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Superharmonic Motions of a
MDOF Moored Structure, Part
1—System Identification

In this first part of a two-part study, the general nonlinear system identification method-
ology developed earlier by the authors for a single-degree-of-freedom (SDOF) system
using the reverse-multi-input/single-output (R-MI/SO) technique is extended to a multi-
degree-of-freedom (MDOF), sub-merged, moored structure with surge and heave mo-

tions. The physical nonlinear MDOF system model and the formulation of the R-MI/SO
system-identification technique are presented. The corresponding numerical algorithm is
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then developed and applied to the experimental data of the MDOF system using only the
subharmonic motion responses to identify the system parameters. The resulting model is
then employed in Part 2 for a detailed analysis of both the sub and superharmonic

dynamic behavior of the MDOF experimental system and a comparison of the MDOF
response results and observations with those of the corresponding SDOF system exam-
ined earlier by the authors. [DOL 10.1115/1.2073208]

Introduction

Nonlinear response behavior, in general, and sub- and superhar-
monic motions, in particular, of (MDOF) moored structures in the
ocean is of great interest to designers of ocean structures. These
nonlinear motions may significantly affect the extreme response
and fatigue behaviors. They often occur when the dominant wave
excitation frequency is near an integer multiple (subharmonic) or
rational fraction (superharmonic) of the dominant frequency of the
submerged structural system. In order to perform an accurate
analysis of these dynamic motions, the parameters of these non-
linear systems need to be determined precisely.

Methods for the parameter identification of linear multi-degree-
of-freedom (MDOF) structural systems are well established.
Modal superposition and spectral techriques based on the assump-
tion of orthogonality of the normal modes of the system and the
subsequent decoupling of the equations using modal vectors are
widely used for the analysis and identification of general MDOF
system [1]. However, as Rice and Fitzpatrick [2] pointed out,
these techniques are limited to linear systems only and not appli-
cable when the systems have significant modal coupling due to
damping and/or nonlinearities, (e.g., material and geometry).

The nonlinear identification technique based on the inversion
approach of spectral analysis for single-degree-of-freedom
(SDOF) systems [3] was extended to the identification of nonlin-
ear parameters of MDOF systems [2]. Bendat et al. [4] indepen-
dently developed the reverse multiple-input/single-output (R-MI/
SO) technique and applied it to several MDOF systems,
incorporating nonlinear damping as well as nonlinear stiffness
(see also Bendat and Piersol [5]). Recently, R-MI/SO models were
developed for offshore engineering applications by Narayanan and
Yim [6] and Yim and Narayanan [7] on a SDOF moored structural
system; Panneer Selvam and Bhattacharyya [8] on a large floating
body; Niedzwecki and Liagre [9] on a distributed parameter ma-
rine riser, and Liagre and Niedzwecki [10] on a MDOF
minitension-leg platform.

Experiments have been conducted at the O. H. Hinsdale Wave

Contributed by the Ocean Offshore and Arctic Engineering Division of ASME for
publication in the JouRNaL oF OFFSHORE MECHANICS AND ARCTIC ENGINEERING, Manu-
script received September 26, 2004; final manuscript received March 24, 2005. As-
soc. Editor: Ge (George) Wang.

Journal of Offshore Mechanics and Arctic Engineering

Laboratory at Oregon State University (OSU) on a multipoint
moored submerged sphere with SDOF and MDOF configurations
subject to wave excitations. Several candidate models were devel-
oped in a previous study by the authors [11,12]. With the appli-
cation on experimental data, the IFF model with the NSND iden-
tification algorithm was found to be the most suitable analytical
model for the experimental system. Based on the selected model
and the identified system parameters, Lin and Yim [13] compared
the prediction results with experimental data and Yim and Lin
[14] performed a series of analyses on the moored SDOF struc-
tural system.

In this study, the IFF-NSND model developed and validated for
the SDOF constrained experimental system in the previous study
is extended to the MDOF submerged structural system. The IFF-
NSND model requires the a priori knowledge of the inertia and
drag coefficients, C,, and C,, respectively, for the evaluation of
hydrodynamic force on the sphere. To select a priori inertia and
drag coefficients for our study, we examined the vast library of
experimental data on hydrodynamic coefficients for cylinders as a
function of the Keulegan-Carpenter number (KC), the Reynolds
number (Re), and the roughness parameters from laboratory and
field tests [15-19]. For the set of experimental data previously
analyzed on the SDOF system, C,, varies between 1.1-1.3 for
53X 10°<Rep=<7X10° and 4.7<KCr=6.2 and 1.3-1.5 for
13X 10°=Rep=3.7X 10° and 1.2=KCp=3.3, and the response
was observed to be insensitive to variations in C, [12]. Using the
above range of values for C,, the general numerical algorithm
developed for the MDOF system is applied to the experimental
data for subharmonic motions to identify the system parameters
and the results are presented.

MDOF System

The MDOF experimental model consists of a submerged
moored neutrally buoyant sphere excited by periodic waves with
white noise perturbations. The configuration of the model is given
in Fig. 1. The restoring force is geometrically nonlinear with the
springs attached at an angle of 90°. Springs were used to support
the sphere and provide a restoring force. String pots were attached
to measure the sphere movement. Pitch motion is observed to be
negligible compared to surge and heave motions [20]. With the
knowledge of string pot measurements and the distances between

NOVEMBER 2005, Vol. 127 / 283

Copyright © 2005 by ASME



/

springs .
wall
(a)
—
waves
; Ve
\/ Z\
L’X
h T
sphere
h 4
(b}
Fig. 1 MDOF experimental setup: (&) plan, (b) profile view

the sphere and the respective string pots, the readings are

converted to surge and heave by two-dimensional geometrical

transformations [21].

Governing Equations of Motion

The equations of motion for the SDOF moored structural sys-
tems subject to periodic wave excitation with white noise pertur-
bations presented by Narayanan and Yim [11] are extended to the
MDOF surge-heave model. By considering surge (x=x,) and
heave (z=x3) as the generalized displacement coordinates, assum-
ing that structural damping in the springs and cables can be
lumped into equivalent linear structural damping coefficients C,;
and Cg3, and the geometrically nonlinear restoring force compo-
nents represented by Ry(x;,xs,f) and Rs(x;,xs,t), the governing
equations of motion for the above mooring system can be written
as

mi (1) + Copxy (1) + Ry [x, (1), x3(2)] =f,(1) (la)

mi(t) + Cada(0) + Ra[xy (1), x3(0) ] = f5(1) (1b)

where m=mass of the sphere, f|(r), f3(r)=excitation force in surge
and heave directions, and x(r),%3(r) %, (r),%;3(r) =sphere velocity
and acceleration in surge and heave directions, respectively.

The MDOF mooring restoring forces are derived from the po-
tential function that describes the pretensioned geometrical con-
figuration of a symmetric small body [22]. The resulting coupled
expressions in surge and heave are given below:

Ri[x,(0).%3(0)] = 4Kx1(=‘)(l o i—) (2a)

{(r)
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L
Ryfx(0).x3(2)] = 4KX3(1‘)(1 - _) . (2b)
Ir)
where [(f)=d®+x,(1)*+x3(r)*; K=spring constant, I =initial
spring length, and d=distance of the center of the sphere from the
wall.
The restoring force components in the surge and heave direc-
tion are approximated with third-order polynomials obtained us-
ing a least-square approximation given by

Rilx(1),x3(0] = arx, (1) + axxi(t) + azxl(r) + cpox, (x)x%(.r),
(3a)

Rilx(0),23(8)] = b1xs(8) + byx3(t) + ey (Dxa(2). (3b)

Note that a square term in the surge direction is included due to its
biased (mean offset) response. Numerical comparisons of the
polynomials [Eq. (3)] with the geometric model restoring forces
(Eq. (2)] showed that the differences between the two expressions
are negligible [23]. The normalized errors in both surge and heave
directions behave in a similar manner and varies between 0% to
10%. However, the error in the absolute magnitude of the restor-
ing forces at low displacement is mostly insignificant compared to
the other terms (i.e., inertia, damping and wave excitation forces)
in the dynamic equation of motion [Eq. (1)].

Following the results of the R-MI/SO technique application on
the SDOF system [11], an Independent Flow Fields (IFF) model is
used to represent the hydrodynamic excitation force on the MDOF
model. The components are given by

A =pY Cotiy (1) = iy (1) + §Apcdu1m|u1(:)f = gnpc;.fcl(r)

X ey ()] (4a)

13(0)= Y Cots) = mi0) + £, Cons(0(0)] - £, €L

X[i4(1)| (4b)

where V' =(w/6)D%; V=(w/6)D% m,=(m/6)D>C,; u=water par-
ticle velocity, p=mass density, D=diameter of sphere, C,
=added mass coefficient, C;=nonlinear structural damping coef-
ficient, C,=hydrodynamic inertia coefficient, and C,
=hydrodynamic drag coefficient. For the sphere (with constant
projected area) used in this experimental study, the coefficients are
taken as the same in both the surge and heave directions and they
are given by

D T
€ Cy= ,r( R~ e “L) (54)
v D
() X
CaCas =f(ReN= 2= Key= —"D—") (5b)
u

where ug,Xy=amplitudes of the water particle and structure veloc-
ity, respectively, T and T=periods of oscillation of water particle
and structure (often equal), wv= viscosity of the fluid, Re
=Reynolds number, KC=Keulegan—Carpenter number, subscript
“F” refers to the farfield, and subscript “N” to the near field.

Using linear wave theory [24], the deterministic water particle
velocities can be written as

cosh k[ x;(t) + 5]

uy(t) = wa sinh(kh) = cos[kx; (1) - wt] (6a)
uy(1) = LM-IM sin| kx,; (1) = w] (6b)

sinh(kh)

where u(f),u5() are the water particle velocity in the surge and
heave directions, respectively, w=angular velocity, a=wave am-
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Fig. 2 Schematic diagram OF the MDOF system: (a) system diagram for the calculation of wave velocity and acceleration, (b)

surge, (c) heave

plitude, k=wave number, h=water depth, and s=distance of the
instantaneous center of the sphere from the bottom.

The wave excitation containing a periodic component with
white noise perturbations may be considered as a randomly per-
turbed regular wave field. With wave elevation 7(r) measured for
the experiment considered, the water particle velocities, Eqgs. (6a)
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and (6b), can be approximated as functions of the measure wave
elevation and its numerically computed time derivative:

cosh kx3(1) + s]

snhGer) 7O (7a)

Ut =w
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It is assumed that the random perturbations in the excitation are
included in #(), given by

7(t) = a cos[kx,(f) — wt + p] + &(1) (8)

where £(r) is a zero-mean delta-correlated white noise.

The horizontal and vertical, water particle acceleration can also
be approximated by functions of the first and second time deriva-
tives of the wave elevation 7(t) as:

us(r)

cosh ky[x3(r) + 5] |

(1) = wy sinh(kgh) 1) (9a)
= sinh kg[x3(7) + 5] 50 (98)

sinh(k,h)

where 1)(r) and u5(r) are the water particle accelerations in the
surge and heave directions, respectively. The schematic diagram
for the MDOF system using the IFF-NSND model as the alterna-
tive form of the Morison Equation for representing force is delin-
eated in Figs. 2(a)-2(c).

Formulation of NSND Model for MDOF System

The R-MI/SO technique can be applied to most nonlinear sys-
tems subject to random excitation, irrespective of the nature of the
distribution (e.g., Gaussian or non-Gaussian [25]). The relative
contribution of the linear and nonlinear system properties, regard-
less of their frequency dependency or the magnitude of their par-
tial coherence function, can be determined using the R-MI/SO
technique.

The nonlinear governing equations of motion for the MDOF
NSND model are

286 / Vol. 127, NOVEMBER 2005

(m "' ma)xy(2) + Coy2 (1) + ayxy (1) + azxf(t) + ﬂzx?(ﬂ + Cnxg(t)xl(t]
+pCaqyA i, (0% (1)] = £1,(0) (10a)

(m + ma)fg(f) + Cﬂi‘l‘;(f) + b}X3(f) + b3x§(£) 4+ 02|x%(r)x3(r)

+ pCiA i (D%3(1)]| = fa(2) (100)
where
11l)=SPCAp @]+ p¥ Cui)  (110)
1
Fialt) = EpCApug(r)lu3(x}| +pV Cais(2) (115)

Values of the inertia and drag coefficients are assurmed to be
known a priori in order to evaluate the force f,() and f,,(r)
given by Egs. (11a) and (115), which are treated as the model
input. The system responses, x, and x,, are treated as the model
outputs.

Fourier transforming J both sides of Egs. (10a) and (10b) give
the frequency domain relation

la, +jQ27f)Cyy - 2uf)X(m +m)1X,1(f) + A (X o(f)
+A(NX15() + A(NX14(N + As(DX15() = Fra(f)
(12a)

(61 + Q2T )Ci = 2af)*(m + m) X5, (F) + App(DX5o(f)

+A3s(NX33(F) + Aza(HX34(f) = F3,(f) (12b)

where
Fi()=3f1a0],  F3.() =3[f54(0)] (13a)
Xu(ﬁ=3[x1(£)], X3(f) =3[x;5(2)] (13b)
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Fig.4 MDOF experimental data, ML1 and ML2: (a) wave time series, (b) wave spectra, (c) heave time series, (d) heave spectra, (e)

surge time series, (f) surge spectra

Xo(f) = Ax1(9)) (13c)

Xi(N =33 Xnn(H) = 33(0)] (13d)
XN =TE0x @), Xn()=xd0x0]  (13¢)
Xis(N =3O Xss(H = w001 (130
A =a, (13g)

Ap(N=as, An(H=b, (13k)
Aulf)=as, Au(f)=b, (13i)

A= %pc;ﬂ%ﬂ, A = %p@;%)i (13))

In the absence of nonlinear terms, H;,(f) and Hj;(f) represent
the frequency response functions of an ideal constant parameter
linear system that relates the displacement outputs, x,(¢) and x;(t),
to the corresponding force inputs, fi,(r) and f3,(¢), respectively.
They are given by
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130 = 52D~ 0, + j2mf) s - fm + )T

la

1L () + 2L )T (140
()= 2B = b1+ 10 Co- Cafm +m)T
=1~ (1f?+ 2l 1) (14)

where the natural frequencies, f;.f,s. and the damping ratios,

Lo s {53, are defined by
S R W
fnl_zﬂ_ mrm)’ fn3_2ﬂ mem) (15a)

o G
@ 2Vb(m+m,)

(15b)

P e B
2ay(m +my)

When nonlinear terms are present, H,;(f) and Hy(f) relate the
displacement outputs to corresponding effective forces, f;,(f) and
f3el), by
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Fig. 5 MDOF experimental data, MH: (a) wave time series, (b) wave spectra, (¢) heave time series, (d) heave spectra, (e) surge
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Frel0) = f1a(8) = apx3(1) - asxi(r) - c(0)x, (1) - agi (0% ()]
(16a)

F3e0) = fa,(1) = b3xi(1) = 23 (0)x3(1) = btz (D]5(2)]  (168)

The identification of this system using a standard least-square for-
ward procedure requires a time-consuming iterative approach be-
cause of the presence of the nonlinear feedback terms. Because
the forward way of analysis is difficult, an alternative reverse
dynamic viewpoint is considered [25]. To apply the R-MI/SO
technique, the input/output roles are mathematically interchanged
(i.e., the strict sense of the equal sign is exploited). The associated
Fourier transform relation is given by

Fia(f) = An(NX0 () + A(NX15(N) + A (DX 1a(f) +A ()X 14
+A,5(X5(f) (17a)

F3a(f) = A5(NX31 (1) + A3(H)X52(f) + As(HX53(F) + Asa(DXa ()

(17b)

Ay1(f) and Aj3)(f) are defined as the linear impedance functions,
which are given by

AN ==y =a)[1 - (f1£,1)* + 2iL, (Aif)]  (18a)

Ay () =[Hy (N =b,[1 = (ff,3)* + 2j§s3(ﬁfn3)] (18b)

The system gain and phase factors of Eqs. (18a) and (185) are
given by

Anl=a 1 - (I PP+ 20, FF0F (19a)

Az (Al =b,{\[1 - (FIfu3) TP+ [2La(f1f,3) 1 (19b)
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_oaf 28afl ) . ( 28 flf )
Pilll=s (I—(fffm)z e Yo o

(19¢)

The minimum gain factor occurs at the resonance frequencies, f,
and f3, of the system. By determining the maxima of Eqs. (19a)
and (19h), it can be shown that for structures having damping
ratio £;=0.5 [26], resonance frequencies are given by

Fa=FuN1 =28 and fy = f,3\1 - 282, (20)

The minimum values of the gain factors that occur at resonance
are given by

Ay ()l =a) 2LV - 2) 21a)
Al = 51283V - &) (215)

For lightly damped systems, the resonance frequencies and the
minimum values of the gain factors can be approximated [25] by

= dan |A3|(fr3}] =~2b\{5
(22)

]A]I(fr])| =2a,{,,

J3=fon

The physical parameters of the mooring system can therefore be
estimated as follows

ar=Ap(0), b =A5(0) (23a)
Ca= Cat6pD?) (238)
Co =28 Va (m + m,)] = At (23¢)

zwfnl
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Table 1 Characteristics of the MDOF subharmonic data: (a) wave, (b) identified system parameters (S units)

Data H (m) KC; Rey c., c,
MLI1 0.29 0.95 9.57ed 1.3 0.1-0.9 (0.5)
ML2 0,23 0.76 7.70e4 1.3 0.1-0.9 (0.5)
ML3 0.47 1.54 1.57e5 4 0.1-0.9 (0.5)
Data a a a3 b : C12 € Caia {13 far3
N/m N/m? N/m? N/m N/m? N/m? N/m? % (Hz)
ML1 173.9 405.7 972.4 180.3 1271.9 1568.1 1806.4 1.2 25 0.28
MIL.2 173.9 405.7 1020.7 i BE 1178.5 22733 28239 0.9 31 0.28
MH 180.3 344.5 956.3 173.9 201.8 1912.7 1961.0 0.5 3.2 0.29

(23d)

Last, the fact that the reverse dynamic inputs may be correlated
must be addressed. The correlated inputs are replaced with a new
set of uncorrelated inputs; this converts the nonlinear model to an
equivalent three-input/single-output conditioned linear model
[25]. The resulting linear impedance functions yield all the non-
linear system properties given by Egs. (23). The schematic dia-
gram for the NSND model before and after application of the
R-MI/SO technique is given in Figs. 3(a) and 3(b).

Cy3=2LV[by(m+m,)] = _lASIU;:a}I

T n3

MDOF System Parameter Identification

Three tests, MIL1, ML2, and MH (where M stands for the multi-
degree-of-freedom system; and L and H for low- and high-
amplitude waves, respectively), which yielded subharmonic re-
sponses, are employed here for the R-MI/SO parameter
identification [20]. These tests were conducted with the same
monochromatic wave with period T=22s (or frequency f
=0.45 Hz) but varying wave heights with white noise as the wave
excitation. The subharmonic motion responses have a dominant
period of 4.4 s (or frequency f=0.23 Hz), which is the “natural
period” (frequency) of “fundamental mode” vibration of the
moored system. The datasets are labeled and grouped according to
the wave amplitude. The wave velocity and acceleration are
evaluated using the central difference method [27]. The sampling
interval used in the experiment is 0.0625 s, which yields a Ny-
quist frequency of 8 Hz.

Typical segments of the time series and the spectra of the entire
record of wave and responses (surge and heave) for the datasets
are given in Figs. 4 and 5. The mean spectra, ML, which is the
average of ML1 and ML2, are also shown in Figs. 1(b), 1(d), and
1{f). The wave characteristics and the a priori quantified coeffi-
cients C,, and C, are given in Table 1(a).

The total number of samples is 8192 (512 s), with subrecord
lengths of 1024 and 50% overlapping for the Fourier transforms.
By assuming C,, and C,; based on the results of the SDOF system
[11], the hydrodynamic force is evaluated using Eq. (4). The
R-MI/SO technique is applied on the IFF-NSND model and the
system parameters are identified from the experimental data. Us-
ing the identified parameters, surge and heave responses are simu-
lated using Eqs. (1), (3), and (4). A typical example of the com-
parison between the identified and experimental data in the time
and frequency domain is given in Fig. 6. The heave and surge
response spectral densities, normalized with the variance of cor-
responding wave data, given by S,.,, which have dimension of
seconds, are plotted against frequency, f, in Fig. 6(b) and 6(d). It
can be observed that the simulated responses are comparable to
the corresponding experimental responses in both surge and heave
directions. The identified system parameters, a;, a,, and a; (the
linear, quadratic, and cubic coefficients of the surge restoring
force component), #; and b (the linear and cubic coefficients of
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the heave restoring force component), ¢, and ¢, (the coefficients
of the surge-heave coupling terms), £;,{3 (the linear damping
ratios for surge and heave), Cy 5 (the nonlinear drag coefficients)
and f,; 3 (the structural excitation force components) using the
R-MI/SO technique are shown in Table 1(b).

Concluding Remarks

The multipoint moored experimental structure considered in
this study has been formulated as a multi-degree-of-freedom
(MDOF) surge—heave, submerged, hydrodynamically damped and
excited nonlinear oscillator. The restoring force components for
the taut elastic mooring cables are geometrically nonlinear and are
approximated by third-order polynomials. The nonlinear-structure
nonlinearly damped (NSND) model developed and validated for
the SDOF configuration in a previous study by the authors is
extended here to the MDOF system. Using the measured input
wave and output system subharmonic response data and applying
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Fig. 6 A comparison between the identified and experimental
response for ML: (a) (first) heave time series, (b) (second)
heave spectra, (¢) (third) surge time series, (d) (fourth) surge
spectra
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the R-MI/SO technique to the model, system parameters that best
simulate responses that match the éxperimental data are identified.

The nonlinear SDOF model presented by the authors in the
recent papers is the starting point for the identification of this
MDOF system. Based on our previous study of the SDOF system,
the independent flow field models the relative-velocity mode for
the Morison force formulation. Second, the IFF model with a
nonlinear-structure nonlinearly damped (NSND) identification al-
gorithm was selected the most suitable analytical model for this
MDOF study [11].

With the basic approach identified, the standard multiple-input/
single-output procedures developed for thé SDOF nonlinear
model were extended to a multi-degree-of-freedom system. Co-
herence functions were computed that quantify the goodness of fit
of the chosen model [23]. Both SDOF and MDOF IFF-NSND
models identified system parameters that generate a matching re-
sponse with that of the experimental data. The formulation of the
computational technique is straightforward, simple, and efficient.
The standard multiple-input/single-output procedures are incorpo-
rated in MATLAB 6.5.]1 [28] and once the program has been devel-
oped for the SDOF model, as shown in this study, it can be ex-
tended to systems with arbitrary degrees of freedom. The larger
the degrees of freedom, the more linear and nonlinear transfer
functions that yield the linear and nonlinear system parameters
would need to be derived and identified. However, the identifica-
tion of the linear and nonlinear parts of nonlinear models can be
implemented using established MI/SO linear procedures and com-
puter programs [27]. :

Based on the application of the R-MI/SO algorithm to the ex-
perimental data, it is shown that the simulated responses using the
identified parameters are comparable to the corresponding experi-
mental responses in both surge and heave directions. The validity
of the identified parameters of the MDOF based solely on the
subharmonic response data will be tested against the measured
superharmonic response data in the companion study (Part 2).

Acknowledgments

Financial support from the US Office of Naval Research
(Grants No. N00014-92-J-1221 and No. N00014-04-10008) is
gratefully acknowledged.

References

[1] Edwins, P. 1., 1984, Model Testing: Theory and Practice, Research Studies,
Letchworth, Hertordshire, England.

[2] Rice, H. I., and Fitzpatrick, J. A., 1991, “The M ement of N
Damping on Single Degree-of-Freedom System. Transaction of the American
Society of Mechanical Engineers,” Trans. ASME, 1. Vib. Acoust., 113, pp.
132--140,

[3] Rice, H. 1., and Fitzpatrick, J. A., 1988, “A Generalized Technique for Spatial
Analysis of Non-Linearization,” Mech. Syst. Signal Process., 2, pp. 195-207.

[4] Bendat, J. S., Palo, P. A., and Coppolino, R. N., 1992, “A General Identifica-
tion Technique for Nonlinear Differential Equations of Motion,” Probab. Eng.
Mech., 7, pp. 43-61.

290 / Vol. 127, NOVEMBER 2005

[5] Bendat, J. S., and Piersol, A. G., 1993, Engineering Applications of Correla-
tion and Spectral Analysis, Wiley, New York.

[6] Narayanan, S., Yim, S. C. S., and Palo, P. A., 1998, “Nonlinear System Iden-
tification of a Moored Structural Systems,” Proceedings of the 18th Interna-
tional Offshore and Polar Engineering Conference, Montreal, Canada, May

~24-29 1998, Vol. TIL, pp. 478484,

[7] Narayanan, S., and Yim, 8. C. §., 2000, “Nonlinear Model Evaluation via
System Identification of a Moored Structural System,” Proceedings of the 10th
International Offshare and Polar Engineering Conference, Seattle, USA, 28
May-2 June 2000, Vol. IIT, pp. 403409,

[8] Panncer Selvam, R., and Bhattacharyya, S. K., 2001, “Parameter Identification
of a Compliant Nonlinear SDOF System in Random Ocean Waves by Reverse-
MISO Method,” IEEE J. Ocean. Eng., 28, pp. 11991223,

[9] Niedzwecki, I. M., and Liagre, P. Y. E, 2003, “System Identification of
Distributed-Parameter Marine Riser Models,” IEEE J. Ocean. Eng., 30, pp.
1387-1415.

[10] Liagre, P. F,, and Niedzwecki, J. M., 2003, “Estimating Nonlinear Coupled
Frequency-Dependent Parameters in Offshore Engineering,” Appl. Ocean.
Res., 25, pp. 1-19.

[11] Naraynan, S., and Yim, S. C. 8., 2004, “Modeling and Identification of a
Nonlinear SDOF Moored Structure, Part I, Hydrodynamic Models and Algo-
rithm,” ASME J. Offshore Mech. Arct, Eng., 126, pp. 175-182.

[12] Yim, S. C. 8., and Narayanan, S., 2004, “Modeling and Identification of a
Nonlinear SDOF Moored Structure, Part II, Comparisons and Sensitivity
Study,” ASME J. Offshore Mech. Arct. Eng., 126, pp. 183-190.

[13] Lin, H., and Yim, 5. C. S., 2005, “An IFF Model for a SDOF Nonlinear
Structural System, Part I: Modeling and Comparisons,” ASME 1. Offshore
Mech, Arct. Eng. (in press).

[14] Yim, 8. C. S., and Lin, H., 2005, “An IFF Model for a SDOF Nonlinear
Structural System, Part II: Analysis of Complex Responses,” ASME J. Off-
shore Mech. Arct. Eng. (in press).

[15] Wang, C. Y., 1965, “The Flow Induced by an Oscillating Sphere,” J. Sound
Vib., 2, pp. 257-267.

[16] Hjelmfelt, A. J., Camney, J. F, III, Lee, S. L., and Mockros, L. F, 1967,
“Dynamic Response of a Restrained sphere in a Fluid,” J. Eng. Mech. Div.,
93, pp. 41-56.

[17] Harleman, D. R. F,, and Shapiro, W. C., 1958, “Investigations on the Dynamics
of Moored Structures in Waves,” MLLT. Hydrodynamics Lab. Tech. Report No.
28.

[18] Grace, R. A., and Casiano, F. M., 1969, “Ocean Wave Forces on a Sub Surface
Sphere,” J. Waterw. Harbors Div., Am. Soc. Civ. Eng., 95, pp. 291-312.

[19] Grace, R. A., and Zee, G. T. Y., 1978, “Further Tests on Ocean Wave Forces on
Sphere,” I. Waterw., Port, Coastal, Ocean Div., Am. Soc. Civ. Eng., 104, pp.
83-88.

[20] Yim, S. C. S., Myrum, M. A., Gottlieb, 0., Lin, H., and Shih, 1.-M., 1993,
“Summary and Preliminary Analysis of Nonlinear Oscillations in a Submerged
Mooring System Experiment,” Ocean Engineering Report No. OE-93-03, Of-
fice of Naval Research.

[21] Lin, H., 1994, “Stochastic Analysis of a Nonlinear Ocean Structural System,”
Ph.D. dissertation. Oregon State University.

[22] Gottlieb, O., and Yim, S. C. S., 1992, “Nonlinear Oscillations, Bifurcations,
and Chaos in a Multi-Point Mooring System,” Appl, Ocean. Res., 14(6), pp.
241-257.

[23] Narayanan, S., 1999, “Experimental Analysis of a Nonlinear Moored Struc-
ture,” Ph.D. dissertation, Oregon State University.

[24] Chakrabarti, S. K., 1987, Hydrodynamics of Offshore Structures, Computa-
tional Mechanics Publications, London.

[25] Bendat, 1. §., 1998, Nonlinear System Techniques and Application, Wiley, New
York.

[26] Clough, R. W., and Penzien, J., 1993, Dynamics of Structures, McGraw-Hill,
New York.

[27] Gerald, G. F, and Wheatley, P. O., 1989, Applied Numerical Analysis,
Addison-Wesley, New York, '

[28] matLAR 6.5.1, The MathWorks, Inc., 1994-2004.

Transactions of the ASME



