Noisy NONLINEAR MOTIONS OF MOORED SYSTEM.
PART I: ANALYSIS AND SIMULATIONS

By H. Lin' and S. C. S. Yim,"” Member, ASCE

ABSTRACT: Nonlinear responses of a submerged moored structure are investigated taking into account the
presence of environment random noise. Sources of nonlinearity of the system include a quadratic Morison
hydrodynamic damping and a geometrically nonlinear restoring force. The random perturbations are modeled
by a white-noise process to examine their effects on nonlinear responses analytically and numerically. The
analysis procedure includes a generalized Melnikov process to study response stabilities in a global sense and
the Fokker-Planck equation to demonstrate response characteristics from a probabilistic perspective. Rich non-
linear phenomena including bifurcations, coexistence of attractors, and chaos are identified and demonstrated.
Probability density functions solved from the Fokker-Planck equation are used to depict (co)existing response
attractors on the Poincaré section and demonstrate their probabilistic properties. Noise effects on responses are
shown via a generalized Melnikov criterion and the probability density function. It is found that the presence
of noise may expand the chaotic domain in the parameter space and also cause transitions between coexisting

responses.

INTRODUCTION

Complex responses including chaos of nonlinear determin-
istic compliant offshore structures have been demonstrated by
many recent investigations (Thompson 1983; Bishop and Vir-
gin 1988; Bernitsas and Chung 1990). The richness of such
system response under deterministic settings has been eluci-
dated analytically and numerically via period-doubling cas-
cades and the (co)existence of harmonic, subharmonic, and
ultraharmonic responses (Gottlieb and Yim 1992). The under-
lying superstructure in bifurcation sets facilitates numerical
search of quasiperiodic, and chaotic responses. Near reso-
nances, coexisting (and competing) nonlinear moored struc-
tural responses have been found with different initial condi-
tions. The cascade of local bifurcations (and sudden explosions
in some cases) often leads to chaotic responses. These chaotic
responses, which seem highly irregular and show no repetition
in their time histories, posses a complex attractor structure and
are sensitive to initial conditions.

An experimental investigation (Yim et al. 1993) examining
nonlinear response behavior of a single-degree-of-freedom
(SDOF) moored structural system identifies the existence of
subharmonic and ultraharmonic as well as period-doubling bi-
furcations. The underlying structure in bifurcation sets ob-
served implies the possible existence of higher order nonlinear
responses (e.g., quasiperiodic and chaotic). Despite of good
agreement between analytical predictions and numerical re-
sults, there are experimental observations that cannot be ex-
plained using conventional deterministic analysis procedures.
Fig. 1 shows the time history of a sample experimental struc-
tural response subjected to ‘‘deterministic’’ monochromatic
wave excitation. (Details of the experiment will be described
in a later paper.) The response resides in a harmonic mode for
a relatively long duration [about 120 s, Fig. 1(a)] and then
transitions to a subharmonic steady state [Figs. 1(b—c)]. The
existence of unexpected transition indicates the presence of
random noise caused by imperfect wave conditions (e.g., dif-
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fraction, reflection, and re-reflection), which may lead the re-
sponse trajectory to visit other coexisting attractors (Lin and
Yim 1995). Thus this phenomenon and other transitions in
responses are to be examined and interpreted in this study by
taking into account the presence of inevitable perturbations in
the wave excitation. In practice the ocean field environment,
including wind, waves, and current, often contains a significant
random component, which further necessitates stochastic anal-
ysis on randomly perturbed nonlinear responses.

In this paper noisy moored structural responses are analyzed
from a stochastic perspective to provide guidelines for inter-
preting the experimental observations and demonstrate perti-
nent probabilistic properties of response behavior. Descriptions
of the experimental setup, configuration, operation procedure,
and datz acquisition can be found in the unpublished compan-
ion paper. Because of its mathematical simplicity a white-noise
model is employed here to approximate possible random per-
turbations in the wave excitation. In general, correlation time
of the random noise is much shorter than the relaxation time
of physical systems, which makes the white-noise model a
reasonable approximation (Stratonovich 1967). The white-
noise mode! is used here as a first attempt to examine the noise
effects on nonlinear moored structural responses, and a filtered
white-noise model will be used for simulations to compare
with experimental results in the later paper.

The global stability analysis on the deterministic moored
system by Gottlieb and Yim (1993) is extended to incorporate
a random component in the deterministic excitation. A gen-
eralized stochastic Melnikov process taking into account the
presence of noise is developed. A mean-square criterion is de-
rived accordingly to identify the noise effects on a possible
chaotic domain. Random-noise effects on the nonlinear
moored structural responses (regular and chaotic) and their
interactive relationship are examined through transient and
steady-state probability density functions (PDFs), which are
obtained by solving the associated Fokker-Planck equation us-
ing path-integral solution (Markov process approach). The un-
expected transition in response observed in the experiment is
explained from a probabilistic perspective. Analytical and nu-
merical predictions presented here will be calibrated by com-
paring with experimental results in the later paper.

SYSTEM DESCRIPTION

Assuming surge motion as the dominant system response
and is uncoupled with other degrees of freedom, the multipoint
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FIG. 1. Transition from Harmonic to Subharmonic in “Deter-
ministic’’ Moored Structural Response (Test D2): (a) Transient
Harmonic; (b) Transition from Harmonic to Subharmonic; (c)
Steady-State Subharmonic Response

moored structural system considered can be formulated as a
SDOF (in surge) submerged rigid body, hydrodynamically
damped and excited nonlinear oscillator (Fig. 2). The elastic
mooring cables are assumed to be taut, and the degree of non-
linearity of the restoring force depends on the geometric con-
figuration [mooring angles, Fig. 2(a)]. The exciting force takes
into account both nonlinear drag and inertia effects on a sub-
merged axis-symmetric small body (Gottlieb and Yim 1992)
using the relative motion Morison formulation (Isaacson
1979). Possible random perturbations in wave excitation are
lumped and approximated by a white-noise process.

Governing Equations

The associated nondimensionalized governing equations for
a SDOF moored structural system subjected to regular wave
excitation with random perturbations is given by

Xy =Xy Xp= —R(x) — yxy + Fplxy)) + Fi(x, x3) + &)  (la)

where x; and x, = nondimensionalized surge displacement and
velocity (Gottlieb and Yim 1992), respectively; and the re-
storing force R; mooring line lengths [, ;; Morison drag force
Fp; and inertia force F, are given by

L+ L - 1L
R = - —_—x - pB—1};
o [x, T ( I Xy B L )]
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FIG. 2. Definition Sketch of Submerged, Hydrodynamically
Damped and Excited Nonlinear Ocean Structural System

Fo= udu — x)lu — x (1c)
a a
Fi=u (a—’: + (U — x5) 5) (1d)
1

where a, 8, and T denote the parameters for restoring force R;
u = water particle velocity; 8 and . represent the parameters
for Morison drag force; and -y = structural damping coefficient.
The stochastic excitation component is denoted by a zero-
mean, delta-correlated white noise, &(¢),

€)Y =0; (EOEE)) =xd(t — 1) (le)

where k = noise intensity.

METHODS OF ANALYSIS

Methods used in this study to analyze the noisy nonlinear
response include stochastic Melnikov process and Markov ap-
proach. The stochastic Melnikov process is applied to identify
possible chaotic domains in the parameter space based on the
associated averaged system under the assumption of slow var-
iations in response amplitude and phase. With a white-noise
approximation, the Markov approach is used and the resulting
transient and steady-state joint PDFs can depict global infor-
mation about the response behavior. Analytic predictions of
the responses are confirmed via numerical simulations in the
time domain.

Melnikov Approach

The Hamiltonian system corresponding to (1a) has only one
fixed point, a center, and no homoclinic or heteroclinic orbits.
Nevertheless, homoclinic connections may exist near the pri-
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mary resonance in the associated averaged system (Gottlieb
and Yim 1993). For convenience and demonstration purpose,
the restoring force is approximated by a two-term, odd-order
polynomial, and the averaged system is accordingly derived.
With the averaged system, a generalized Melnikov criterion is
developed and represented in a mean-square sense by taking
into account the presence of random noise.

Existence of Homoclinic Orbits

By treating time as a state variable, 8, employing a poly-
nomial approximation for restoring force {a.x; + asx}) (good
agreement to the taut restoring force is shown in Gottlieb
1991) and inertia force Fjw, 8) = —pw’a] sind, (la) can be
rewritten in an autonomous form

. - 3 2 :
X=Xy K= —YX — 04X — a3Xi — pwa; sinf

+ Fplxy @, 0) + £w, 8); 6=w @)

The white-noise component, £(w, 8), in (2) can be approx-
imated by a Rice noise representation (Kapitaniak 1988)

£, 8) = E(0, 8) = 2, af cos(wt — ) @)
=1

Defining the detuning parameter €)' = »®> — (m/n)’a; and
Van der Pol coordinate transformation, and further integrating
and averaging the governing equations over period 2mt/n, the
averaged system can be written in u-v coordinates

2
€n 3
u=—-—" {—Q’v + = (ﬁ> oy + v + = y'u
4 \n n

2mw
1 2
m .
+ I, — pow’ad,, + > (;) a' sin q;} 4a)
En 3 \2
: ’ m re 2 2
= - -=(= +
v Mm{ﬂu 4<n} as(u v)u
+m(.o w1 +l m~2  cos
— -|— S
p YuFTlTo\G)ec (4b)

and oy = €0}; v = €Y'; a} = €a;; and gf = €a’. Where §,, =
Kronecker delta function (8,, = 1 for r = 1 and 3,, = 0 oth-
erwise), and I,(u, v) and I(u, v) represent the averaged drag
force over period 2nm/m (Gottlieb and Yim 1993). The sym-
bols @' and { denote the amplitude and random phase of the
noise component, which is in tune with the dominant fre-
quency. By employing a nonlinear polar transformation (Mei-
rovitch 1970), J = 1/2(* + ¢#) and ® = tan™' (vfu), the av-
eraged system [(4a) and (4b)] can be written as a perturbed
Hamiltonian system. Fixed points can be obtained by solving
the Hamiltonian H, (i.e., the unperturbed case). The complex
expressions for H, and the solution procedure are described in
detail in Gottlieb and Yim (1993). A jump bifurcation defines
the criterion of existence of a unique center [a; > B or two
coexisting centers and a saddle {a, < B (Gottlieb and Yim

1993), with
pr = 0T~ a (“’2 - ") )

27 p’ a;

A pair of homoclinic orbits within the averaged system can
be determined based on the Bendixson criterion (Jordan and
Smith 1987). For small structural damping the system near
primary resonance contains homoclinic loops defined by the
stable and unstable manifolds of the saddle. The pair of homo-
clinic orbits [g%(¥)] = [J(8), ®.(8)] is given by

J +(8)
dJ
o V2R — (Hy — Q¥ + o)

8 — 0, = (6a)

and

Hy — Q*J + oc;".l2
V2

where J.(8) and & are functions of 8 and 8o, and constants
a¥, %, and f* are closely related to o, a3, g, @, @, m and
n in (2) and (4). Based on the existence of homoclinic con-
nections, the generalized stochastic Melnikov function is for-
mulated in the following section.

-1

¢ = sin (6b)

Stochastic Melnikov Process

With the presence of random perturbations, the distance be-
tween the stable and unstable manifolds is given by Lin and
Yim (1995).

M(8o) =f F(q%(8) N\ G(g=(8), 8 + 0,) db

Q)

where F; and F, denote the components of a two-dimensional
(2-D) Hamiltonian vector field; and G, and G, represent the
perturbations. Note that (7) represents the Melnikov function
for an autonomous system, which does not depend on time
explicitly. For autonomous 2-D vector fields either the stable
and unstable manifolds of a hyperbolic fixed point coincide or
they do not interset at all, and the presence of a fixed point in
the averaged system indicates the existence of a periodic orbit
in the original dynamical system (Wiggins 1990). A zero (fixed
point) in the autonomous Melnikov function implies the pos-
sible existence of a periodic (time-dependent) Melnikov func-
tion with infinite transverse intersections between stable and
unstable manifolds in the original system. Hence, when M (6,)
= 0 in (7) chaotic response may exist and a criterion for the
chaotic domain can be thus defined.

Noise effects on occurrence of chaotic responses are to be
identified in the Melnikov sense here by isolating the damping
term related to the chaos threshold and regrouping the pertur-
bation effects into deterministic and random components. Ac-
cordingly, (7) can be rewritten as :

'y*j mfdﬁ:f m;’de—-A*f m{d6+A*f m do

= f (F,Gz - Fsz) d@

(8a)
where
. _ ETWY . mwea
2p8 4npy 85)
.
mi =27, (—Q* + 2a¥). —’;3\};]:3’3> (8¢)
4 a, sin .
- Z\/T. A—QF + 2af). A==
m; 3 I. [U_( Q 2a¥/).) (l \/g:— )
— f*V2J,sin®. — alf*]
(8d)

m} = 2J. f* cos ®.(8) cos {P.(8 + 6) + U] 8e)

“V/2J. sin[®.(8 + 8) + V] (8f)
T.=a’ + 2a,V2). sin ®. + 2J.; J.=J.(8, 8o);
. = D.(6, 8,) (8g)
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with superscripts d and r corresponding to the deterministic
and random perturbations, respectively. Due to the complexity
of the integrant [see (8)], (8a), is not explicitly solved here.
Nevertheless, the noise effects on the Melnikov criterion are
demonstrated qualitatively.

The criterion based on the Melnikov function (7) provides
a necessary condition for the existence of chaotic response
(Yim and Lin 1992), and the noise effects should be repre-
sented in a mean-square sense

y<( f y d9>2> _ << f iy de)’> + ol + ol
o {(fo [ )
'(A* f s de>> N 2<U m de)(f ™ de)> ©)

Because m| and m5 are cosine and sine functions of random
phase shift §, respectively, they are statistically uncorrelated.
Therefore, (9) can be simplified as

2 2
+* (J m? de> = (J m d9> + 0]+ 03 (10)

where o2 and o? = variances associated to m] and mj, respec-
tively. The positive terms, o; and o3, indicate that the presence
of noise lowers the threshold for chaos and enlarges the pos-
sible chaotic domain (mean-square sense) in the parameter
space.

Markov Approach

By assuming the noisy nonlinear response is a function of
only the most recent (prior and post) probability states, a Mar-
kov process approach can be applied to obtain the evolution
of response PDE. The associated Fokker-Planck equation
(FPE) is derived and solved here by a solution procedure based
on the path-integral solution (PIS).

Fokker-Planck Equation and Path-Integral Solution
The FPE corresponding to (1a) is given by
aP(X, 1) d d
— o —— X, ] — — [(—R
ot o (x.PX, )] s [(—=R(x1)

~ K P(X, 1)
Yx, + Fplx,, t) + F,(f))P(X, n} + 2 axg an

with X = [x;x,]” and the short-time propagator ['(X', X, ¢; T)
is given by

CTX', X, £, dr) = Qud) ™7 exp [—R(x,) — vx, + Fp

X3 =~ Xy x; — X
+F - 8|x —
T dr ] [*’ di ] (12)

where X' and X represent the post-state and the prior-state,
respectively. The Dirac delta function in (12) indicates ran-
domness is present only in the excitation force, hence the noise
vector in the corresponding Langevin equation is degenerated
(Risken 1984). The PDF at the desired time can be obtained
by applying the short-time propagator iteratively

PX, = lim I:IJJ

N-1
exp I:—dt E ' (X1 Xy 1, )P (X, to)] dx;
= 13)

STOCHASTIC ANALYSIS OF NOISY NONLINEAR
RESPONSES

Due to the presence of inevitable random noise in engi-
neering systems, the noise effects on nonlinear (large) struc-
tural responses are of practical interest. With noise intensity
considered as the controlling parameter, highly nonlinear phe-
nomena (e.g., transitions between coexisting attractors and
chaos) relating to the instability of responses are examined
from a probabilistic perspective. In the numerical examples
shown in this section different approximation procedures and
system parameters are sclected to demonstrate the salient fea-
ture of the nonlinear system response.

Coexisting Attractors

Bifurcations in deterministic moored structural response
have been examined via local stability analysis, and possible
coexisting responses are identified (Gottlicb and Yim 1992).
Coexisting periodic responses may be obtained near reso-
nances with various initial conditions. Fig. 3(a) shows two
coexisting periodic responses (small- and large-amplitude) in
the phase plane with initial conditions at (0, 0) and (1, —2)
respectively, where symbol * denotes the corresponding Poin-
caré points. Coexisting response attractors can be demon-
strated in the probability domain via steady-state PDFs. The
evolution of the PDF is depicted by repeatedly sampling its
transient [Figs. 3(b—d)] and steady state [Figs. 3(e,f) on a
Poincaré section (integer multiple of excitation period). The
system is excited under quiescent initial conditions, i.e., 0, 0)
[Fig. 3(b)], the responsc trajectories reside in a periodic at-
tractor (small amplitude) after four cycles of the forcing period
[(Fig. 3(c)]. The response trajectories start to shift from the
attractor (small amplitude) to the coexisting attractor (large
amplitude) after eight cycles of the forcing period [Fig. 3(d)].
The probabiiity of the trajectories to stay in the coexisting
attractor (large amplitude) increases after 12 cycles of the forc-
ing period [Fig. 3(d)]. The steady-state PDF is observed after
16 cycles of the forcing periods [Figs. 3(e.f)] and it clearly
depicts coexisting periodic responses. Thus with the presence
of noise the precision of the initial conditions becomes less
significant to observe the coexisting responses, and the asso-
ciated PDF provides global information about the system be-
havior. For large time 1, there is theoretically only a single
domain of attraction, but with two distinct high-strength *‘at-
tractors.”’

The noise effects on the coexisting nonlinear responses are
examined in Fig. 4. When the intensity of the noise present is
low (k = 0.003), the PDF is concentrated at the domain of
small-amplitude response [Fig. 4(a)], indicating its stronger
attracting strength relative to the coexisting large response at-
tractor, Thus, in this case, the moored structural system oscil-
lator mainly (most of the time) with small motions will have
a small probability of excursion to larger amplitude motions
(i.e., rarely visits the large amplitude domain). When the noise
intensity is increased (x = 0.007), the domains of attraction of
the coexisting responses begin to bridge as shown in Fig. 4(b).
Characteristics of both attractors (small and large amplitudes)
may exhibit in the moored structural response behavior. When
the noise intensity is moderate (k = 0.02), the attractors further
emerge into a single attraction domain [Fig. 4(c)}, in which
no obvious periodic response can be distinguished. The vari-
ation of the boundary of thc emerged attraction domain is sta-
bilized when the noise intensity further increases [Figs. 4(d-
f)]. The “‘orderness’’ still can be observed in the PDF with
= 0.1 [Fig. 4(d)], which indicates that the periodicity may ex-
hibit in the system response. The smooth curve and the sta-
tionary boundary of the PDF [Figs. 4(e.f)] implies strong ran-
domness in the system behavior.
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Numerical results presented here demonstrate the effects of
noise intensity on coexisting nonlinear moored structural re-
sponses, which may explain the transition in the experimental
response (Fig. 1). The presence of inevitable noise in the wave
flume plays a bridging role between coexisting attractors as
demonstrated [Fig. 4(a)]. The system was initially excited in
a harmonic attraction domain. Due to the presence of very
weak noise, the structural response transitions to the stronger
subharmonic attractor and stays after a relatively long tran-
sient.

Noise-Induced Chaotic Response

1t is well known that, by varying system parameters, a de-
terministic nonlinear response may shift from one attractor to

another, even to chaos (Moon 1987). It is indicated, based on
criterion from the stochastic Melnikov process, the presence
of random noise may expedite the occurrence of chaotic re-
sponse in the parameter space. Effects on response transitions
by these two parameters (excitation amplitude and noise in-
tensity) are demonstrated and discussed here.

As an example, for the parameters specified in Fig. 5 in the
deterministic moored structural system, by increasing the ex-
citation amplitude, the response shifts from a period-2 sub-
harmonics, to a higher order subharmonics, to a chaotic at-
tractor, and then to another chaotic attractor {Figs. S(a—d),
respectively]. In a noisy environment, with the same parame-
ters as its deterministic counterpart specified in Fig. 5(a), 2
similar transition among response attractors can be observed
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when the noise intensity is increased (Fig. 6). Fig. 6(a) [which
is identical to Fig. 5(a)] shows a deterministic period-2 sub-
harmonic response (o? = 0.0), and under the same system pa-
rameters, the moored structural response becomes chaotic with
the presence of weak noise [o” = 0.017 Fig. 6(b)]. When the
noise intensity is further increased (o® = 0.02?), the response
shifts to another chaotic attractor [Fig. 6(c)]. When the noise
intensity is relatively strong, increasing noise intensity in the
excitations increases the randomness in the response [0° =
0.07%, Fig. 6(d)].

Note that the chaotic attractors observed via Poincaré map
in both cases—deterministic [Figs. 5(b,c)] and noisy [Figs.
6(b,c)]—are approximately of the same shape, indicating tran-
sitions induced by both excitation and noise parameter varia-
tions follow approximately the same route. Thus the noise in-

tensity can also be considered as a controlling parameter
between different response attractors in the parameter space.

Noise Effects on Nonlinear Responses

The occurrence -of deterministic chaotic response of the
moored structural system has been predicted by Gottlieb and
Yim (1992). With the presence of noise, the probabilistic prop-
erties of this nonlinear response and the corresponding noise-
induced transition to a random state are examined here via
transient and steady-state PDFs.

Fig. 7(a) shows a sample deterministic chaotic moored
structural response on Poincaré maps (obtained by sampling
data points from the response time history at integer multiples
of the forcing period). The evolution of the corresponding PDF
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1s demonstrated in Figs. 7(b—d). The moored structural system
response starts with deterministic quiescent conditions, i.e., a
delta function at (0, 0) in the probability domain [Fig. 7(b)].
Initially, the joint PDF spreads with time and moves toward
the chaotic attractors and begins to cover the attracting do-
mains [Fig. 7(c)]. After 10 cycles of the forcing period, the
PDF reaches its steady state [Fig. 7(d)] and reflects the fractal
details of the deterministic chaotic attractors on the Poincaré
section.

The noise effects on a sample chaotic attractor are examined
by varying the noise intensities (Fig. 8). The fractal details of
the chaotic attractor is preserved [Fig. 8(a)] when the additive
noise is of low intensity (x = 0.0003). The boundary of.the
chaotic attractor becomes obscured as the noise intensity in-
creases to 0.001 [Fig. 8(b)]. When the noise intensity Kk is
further increased to 0.007, the domain of the attractor becomes
more obscured and the fractal details of the boundary of the
attractor diminish. In fact, it becomes difficult to identify the
chaotic attractor from the shape of the observed boundary [Fig.
8(c)]. Randomness in the response increases further as the
noise intensity increases to 0.02 [Fig. 8(d)]. Note that the
structure of the attracting domain is smoothed even with very
low noise intensity (xk = 0.001), which indicates the strong
sensitivity to the random noise and the weak stability of the
chaotic attractor.

CONCLUDING REMARKS

An analytical investigation of noise-induced transitions
among nonlinear response attractors of a hydrodynamically ex-
cited multipoint moored system is motivated by an “‘unex-
pected’’ response transition observed in the comresponding ex-
periment. The analytical and numerical results are summarized
as follows:

1 Taking into account the presence of random noise, a gen-
eralized Melnikov criterion is derived to identify possible
chaotic domains. Results, confirmed by numerical sim-
ulations, indicate that the presence of low-intensity noise
perturbations expedites possible occurrence of chaotic re-
sponse.

2. The Fokker-Planck equation governing the evolution of
response probability density function is developed and
solved using a path-integral solution procedure. Coexist-
ing response attractors are depicted by the associated
steady-state joint PDF, which also provides global infor-
mation of system behavior.

3. Noise intensity is considered a controlling parameter of
transition between coexisting response attractors here.
When the noise intensity is low the response trajectories
stay in the stronger attractor with low probability of ex-
iting to the other attractor. The system response exhibits
mainly the characteristics of the stronger attractor. When
the noise intensity is moderate the domains of coexisting
attractors are bridged and the system response exhibits
combined characteristics of coexisting attractors. When
the noise intensity is strong the coexisting attractors are
further bridged and smoothed, and merge into a single
domain of attraction. The corresponding system response
appears random.

4. Numerical results show that fluctuations in the noise in-
tensity may result in transitions in neighboring different
response modes.

5. The ‘“‘unexpect response transition observed in ex-
periment is interpreted in light of the analytical results,
which further assesses that the presence and effects of
noise may need to be taken into account for the analysis
and design of engineering system.
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APPENDIX {i. NOTATION

The following symbols are used in this paper:

Fy
F
Il’ 12

Morison drag force;

inertia force;

lengths of mooring lines;

Melnikov function;

probability density function;

restoring force;

= time;

fluid particle velocity;

= state vector (=[x, x,}7);

= nondimensionalized surge displacement;
nondimensionalized surge velocity;

= nondimensionalized mooring stiffness;

projected length of mooring lines in surge direction;
short-time propagator;

structural damping coefficient;

parameters for nondimensionalized hydrodynamic forces;
= intensity parameter of stochastic excitation component;
= stochastic excitation component;

= pretensioned parameter in mooring lines; and

= wave frequency.
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