies discovered the possible existence of another class of nonlinear
response behavior of offshore structural systems to deterministic excitations, called
chaotic response. In spite of being subjected to the deterministic forcing, the
chaotic motion possesses random-like characteristics. The "steady-state” behavior
of these responses is non-periodic and is unpredictable in a deterministic sense.

Under moderate to high sea states, unexpected and undesired large transient
extreme responses, large periodic response and even complex stochastic (possibly
chaotic) response can occur in the nonlinear ocean structural systems. In practice,
some potentially dangerous nonlinear resonances have been reported in these
systems, e.g. tethered buoyant platforms and articulated moored towers.
Experiments on a common type of articulated moored tower revealed the existence
of unexpected subharmonic resonances, leading to large deflections (Thompson et
al. 1984). In addition, chaotic behavior has been observed in numerical simulations
of the response of full-scale models subjected to "100-year” waves using large-scale
finite-element analysis programs in the course of detailed design of some
commercial platforms. These nonlinear responses may induce human discomfort,
hinder critical maneuver, and lead to unexpected dynamic instability and possible
catastrophic failure, thus compromising operation safety and system reliability.



An in-depth understanding of these nonlinear and sensitive response
behaviors of the ocean structural systems is essential to develop new concepts of
structural analysis, design, monitoring and control. Investigations in characteristic
nonlinear response phenomena to deterministic wave excitations, e.g. bifurcations,
resonances, and chaotic motions, in ocean structural systems have been conducted
for single-degree-of-freedom models (considering the dominant motion only). The
systems investigated include articulated moored towers (Gottlieb et al. 1992), multi-
point moored structures (Gottlieb and Yim 1992, 1993; Gottlieb et al. 1997) and
free-standing offshore equipments (Yim and Lin 1991a-b, 1992). Employing
classical stability analysis techniques, primary and secondary resonances can be
identified in the parameter space. By varying the system parameters, transition in
response characteristics (in amplitude and period) classified as bifurcation is
analytically predicted and numerically identified. Chaotic motions are also observed
in these systems via local and global stability analyses. Chaotic response is found
to be highly sensitive to perturbations in initial condition and excitation details.
Perturbed chaotic response trajectory diverges from the unperturbed trace, and yet
still resides in a bounded sub-space called, "strange attractor”, as assessed in
previous studies. The random-like characteristics are also examined from a
probabilistic perspective. With a selected sampling rate (sampled every forcing
period), some invariant statistical properties, e.g. stationarity and ergodicity, are
found in chaotic time histories (Yim and Lin 1992).

Experimental studies have been carried out to verify the nonlinear behavior
predicted analytically and numerically in ocean structural systems. An experiment
has been conducted at Oregon State University to assimilate the behavior a multi-
point moored structure subjected to (regular and random) wave excitations (Yim
et al. 1993). The primary goal of this experiment is to identify the existence of
nonlinear resonances, bifurcations and even chaotic motions in the system response
to periodic wave excitations. Being aware of the existence of uncontrollable noise
perturbations in the wave flume, additional noise perturbations are later added to
examine their effects on system responses. Tests to spectrum-specified random
waves are also conducted to assimilate and analyze structural responses in random
wave fields.

For the tests excited by deterministic periodic waves, experimental
observations confirm the existence of ultraharmonic and subharmonic responses.
Locations of primary and secondary resonances are also identified. Existence of
higher-order nonlinear responses are yet to be identified via more advance time
series analysis techniques. However, there are experimental observations which can
not be interpreted from a conventional deterministic perspective. Transitions in
distinct characteristic motions, e.g. harmonic and sub-harmonic, are observed in a
realization of the system response. The unexpected transitions are conjectured to
be caused by the presence of uncontrollable noise perturbations in the wave flume.



Thus, an analysis procedure needs to be developed to take into account random
perturbations.

Taking into the presence of random perturbations, global response stability
analysis is carried out via a stochastic Melnikov process, and response probabilistic
characteristics can be governed by the Fokker-Planck equation (Lin and Yim 1995,
1996a-d, 1997; Yim and Lin 1997b). Criteria derived from the stochastic
Melnikov process (or function) indicate the presence of random perturbations
enlarges the potential chaotic domain, in other words, chaotic motions may be
observed in an expanded parameter space where they does not occur otherwise.
Evolution of distributions of response characteristics (displacement and velocity in
a 2-D space) is governed by a deterministic partial differential equation called
Fokker-Planck equation. Resulting probability density functions, sampled on phase
plane, provide the information of global dynamical system response behavior. With
the presence of weak random perturbations, multiple steady-state responses are
demonstrated, which explains the unexpected transitions between distinct
characteristic responses observed in the experiment. Intensity of random noise is
considered as a parameter to examine its effects on the nonlinear system responses.
The Fokker-Planck formulation can be applied to solve for probability density
functions of system response to purely random wave excitations. Time-average
probability density functions are found to be a measure of system response to all
possible forcing excitations, i.e. periodic, periodic with perturbations and purely
random. With the measure, engineering applications such as extreme distributions
can be carried out (Lin and Yim 1995).

This paper summarizes the authors’ recent investigations in nonlinear
response behavior of a multi-point-moored structural system. Deterministic and
periodic wave excitations are first considered and stability analysis procedures are
employed to demonstrate the intricate nature of system responses. More realistic
wave excitation models, e.g., nearly periodic and purely random, are later
introduced to be incorporated in stochastic analysis and the system responses are
interpreted from a probabilistic perspective.  Results of the corresponding
experimental studies in both deterministic and stochastic cases are briefly described
and compared against the analytical predictions. Potential applications in reliability
based design using probability density functions as a measure are elaborated.

2. System Description
A submerged, neutrally buoyant multi-point moored ocean system shown

in Fig.1 is modeled as a single-degree-of-freedom rigid body in surge,
hydrodynamically damped and excited nonlinear oscillator.



2.1 Equation of Motion

The equation of motion is derived based on equilibrium of geometric
restoring forces and dynamic forces induced by body motion under wave excitation.
The governing equation is given by (Gottlieb and Yim 1992)
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where M is the body mass; C, system damping coefficient; K, elastic coefficient
of mooring line. 3 denotes the degree of geometric nonlinearity; [, initial length
of mooring lines (see Fig.1 for d); C, and C,, hydrodynamic viscous drag and
added mass coefficients, respectively; Ap, projected drag area; Vv, displace volume;
and p, water mass density. x, represents the surge displacement, and #, is the fluid
particle velocity. Moreover, u, and (3 are given by
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where U, denotes colinear current magnitude. a,0 and k are wave amplitude,
frequency and number, respectively. L is the diameter of the sphere (see Fig.1 for
b), and h is water depth. Sources of system nonlinearities are further elaborated in
the following section.

2.2 Identification of Nonlinearities

The Hamiltonian (corresponding to the undamped and unforced) system
associated with Eq.(1) is obtained by setting C, F,, and F, to zero. Response
(natural) frequency of the Hamiltonian system can be computed by directly
integrating the Hamiltonian phase plane. It is found that the response natural
frequencies are closely related to the degree of geometric nonlinearity due to
mooring line configurations. The strongest nonlinearity is obtained for right angle
mooring (8=0) whereas the weakest nonlinearity is found for small angles (3> 1).

Identification of the generic exciting force nonlinearities is conveniently
described by scaling system displacement by the wave number k and approximating
the restoring force by polynomials. It is found that the bias and parametric



excitation can be only neglected (e.g., equivalent linearization) for very small
hydrodynamic excitation. A bias and parameter excitation have been found to be
a precursor of response symmetry breaking leading to period doubling and
generating a mechanism for system instabilities even for small amplitude response
(Miles 1988). Thus, the moored system is a coupled nonlinear parametrically
excited system and is expected to exhibit complex dynamics (Troger and Hsu 1977)
and chaotic motions (HaQuang et al. 1987).

Plan View

Fig.1 A submerged, hydrodynamically damped and excited nonlinear ocean structural system
3. Deterministic Analysis

Although waves are random in nature under field conditions, idealized
(deterministic) regular waves are first employed to demonstrate the intrinsic
complex behavior of highly nonlinear offshore structures. Existence of highly
nonlinear phenomenon in system responses, including sensitive (chaotic) behaviors,
is identified using stability analyses (local and global) and is demonstrated via
numerical simulations.

3.1 Deterministic Model

Assuming convective effects in the inertia force negligible and normalizing

the governing equation w.r.t. the total mass (M +pvC,), Eq.(1) can be rewritten as
X =X
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where x; (= x) and x, are nondimensionalized surge displacement and velocity, with
v and 6 denoting the structural and hydrodynamic damping coefficients,



respectively. The wave excitation is assumed to be (purely deterministic and)
harmonic, typical of specified maximum "100-year" waves of (sufficiently long,
though finite) duration. Because of the complexity of Eq.(2), approximate solutions
need to be developed and their stability analysis follows.

3.2 Approximate Solution

Periodic solutions to Eq.(2) are approximated by a sum of harmonic
functions in the method of harmonic balance (Gottlieb and Yim 1992b). The
approximate solution is then substituted back in the Eq.(2), and the nonlinear
differential equation is converted to a set of simpler nonlinear algebraic equations.
The approximate solution form is assumed as
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where ApgmsAiwms ¥ i are solution amplitudes and phases, I is the order of
approximation (i=1,2,3,...,1), and n/m is the order of ultrasubharmonics.

3.3 Local Stability Analysis

Stability of the approximate solutions is examined to determine their
physical realizability. A stable solution can be physically realized, and an unstable
solution indicates the existence of other forms of stable solutions. Varying system
parameters in the parameter space, the phenomenon of response gaining and losing
response can be observed and called stability bifurcations.

Local stability of the approximate solution can be determined by
considering a perturbed solution, x(f) =x() +&(¢), which upon substitutionin Eq.(2),
results in a nonlinear variational equation. Linearizing the variational equation
yields a set of linear ordinary differential equations with periodic coefficient
functions (H, [x(0),y,(0)1= H, [x(0+27),y(0+2m)]). A generalized Hill’s
variational equation is obtained by substituting the approximate solutions (Eq.(3))
to H, , and is given by
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with (§¢,8) and (£4,{5) the Fourier coefficients calculated from H;,. The
particular solution to Eq.(4a), e=exp(p)Z(r), with the Floquet theory (Ioos and
Joseph 1981) can be used to identify the stability regions for symmetric and
unsymmetric responses.

A comprehensive numerical study and presented example of various types
of nonlinear responses collaborating the analytical predictions have been conducted
(Gottlieb and Yim 1992b). These examples include pitchfork bifurcation, dynamic
symmetry breaking, multiple occurrence of unsymmetric subharmonics, period
doubling in subharmonic domains, period doubling in ultraharmonic domains, and
coexistence of harmonic and multiple subharmonics of different orders (Gottlieb and
Yim 1992b).

3.4 Identification of Bifurcation Superstructure

As indicated in the stability analysis, the response gains and loses stability
when the system parameters are varied. A universal underlying pattern
(superstructure) about the stability gaining and loosing near resonances of the
moored system has been demonstrated (Gottlieb et al. 1997).

Numerical search for the existence of various types of responses and
identifying the underlying global pattern is guided by the stability regions in
parameter space near low-order and higher-order resonances. A sample
superstructure is presented in Fig.2. The pattern consists of intersecting "resonance
horns” that portray asymptotic behavior for large excitation.

A resonance number R,,,., describing a repeating global bifurcation
pattern is defined here to classify the bifurcation pattern of the subharmonic,
ultraharmonic and ultrasubharmonic solutions for the submerged moored system.
Index [n/m] describes the nonlinear resonance relationship nw = mv o, (where w -
wave excitation frequency; «, - coefficient of the linear component of the
nonlinear stiffness). The second index [j], determines the order of ratios with non-
common factors. The third index determines the dimension [d] of the response (i.e.
integer deterministic versus fractal chaotic) (Feder 1989).



Knowledge of the intricate superstructure enables identification of
coexisting solutions and pitchfork or period doubling bifurcations. Coexistence
found by local analysis, can be determined by resonance numbers R, , With similar
n/m ratios (e.g. R, and R;;,). Also note that ultraharmonic solutions described
by an even descriptor (n or m) are unsymmetric whereas odd descriptors describe
symmetric or self-similar solutions. Numerical examples of coexisting (n/m=1/2)
and (n/m=4/5) and singly existing self-similar (n/m=23/5) can be found in Gottlieb
and Yim (1992b), respectively.

Stability loss of a symmetric solution which evolves in parameter space to
two partner orbits (Gottlieb and Yim 1992b) is described by the ordering index j:1,2
for n/m=2/1 (e.g. Ry;; = Ry;,) in the ultraharmonic domain. Similarly, the
period doubling bifurcation (Gottlieb and Yim 1992b) is described by the ordering
index in the subharmonic domain j: 1,2 for n/m=1/2 (e.g. R;;,; = R;;,»). Note that
period doubling in the ultraharmonic domain (Gottlieb and Yim 1992b) is described
by j: 2,3 for n/m=2/1 (e.g. Ry, , = Ry, 5).

10

s : n/m
i E‘r(ig)7§r2

st aaasad

S S Y WY VO TR IOV TN

o
oF
o

Fig.2 Bifurcation superstructure
3.5 Routes to Chaotic Responses

Possible routes to a strange attractor can be described by the evolution of
unsymmetric and symmetric solutions as is evident by the spectral content of the
pre-chaotic and post-chaotic motions. One possible route is through smooth,
continuous period multiplying. This route includes period doublings and can be
traced in the superstructure by the ordering index j: 2,4,8...(e.g. R;,; = Ry, ~
Rip4 = R;59). The period doubling route to chaotic motions is observed with the
appearance of additional even harmonics. Similarly, a period tripling route with the
appearance of additional odd harmonics j: 3,9 (e.g. R;5; = Ry;3; ...) has been
identified and verified numerically. Thus, the period multiplying scenario describes



an accumulation of internal resonance horns in the bifurcation sets. Note that when
the multiplying sequence is infinite, the dimension index [d], describing the number
of systems degrees-of-freedom, does not retain its integer value and is replaced by
a characteristic fractal dimension (e.g. R o v .317)-

Based on our detailed numerical study, another route to chaotic motions is
found in the abrupt change to and from neighboring periodic motions (e.g. Ry, , =
R,; 7). This occurs near the local tangent bifurcation values and is associated with
contraction of the 2mx/n ultrasubharmonic. This route is found to be short lived
in parameter space and culminates in a strange attractor when a "collision" occurs
between two neighboring attractors separated by a saddle (i.e. bifurcation defined
as a heteroclinic tangency).

3.6 Global Stability Analysis (Melnikov Approach)

The Melnikov approach is utilized to examine the global stability and
determine the chaotic domain in the parameter space. When perturbed stable and
unstable manifolds transversely intersect, chaotic motions may exist. Existence of
homoclinic or heteroclinic connection is essential for applying the Melnikov method.
The Hamiltonian system corresponding to (1a) has only one fixed point, a center,
and no homoclinic or heteroclinic orbits. Nevertheless, homoclinic connections may
exist near the primary resonance in the associated averaged system (Gottlieb and
Yim 1993), which is demonstrated in the following section.

3.6.1 Existence of homoclinic orbits
By treating time as a normalized state variable, 6, employing a polynomial

approximation for restoring force (ax;+ax;’) (Gottlieb and Yim 1993), Eq.(1a)
can be rewritten in an autonomous form
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A pair of homoclinic orbits within the averaged system can be determined based on
the Bendixson criterion (Jordan and Smith 1987). For small structural damping, the
system near primary resonance contains homoclinic loops defined by the stable and
unstable manifolds of the saddle. The pair of homoclinic orbits are identified to
exist. Based on the existence of homoclinic connections, the Melnikov function is
formulated in the following section.



3.6.2  Melnikov function

The Melnikov function estimating the distance between the stable and
unstable manifolds is given by (Guckenheimer and Holmes 1983)

M@®) = jF(qiw)AG(qi(m,ow,,)de - j (F,G,~F,G)db ©)

where F, and F, denote the components of a 2-D Hamiltonian vector field, and G,
and G, represent the perturbations. When M(6,)=0 in Eq.(6), chaotic response may
exist and a criterion for the chaotic domain can be thus defined.

It is shown numerically that when the Melnikov criterion is satisfied
(M(8,)=0), system response does exhibit transient chaotic motion. In other words,
the system response behaves in a chaotic fashion for a considerably long duration
of time before settles to a periodic steady state (Gottlieb and Yim 1993).

3.7 Experimental Verification

An experimental study was conducted at Oregon State University to
assimilate nonlinear ocean structural response behavior subjected to various wave
excitations, including periodic, nearly periodic and narrow-banded.  The
configuration and setup of the experiment are briefly described here, and the
experimental results under periodic wave excitations are compared against the
analytical predictions in the following section.

3.7.1  Experiment configuration and setup

The experimental model was situated in a two dimensional wave flume with
length 342 ft., width 12ft. and depth 15ft. Waves are generated by hydraulic driven
and hinged flap wave board (Yim et al. 1993). Quantitative data recorded during
each test included wave profiles at several locations along the channel, current and
sphere movements, and restoring forces in the springs.

3.7.2  Observations and comparisons

Nonlinear experimental responses, including (harmonic) resonances,
subharmonic and ultraharmonic, have been observed (Lin et al. 1997). These
results collaborate the complex nonlinear system behavior predicted by those of the
analytical model (Eq.(2)). Frequency response curves demonstrate a nonlinear
relationship between the wave excitation and system responses in parameter space
(Fig.3). Both primary and secondary resonances are exhibited in the curve, and



possible existence of bifurcation superstructure and routes to chaotic motions is
implied. Good agreement between numerical simulations and experimental response
is shown, and the validity of the analytical model is demonstrated. Besides the
steady-state nonlinear responses, transitions from one response state to another,
which can not be explained by deterministic analysis, were observed in the
experiment (Fig.4).
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Initially, the system response behave in a harmonic fashion for about 120
seconds (Fig.4a) and then transitioned to a subharmonic steady state (Figs.4b-c).
This transition may be induced by the presence of uncontrollable noise which is
caused by a combination of reflection, re-reflection, wave diffraction by the model,
and imperfect energy dissipation of the testing facilities. A stochastic analysis
approach accounting for these uncontrollable noise is needed to further investigate
the observed nonlinear response.

4, Stochastic Analysis

Weak random perturbations are now added to the forcing excitation to
assimilate nearly periodic wave conditions (periodic plus uncontrollable tank noise
in the experiment), which may also occur in the field when storms are filtered by
ocean topography or near-by marine structures (Jefferys 1987). Taking into account
the presence of random noise, global (Melnikov) stability analysis is then employed
to identify its effects on highly sensitive nonlinear (chaotic) domains in parameter
space. Stochastic properties of noisy nonlinear responses are examined via the
Fokker-Planck formulation. Responses to purely random wave excitations are also
investigated and the associated engineering application is according conducted.

4.1 Analysis of Responses to Nearly Periodic Excitation

The stochastic model can be obtained by lumping all random perturbations
and subsequently adding to the forcing excitation in Eq.(2)
=x
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where the lumped random excitation component is described by a zero-mean, delta-
correlated white noise process, £(f),
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with « denoting noise intensity.
4.1.1 Global Stability Analysis (Melnikov Approach)

With the presence of random perturbations, the distance between the stable
and unstable manifolds is given by (Lin and Yim 1995)
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where the vector G includes deterministic and random perturbation components.
Noise effects on occurrence of chaotic responses are to be identified in the Melnikov
sense here by isolating the damping term related to the chaos threshold and
regrouping the perturbation effects into deterministic and random components. The
criterion based on the stochastic Melnikov process provides a necessary condition
for the existence of chaotic response (Yim and Lin 1991a), and the noise effects
should be represented in a mean-square sense
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where the subscript d denotes Melnikov components due deterministic perturbations,
and 0,2 and o,? are the variances associated to random perturbations. The positive
terms, ¢,% and 6,%, indicate that the presence of noise lowers the threshold for chaos
and enlarges the possible chaotic domain (mean-square sense) in the parameter
space.

4.1.2  Noise-induced chaos

As indicated in the criterion based on the stochastic Melnikov function, the
presence of random perturbations enlarges the potential chaotic domain in the
parameter space and noisy chaotic response may occur in the expanded region.
Numerical verification of the analytical predication is given in Fig.5. When the
excitation is deterministic, the system response behaves in a subharmonic fashion
(Fig.5a). When weak random noise is present, the response is in a noisy chaotic
mode (Fig.5b-c), which means the "orderness” of the chaotic motion is preserved
despite the fractal boundary of the strange attractor is smoothed. When the noise
intensity is further increased, the response becomes more random-like (Fig.5d).

4.1.3  Fokker-Planck formulation

The Fokker-Planck formulation is applied when random wave fields are
considered. The Fokker-Planck equation (FPE), statistically equivalent to Eq.(7),
governs the evolution of response probability density function (PDF) in phase space
and is given by
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with X=[x, x,]. P(X,?) is the joint PDF in (surge displacement and velocity) phase
space; (x,, -R(x,)-'yxz-&lex2| +Fp+F)) corresponds to the drift vector; and «/2
is the only nonzero entry in the two by two diffusion matrix.

A path-integral solution (a semi-analytical iterative) procedure, is employed
to solve FPE for PDFs. In the path integral solution procedure, the traveling path
of the PDF in phase space is discretized into infinitesimal segments. Each segment
represents a short time propagation between two consecutive states in the
corresponding Markov process. The short time propagation is approximated by a
time-dependent Gaussian distribution, called the short time PDF whose mean and
variance are determined by the drift vector and the diffusion matrix, respectively.
The PDF at the succeeding state can be determined through the propagation. Thus
the probability at a desired state can be obtained by applying the short time
propagation iteratively.
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4.1.4  Probabilistic interpretation of response

Global information of system response can also be illustrated via steady-
state PDF (Fig.6). Figure 6a shows coexisting periodic responses, which may be
obtained near resonance with various initial conditions. Figures 6b-d show the
corresponding PDF with various noise intensity. The PDFs are obtained with
quiescent initial condition. When the intensity of the noise present is very low
(x=0.003), the PDF is concentrated at the domain of small-amplitude response
(Fig.6b), indicating its stronger attracting strength relative to the coexisting large
amplitude motions (i.e., rarely visiting the large-amplitude domain). When the
noise intensity increases (k=0.007), the domains of attraction of the coexisting
responses begin to bridge as shown in Fig.6¢c. Characteristics of both attractors
(small and large amplitudes) may exhibit in the response behavior. When the noise
intensity is moderate (x==0.02), the attractors further merge into a single attraction
domain (Fig.6d), in which no obvious periodic response can be distinguished.
Numerical results show that the variation of boundary of the emerged attraction
domain is stabilized when the noise intensity further increases. The smooth curve
and the stationary boundary of PDF implies strong randomness in the response
behavior.
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The experimental observed "unexpected" transition from harmonic to
subharmonic can be interpreted using PDF. The transition indicates the coexistence
of harmonic and subharmonic response attractors. Moreover, due to the presence



of weak random perturbations (caused by uncontrollable tank noise), the domains
of coexisting attractors are not well bridged (Fig.6b). Because the experiment
model is excited with quiescent initial condition, the response trajectories reside in
the (weak) small-amplitude attractor for about 120 seconds and then transition to the
(strong) large-amplitude attractor with low probability of return.

4.1.5 Experimental comparisons

Under specified wave excitation conditions described above, total of 9 tests
were conducted and the model responses were recorded (Tests D4-13, see Yim and
Lin (1997a) for detailed documentation). It is observed that when the wave
amplitude increases from 1.5 ft. to 2.2 ft., a relatively strong subharmonic
component is shown in the response in both time and frequency domains (Fig.7).
It is also evident that the response oscillates between coexisting distinct response
attractors, i.e., harmonic and subharmonic (Fig.7). The experimental observation
can be interpreted in light of the analytical prediction. Lin and Yim (1996) suggest
that the presence of random noise facilitates a global description of the system
behavior in the phase space. When the random noise intensity is moderate, the
attraction domains of the coexisting response are well-bridged. The steady-state
PDF indicates an oscillatory shift between coexisting response attractors in an
ensemble sense (Lin and Yim 1996). The experimental response drifting back and
forth between the coexisting harmonic and subharmonic attractors is due to the
presence of random noise, thus the combined characteristics are observed (Fig.7).

4.2 Analysis of Responses to Purely Random Excitation

The stochastic model can be obtained by employ linearly filtered white
noise to approximate spectrum-specified random waves

X, = x,
(11a)
X, = =yx, = 8x,|x,| - R(x) + f()
The random wave excitation f{f) is obtained by
Foy + Bf®) + B = £0) (11b)

where £(¢) is a zero mean, delta-correlated white noise (Eq.(7b)).

The linear filter (Eq.(11b)) adds another two state variables to the Fokker-
Plank formulation. The associated Fokker-Planck equation (FPE) is given by
with X=[x, x, x; x,]".
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Fig.7 Noisy combined harmonic/subharmonic response: a) time history and b) energy spectrum
5. Design Applications

With the PDF as a measure, a probabilistic-based design can be carried
out. Results to nearly periodic and random (e.g., JONSWAP) waves are compared
to suggest the most suitable excitation for an integrated design. The distribution of
large excursions in the system response is then calculated and will be used as a
system performance index, based on which, recommendations to practicing
engineers follow.



5.1 Transient PDF and Failure Probability

Evolution of response PDF is indicated by the time-dependent drift
coefficient in the Fokker-Planck formulation (for nearly periodic excitation (x - 0))
and the examples demonstrated in previous sections. Incorporating the evolving
(transient) PDF with the domain of interest ("safe” domain), the time-dependent
failure probability can be calculated. The time-dependent failure probability is
computed by summing up the probability out-crossing the boundaries of the "safe”
domain at each time step. The boundary condition is as follows:

P(x,x,,1) =0 (13)

forx, > +x,,x, > 0; x;, < x,x,>0; x;, 2 +x,,, x, < 0; and x; < -xy,
x, < 0. Variables +x;; define the upper/lower bounds of the "safe" domain.

Comparison of the time-dependent (transient) probability of failure/safety
of structural responses near a highly nonlinear domain to those of nearly periodic
and purely random excitations is shown in Fig.8. When the "safety” boundary is
specified, the transient failure probability (P,) goes up to 0.02 in about 95 seconds
for JONSWAP random waves and about 320 seconds for nearly periodic waves,
Thus, system failure can be anticipated in a shorter duration to the purely random
wave excitation (JONSWAP).
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Fig.8 Transient failure probability (dashed line - nearly periodic waves and solid line - JONSWAP
random waves)



5.2 Time-Averaged Probability Density

As noted in the FPE (Eq.(10)), the drift coefficient is periodic in time for
nearly periodic case (x = 0). The periodicity can be suppressed by taking an
average over a sufficiently long duration to form a time-averaged PDF (which is an
invariant measure as shown in Lin and Yim (1995)). The TAPDF is given by

T

"

=1 (14
PO = — I P(X,0)dt

n

Good agreement has been demonstrated between the simulated TAPDF and the
theoretical result (Lin and Yim 1995). With the TAPDF, distribution of large
excursions can be estimated.

5.3 Distribution of Large Excursions

Using the TAPDF and employing Rice’s formula, the mean up-crossing
frequency of the response can be evaluated as

@

P (x,) = l x, P (x,x)dx, (15)

Moreover, by adopting the assumption of statistically independent large-amplitude
up-crossings, which leads to Poisson-distributioncrossing events (Naess and Johnsen
1993), the asymptotic approximation of the probability that x, exceeds a specified
high level x, during time T is given by

PU(x,T) = 1-exp(-p;(x)T) (16)

Figure 8 shows the distribution of large displacements in coexisting domain
over a duration of 5 minutes to nearly periodic and JONSWAP waves. It is
observed numerically that regardless of whether the system response is in the
chaotic or multiple steady-state response domain, results from the JONSWAP
random waves provide more conservative design values. Based on numerical
results, this trend is consistently observed over a wide range of parameters. Thus
purely random waves are recommended for detailed designs.
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6. Concluding Remarks

Complex nonlinear and sensitive deterministic/stochastic phenomena are
investigated in a general class of ocean moored systems. The system response
behavior is characterized by a nonlinear restoring force and a coupled fluid-structure
interaction exciting force. An analysis is carried out by first considering
deterministic periodic excitation conditions to examine the complex nonlinear nature
of the response behavior. Stochastic analyses concerning nearly periodic (periodic
plus weak noise) and (spectrum-specified) purely random excitations are developed
to examine the system response form an ensemble perspective. Experimental
studies assimilating the deterministic and stochastic nonlinear ocean moored
structural responses are summarized. A potential engineering application using

stochastic analysis means is also demonstrated. Some pertinent conclusions are
accordingly summarized as follows:

6.1 Deterministic Analysis

Rich and complex phenomena, e.g., bifurcations, harmonic resonance,
subharmonic, ultraharmonic, ultrasubharmonic and even chaos, are observed in the
response behavior. A bifurcation scenario in the response is analytically predicted
using the method of harmonic balance for approximate solutions and a variation
method for their stability analysis. A global stability analysis is carried out
employing Melnikov function to identify the existence of chaotic motion. Numerical
results demonstrate that organized stability transitions between resonances can be



characterized by a steady state superstructure in the bifurcation sets. Routes to
chaotic response are found via period doubling, period tripling, and sudden
explosion.

6.2 Stochastic Analysis

Noise effects on the existence of chaotic response are demonstrated based
on criteria derived from stochastic Melnikov (function) process. Analytical results,
verified by numerical simulations, indicate that the presence of weak noise
perturbations expedites possible occurrence of chaotic response.  Stochastic
properties of noisy nonlinear response are examined using the Fokker-Planck
formulation. The resulting probability density function depicts global system
response on the phase plane. Numerical results indicate noise intensity is a
controlling parameter of transition between coexisting response attractors. When
the noise intensity is low, the response trajectories reside in the stronger attractor
with low probability of exiting to the other attractor. When the noise intensity is
moderate, the domains of coexisting attractors are bridged and the system response
exhibits combined characteristics. When the noise intensity is high, the domain of
the coexisting attractors are further bridged and smoothed, and the system response
appears random. Random wave excitations (JONSWAP) are approximated by
linearly filter white noise, and good agreement is shown.

6.3 Experimental Comparisons

Deterministic experimental results verify the existence of harmonic
resonance, ultraharmonic and subharmonic responses. These results collaborate the
complex nonlinear system behavior predicted by those of the analytical model.
Primary and secondary resonances are exhibited in the frequency response curves,
and possible existence of bifurcation superstructure and routes to chaotic response
is implied. "Unexpected" transitions from harmonic to subharmonic responses are
found to be caused by the coexistence of response and the presence of weak tank
noise.

Stochastic experimental results confirm that noise effects should be taken
into account for the analysis and design of deterministic system. With weak noise
present, response transition from the weaker attractor to reside in the stronger
attractor is observed. With a moderate noise intensity, oscillations of the response
between coexisting response attractors are also demonstrated. Both experimental
observations confirm the analytical predictions.



6.4 Engineering Application

Numerical results indicate the current deterministic analysis practice of
using "100-year" periodic waves may be inadequate for the estimation of maximum
response for highly nonlinear offshore structures. Nearly periodic waves are
proposed to provide a more realistic model compared to the conventional "100-year”
waves. Using probability density function as a measure, the maximum displacement
and system reliability in responses to nearly periodic and JONSWAP random waves
are estimated and compared. It is found that the results of the corresponding
JONSWAP wave excitations provide more conservative design values than those of
the nearly periodic waves. Hence, purely random waves with the stochastic analysis
in the probability domain form a useful analysis procedure and are recommended
for detailed designs.
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