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Coupled Nonlinear Barge
Motions, Part lI: Stochastic
Models and Stability Analysis

A computationally efficient quasi-two-degree-of-freedom (Q2DOF) stochastic model and
a stability analysis of barges in random seas are presented in this paper. Based on the
deterministic 2DOF coupled roll-heave model with high-degree polynomial approxima-
tion of restoring forces and moments developed in Part I, an attempt is made to further
reduce the DOF of the model for efficient stochastic stability analysis by decoupling the
heave effects on roll motion, resulting in a one-degree-of-freedom (IDOF) roll-only
model. Using the Markov assumption, stochastic differential equations governing the
evolution of probability densities of roll-heave and roll responses for the two low-DOF
models are derived via the Fokker-Planck formulation. Numerical results of roll responses
for the 2DOF and 1DOF models, using direct simulation in the time domain and the path
integral solution technigue in the probability domain, are compared to determine the
effects of neglecting the influence of heave on roll motion and assess the relative compu-
tational efforts required. It is observed that the 1DOF model is computationally very
efficient and the 2DOF model response predictions are quite accurate. However, the
nonlinear roll-heave coupling is found to be significant and needs to be directly taken into
account, rendering the 1DOF roll-only model inadequate for practical use. The 2DOF
model is impractical for long-duration real-time response computation due to the insur-
mountable computational effort required. By taking advantage of the observed strong
correlation between measured heave and wave elevation in the experimental results, an
accurate and efficient Q2DOF model is developed by expressing the heave response in the
2DOF model as a function of wave elevation, thus reducing the effective DOF to unity.
This Q2DOF model is essential as it reduces the computational effort by a factor of 1075
compared to that of the 2DOF model, thus making practical stochastic analysis possible.
A stochastic stability analysis of the barge under operational and survival sea states
specified by the U.S. Navy is presented using the Q2DOF model based on first passage
time formulation. [DOI: 10.1115/1.1884617]

Introduction

The stability of ship-to-shore cargo barges under various sea
conditions is important to design engineers, especially those of the
U.S. Navy. As discussed in Part I, while a barge in general expe-
riences multidirectional sea conditions in the ocean, one of the
most critical scenarios leading to capsizing is beam sea. A signifi-
cant number of researchers have examined the roll stability of
ships in beam seas from a stochastic perspective [1-7]. Robert
[1,2] analyzed the roll motion of a ship using the Fokker-Planck
(FP) formulation to obtain the probability distribution of the re-
sponse. Robert et al. [3] proposed an averaging approximation to
reduce the order of the FP equations from two to one to reduce the
computational effort. Dahle et al. [4] developed a simple probabi-
listic model and computed the probability of capsizing under
specified sea states. Lin and Yim [5] modeled the roll motion of a
ship by the FP equation and studied the effects of noise on deter-
ministic regular wave loads. They showed, similar to the deter-
ministic cases demonstrated by Falzarano et al. [6] and Nayfeh
and Sanchez [7], the ship motion to be govemned by two diverse
dynamical regions—homoclinic and heteroclinic, where the het-
eroclinic region relates to capsizing. They also examined chaotic
response behavior with noise via probability density functions.
Kwon et al. [8] analyzed the roll motion of a ship subjected to an
equivalent white-noise ocean wave model. Their study focused on
the mean upcrossing times for a vessel with nonlinear righting
moment and damping. Cai et al. [9] analyzed the nonlinear roll
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response of a ship to stationary Gaussian random waves with non-
white broadband spectra. The total roll energy was approximated
as a Markov process, using a modified version of quasi-
conservative averaging. They treated the capsizing of the ship as a
first passage problem.

In this paper we begin to study the barge motions under beam
sea by first deriving corresponding stochastic models of the deter-
ministic coupled roll-heave (2DOF) model developed in Part I and
developing a pure roll (1DOF) in a following section. The path
integral solution is employed to numerically obtain the evolutions
of barge response probability densities as a solution to the corre-
sponding FP equation of these models. Importance of coupling
effects of heave on roll motion is examined by comparing numeri-
cal results obtained from the 2DOF and 1DOF models in both
time and probability domains. A quasi-2DOF (Q2DOF) model is
then developed to take advantage of the observed heave and wave
elevation relationship in modeling the roll-heave coupling effects
while keeping the number of governing equations to unity. Stabil-
ity analysis of the barge in terms of reliability against capsizing
under various sea states is performed using a first passage time
formulation and the quasi-2DOF model.

Governing Equations for Roll-Heave and Roll Models

2DOF Roll-Heave Model. We start with the deterministic
2DOF model governing the dynamics of fluid-structure interaction
behavior of a barge in beam sea derived in Part I. Recall that the
model retains the nonlinear coupling effects between roll and
heave but removes the tertiary sway effect from equilibrium con-
sideration. The hydrostatic terms are represented efficiently and
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Fig. 1 Comparison of barge roll response time histories predicted by 2DOF and 1DOF models under
(a) regular waves with H=6 ft. and T=8 s, and (b) random waves with H,=4.7ft. and T,=8.2s

accurately in the form of high-degree (13th in roll and 12th in
heave) polynomials to represent the characteristics of restoring
force and moment. Hydrodynamic terms are in a “Morison”-type
quadratic form.
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This low DOF, high-order polynomial model was developed tak-
ing into consideration the strengths of stochastic method to be
developed in this study.

IDOF Roll-Only Model. In anticipation of the heavy compu-
tational requirement for stochastic analysis of the 2DOF model
(see the later section), an attempt is made here to further reduce
the dimension of the probability domain by possibly employing a
IDOF model. Assuming coupling between roll and heave is neg-
ligible, hence the effects of heave on roll motion can be neglected,
the corresponding roll-only model is derived by neglecting heave-
related terms in governing equation for roll in Eq. (1)
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Fig.2 Comparison of barge roll response time histories predicted by 2DOF and 1DOF models under
(a) regular waves with H=6.5ft. and T=6 s, and (b) random waves with H,=5.5 ft. and T,=6.0s
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The physical assumptions of these models are summarized in Part

Random Wave Model. As explained in Part I, although the
barges considered operate from relatively deep to shallow water,
the deep-water condition in general produces higher coupling ef-
fects of heave on roll due to larger vertical wave velocity. There-
fore, to be conservative, the deep-water condition is employed
throughout this study. For convenience of analysis and simulation
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of random wave excitation, filtered white noise is used to model
random wave surface elevation. The linear filter is defined as

i+ Buip+ (2mfo) n=¢ €))

where ¢ is Gaussian white noise, which is obtained by using a
pseudorandom number generator. The transfer function and the
spectral density function of the output of the filtered white noise
[5] are

[HO={[-@af)2+27fe)* P+ (278,
SAN={So [~ 2mf)*+ 2mfo)* P+ (27B,) )

The coefficients in Eq. (4) are set to satisfy the variance and peak
period of the Bretschneider spectrum [10] to characterize the ran-
dom waves, and are expressed as

C))
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Equation (3) is then reduced to a set of two first-order stochastic
differential equations and combined with the equations of motion
for the 2DOF and 1DOF models. This stochastic modeling proce-
dure produces, in general, a system of six first-order stochastic

differential equations (SDEs) of motion for the 2DOF model and-

a system of four first-order SDEs for the 1DOF model. Note that,
for stochastic study, it is important to keep the total DOF of the
model low so that the dimension of the probability domain re-
mains low, and the computational efforts manageable. However,
the degrees of the polynomial approximations of the stochastic
expressions resulting from the high-degree approximating polyno-
mials of the restoring force and moraent do not significantly in-
fluence the overall computational efforts when joint probability
density functions and probability of ¢xceedance are calculated.

Time Domain Predictions

To obtain barge responses in the time domain, the systems of
first-order stochastic differential equations for the 2DOF and
1DOF models are solved using standard numerical procedure,
with the random waves approximated by linear filtered white
noise. A fourth-order Runge-Kutta method [11] is employed here
for numerical integration, and a Gaussian-distributed random
number generator is used in the filtered white-noise model based
on Press et al. [11].

Probability Domain Predictions

By assuming the stochastic response is a function of only the
most recent probability states, a Markov process assumption can
be applied. Barge response probability density is numerically de-
rived as a solution to the associated Fokker-Planck equation (FPE)
by the path integral solution [12—14]. A general nonlinear stochas-
tic system can be writien as

where

X=[x1vx2!--"xN]Ts F{th}=[F1*F2!""FN]T,
G(X)=[Gl,62,.‘.,GN]T (?)
For Eq. (7) the associated FPE is
af(X t)
=Lf(X,1) ®)
where the operator
a:‘.
=5 oy @ (X)= K (X.,5); wv,u=12,...,N
)
and
K,=F,X); Q,,=«G,G, (10)
With f(X,f) representing the PDF, K,’s (v=1,2,...,N) are the

entries in the drift vector K, and @,, are the entries of the N
XN diffusion matrix Q.

The path-integral solution has been developed by Wissel [12] to
solve the FPE. It can be represented by a (discrete) Riemann sum

n—1
f(Xp ty)= lim l'[0 (pidxy)
sy
n—1

Xexp| =70, L*(X;41.X;.7)
j=0

X f(Xj41,X;,T)f(Xo,t0) (D

where w;dx; is the (Wiener) measure in the functional space, and
L* is the Lagrangian. A short transition can be obtained analyti-
cally using a first-order approximation to Eq. (11).

With specified drift vector and diffusion tensor for the FPE, the
associated short-time propagator (Green’s function) is given by

X=F(X)+G(X)n(r) 6 [14]
]
= ~—[Q§f§’+K = ]Q
P, (X'|X)=(2mw7)™"?Q P exp (12)
[Q(p}+K — +TK“')+ Q (v}

Using a multidimensional histogram representation of the PDF,
the path sum expressed in Eq. (11) can be implemented numeri-
cally. The probability domain at time ¢ is discretized into a finite
number of elements represented by function 7

P(X,1)= 2 = x1)m(xp—xg:) - w(xy—xn) f(X,1)
(13)
where
Ax Xp(i=1) ﬁxn(.‘]
1 fof xz—— sxsx,;nt
(X, —Xp5) = 2 (U]
0 otherwise
(14)
with n=1,2,...,N. The short-time propagator is also discretized
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into a short-time transition tensor Ty(7). Subscripts k and [ rep-
resent the discretized probability domain at the pre- and post state,
respectively. The short-time propagation can be numerically
implemented by determining the most probable position in the
phase space and the local random response following a Gaussian
distribution. The most probable phase position after short-time
propagation for each element is deterministically computed by the
drift coefficients. The PDF at time ¢+ 7 can be obtained by sum-
ming all the probability mass propagated from time 7 (and normal-
izing afterward)

Py(t+1)=Ty(7)P(t) (15)
where the transition tensor is given by
Transactions of the ASME
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The PDF at a desired time can be obtained by applying the short-
time transition in Eq. (16) iteratively. '

To obtain numerical results, the initial conditions are assumed
deterministic, represented by the product of two Dirac delta func-
tions

P(X,t9)=8(x;—x3) 8(x;— x5) (¢¥))]

which is represented by a point with area virtually zero in the
phase space. For accuracy, the grid size of the discretized prob-
ability domain has to be sufficiently small. Moreover, the time
step (7) has to be compatible with the associated grid size. For a
given grid size, too small a time step results in no propagation of
the probability mass. However, too large a time step is not theo-
retically appropriate and would lead to inaccurate results. There-
fore, the selected time step (7) in this study is the smallest one that

Tggiyt Axgy2 Xien(i)+ B2
dx k1 d.
Xeaiy— dxpgi— 1)/2 Ly~ Bxwgi-1y2

gyt Axpy2
X d

X
xpyiy = Axpyi- 2

(16)

the addition of wave variables into the 2DOF governing equa-
tions, the set of six stochastic differential equations can be pre-
sented in a system form as

X] X2 0
X, X 0
d| X5| | X, 0
e AREANE (18)
M 7 0
72 ?}2 g

The corresponding Fokker-Planck equation is given by

A[X,P]1 9[X,P] 9[X,P]

OP(X1, X5, X3.Xg,m.m.8)=—

produces propagation of probability mass for a given grid size. X, 20 X3
The path integral solution is a first-order Euler approximation . ;
[12-14], and one possible numericzl evaluation based on lattice JAXP] dmbl dul
representation (path sum) [15] can be applied to implement the 2.0 amn an,
solution numerically. Using this standard numerical procedure, the 2
evolution of the response density can be computed. 5 E (19)
)
2DOF Stochastic Model. With the Bretschneider random a7
waves approximated by a linear filtered white-noise process and  where
|
a7 an an an an ,
5 _[[“-mg__c‘”f_('xz_5)_6““1\’(}(2_5 Xz"g — Ry Xl,a +mgzg sin(X,)
# (I 44+ I a“]
2 2 9n
| Mayy @M~ Cag, Xy Cya X Xy | +mz, cos(X )Xy —mg = Rag| Xy, X3, 71, s
X4=

m+m“aa

== Bum = (27f o) m;

The corresponding short-time propagator is given by

G(X; aXE ,X‘; :X‘; ] 7?[ 3 ﬂé sXI 9X2 -T2 J;T)

7

= o
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1DOF Stochastic IModel. As before with the Bretschneider
random waves approximated by a linear filtered white-noise pro-

=
s o 2
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(20)
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cess and the addition of wave variables into the governing equa-
tions, the set of four stochastic differential equations for the IDOF
model can be presented in system form as

) X, 0
d| x, X5 0
— = + 21
de| m M2 0 @y
72 7 £

JX,P] d[X,P) [ mP] dll

IP(X |, X3, 11, 7,8)=—

26 X, an, an,
K &*P 5
2 a,?g

where the corresponding Fokker-Planck equation is given by
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The corresponding short-time propagator is given by
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Meodel Parameters

The model parameters employed in this study were identified in
Part I (first numerical column of Table 1) by matching numerical
predictions with experimental results in the time domain for six
regular wave model test cases (SB26 to SB31). The parameters
were validated by comparisons with results from experimental
results of a random-wave case.

’ 2
7 ! M2~ 7 :
=(27r:r)‘4x_”2cxp[2 (0’2172+:.lfc7;1+ 21_ 2) }6(){3

(23)
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-0 30

(b) rall vel (deg/sec) roll (deg)

Fig. 3 (a) 1DOF model, and (b) 2DOF model path-integral so-

lution prediction of probability density of roll response under
random waves with H,=4.7 ft. and T,=8.2s at time =5 min
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Coupling Effects of Heave on Roll Barge Motion

Barge roll responses predicted by the 2DOF and 1DOF models
using time-domain simulation and path-integral solution proce-
dure are examined in this section. Several regular and random
Wwaves are used as excitations (see Part I for regular wave genera-
tion). Figures 1(a) and 1(b) show barge roll responses to regular
waves with H=6 ft. and T=8 s, and to random wave with H,
=47 ft. and T,=82s, respectively. For these cases, numerical
results indicate good agreement between the 2DOF and the 1DOF
models, with the 2DOF model producing slightly larger roll am-
plitude. However, the differences increase significantly in those
cases with larger roll responses, as shown in Fig. 2. Numerical
results from the probability domain simulation also indicate the
same behavior. Predicted roll response densities under random
waves with H,=4.7ft. and T,=8.2s, and random waves with
H =5.5ft. and Tt’: 5.5 s for the 2DOF and 1DOF models after 5
min of exposure time in random waves are shown in Figs. 3 and 4,
respectively. The corresponding marginal densities of roll motion

(b) roll vel (deg/sec)

roll (deg)

Fig. 4 (a) 1DOF model, and (b) 2DOF model path-integral so-
lution prediction of probability density of roll response under
random waves with H;=5.5t. and T,=5.5 s at time t=5 min
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Fig. 5 Comparison of roll response marginal probability density between numerical predictions
of 2DOF and 1DOF models at time =5 min under random wave with (a) H,=4.7ft. and T,

=8.2s, and (b) H,=5.5ft. and T,=5.5s

for both models are presented in Fig. 5. A comparison of the
results reveals that the 2DOF mode! produces greater density at
larger roll amplitude at the same exposure time. Additional nu-
merical results also indicate that these differences become more
significant for cases with larger roll motion. Based on these ob-
servations, the roll motion prediction accuracy of the 1DOF model
examined above is deemed unacceptable for practical design, and
a more accurate yet computational efficient model needs to be
developed.

Computational Efforts of 2DOF and 1DOF Models
The computational effort required for the prediction of stochas-
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tic response of the 2DOF model for a short duration, e.g., 10 min
real-time response, using sufficiently fine grid, is on the order of 2
to 3 months using a well-equipped state-of-the-art Sun Worksta-
tion. For the corresponding 1DOF model, the same real-time re-
sponse duration can be solved within a few minutes (approxi-
mately 107 times the computational effort of the 2DOF system).
For longer runs for low sca-state responses analysis (e.g., 10 h of
real-time response, as discussed in the following sections), the
computational time required for the 2DOF model is on the order
of 10 years. This is obviously unacceptable; thus, a low DOF yet
accurate approximate model, which retains the heave-roll cou-
pling effects, needs to be developed.

MAY 2005, Vol. 127 [ 89
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Fig. 8 Comparison of measured experimental heave and wave time histories under (a)
regular wave with H=6 ft. and T=6 s, and (b) random wave with H,=4.7 ft. and T,=8.2s

Efficient Quasi-2DOF Model

The governing equations of motion of the 2DOF model show
that the coupling effects of heave on roll are represented in two
distinctive mechanisms. First, the relative heave motion to wave
elevation impacts the hydrostatic roll righting moment. Second,
the heave velocity creates inertia momert caused by eccentricity
of the roll center and KG. These relationships are explored in
detail in this section to develop a computationally efficient yet
accurate approximate model including the heave-roll coupling ef-
fects.

Typical time histories of barge heave responses to regular and
random waves based on experimental results are shown in Fig. 6.
It is observed that the relative motions between heave and wave
elevation are small. Based on this assumption, a quasi-2DOF
model is developed here with the heave motion approximated by
wave elevation derived. In this case, the hydrostatic roll restoring
moment is not affected by heave and the coupling effects of heave
and roll are presented only via the inertia moment caused by ec-
centricity of roll center and KG.

The quasi-2DOF model can be developed by approximating the

90 / Vol. 127, MAY 2005

heave velocity by the vertical wave velocity in the equation of
motion of the 1DOF model that represents heave-induced inertia
moment due to eccentricity of roll center and KG. The resulting
equation of motion of this approximate model is

. 67}) .oan\|. a9
*%(¢'E *Cﬂr«(‘ﬁ‘anﬁw

i

an
"%
Y

Luyp+1,,

a7 ,
¢1Zs 77, “&) _mSZS s ¢=0

+m(z, cos ¢}&w+R44 %

(24)

The advantage of the Q2DOF model is that it retains a majority
of the coupling effects of heave effect on roll motion while keep-
ing the DOF of the model at unity. While the path-integral solu-
tion of the FPE for the 2DOF model requires 10° times the com-
putational effort of that of the corresponding 1DOF model, the
Q2DOF model solution takes only about 1.5 times of that of the
1DOF model.
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Fig. 7 Comparison of predicted barge roll response time histories predicted by 2DOF,

1DOF, and quasi-2DOF models; (a) regular
dom waves with H,=5.5t. and T,=6.0s

Time- and probability domain simulations of the Q2DOF model
using regular and random waves as excitation are performed to
assess its response prediction accuracy (Figs. 7 and 8, respec-
tively). These figures indicate a significant improvement in the
predictive capability of the Q2D6F model over the IDOF model,
and the predictive results are very close to those obtained from the
2DOF model. Based on these and additional numerical results (not
presented here due to space limitation), the Q2DOF model is
deem sufficiently accurate for detail stability analysis of barges.

Stability Analysis

Stability of the roll motion of a barge over a range of sea states
under beam sea is analyzed here using the first-passage-time for-
mulation. As the barge rolls in randcm seas, the net roll response
density propagates with time and eventually exits the safe domain.
In this study, net roll is defined as the difference between roll
angle and wave slope. Hydrostatic roll restoring moment indicates
a zero value once net roll exceeds 38 deg for the ship-to-shore
cargo barge as shown in Fig. 9. Reliavility against capsizing of the
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waves with H=6.5ft. and T=6 s, and (b) ran-

barge is defined as the cumulative net roll response density, which
lies within the safe domain (in this case =58 deg). At a given time
t, the reliability is given by

wo(r)= | P(3.4)dd 25)
#=—58

Using the U.S. Navy specification, the range of sea states 1
through 9 is represented by their average significant wave height,
H,, and spectral peak periods, T, as shown in Table 1. In this
study, stochastic excitations according to each sea state are ap-
plied to the Q2DOF model. The evolution of the net roll response
density and reliability for these sea states are computed. Due to
similarities of responses among various sea states, for succinct-
ness of presentation only representative results (sea states 1, 4, 7,
and 9) are shown in Figs. 10 through 13. The numerical results
indicate negligible likelihood of capsizing for barges operating
under sea state 1 (and similar for sea state 2) in 10 h of exposure
time due to low amplitude in the wave excitation (Fig. 10). While
the peak period of the wave excitations may be near heave reso-
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nance, the energy dissipation (or damping) in heave is sufficiently
large to prevent large-amplitude resonance. This observation was
verified via direct simulation of motions response from the more
accurate 3DOF and 2DOF models.

It is observed that the behavior of the barge roll motion is
similar for sea states 3 through 6 (see Fig. 11 for sea state 4
results), and it takes approximately 1 to 3 h for barges operating in
these sea states to attain 1% probability of capsizing. Figures 12
and 13 show the probability density and reliability of the barge for
sea states 7 and 9, respectively, for specific durations of exposure.
These results indicate significantly larger probability of capsizing
in a short period of time.

The probability information of the barge response for sea states
3 through 9 is presented in Fig. 14 in a summary form in terms of

time to reach 1, 2, 5, and 10% probability of capsizing. Note that
while the expected exposure time declines gradually with increas-
ing sea states from 3 to 6, there is a sharp drop between sea states
6 and 7. The rate of decline in expected exposure time from sea
states 7 through 9 is also significantly higher than those from sea
states 3 through 6. The probability of capsizing of the barge in sea
states 1 and 2 over a 10-hour exposure is significantly less than
19%; thus, results are not shown in Fig. 14. It should be pointed out
here that, while the range of responses of the experimental results
employed in Part I to validate the numerical models only reached
*15°, we rely on the numerical models to extrapolate to results
into the highly nonlinear capsizing region here. This is unfortu-
nately necessary as there were no data available near the capsizing
region due to experimental limitations.
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Fig. 9 Analytical roll righting moment of barge considered
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Table 1 Average significant wave height and spectral peak pe-
riod of sea states 1 through 9 )

Significant wave height Spectral peak period

Sea State H, (ft) T, (second)
1 0.5 2.4

2 2.0 4.6

3 4.0 6.0

4 6.5 7.5

3 10.0 8.9

6 16.0 10.8

7 30.0 13.6

8 50.0 17.0

9 100.0 224
Concluding Remarks

A stochastic analysis of the roll-heave (2DOF) and roll-only
(1DOF) barge motion models is presented here. With the Markov
process assumption, associated Fokker-Planck equations of the
deterministic models presented in Ref. [8] are derived and the
corresponding path-integral solutiors are used to obtain barge re-
sponse probability densities numerically.

To determine the importance of the heave-on-roll coupling ef-
fects, a comparison of the predicted roll motions derived from the
roll-heave and the roll-only models using time- and probability
domain simulations is performed. Results show that the 2DOF
model predicts similar, but slightly larger-amplitude roll motion
than the 1DOF model under low level of wave excitations. How-
ever, the difference becomes more significant under higher sea
states where roll motion is larger. The prediction capability of the
IDOF model is deemed inadequate for practical application.
However, the 2DOF stochastic model requires excessive compu-
tational time for practical analysis and design.
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Fig. 10 (a) Probability density, and (b) reliability against cap-
sizing of barge roll response to sea state 1 random waves
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Fig. 11 (a) Probability density, and (b) reliability against cap-

sizing of barge roll response to sea state 4 random waves
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Fig. 12 (a) Probability density, and (b) reliability against cap-
sizing of barge roll response to sea state 7 random waves
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Fig. 13 (a) Probability density, and (b) reliability against cap-
sizing of barge roll response to sea state 9 random waves

A close examination of the governirg equations of motion re-
veals that heave affects roll motion via the hydrostatic roll restor-
ing moment and the initiating inertia moment due to the eccen-

tricity of roll center and KG. Experimental results showed that, for
the barges examined, the relative motion between heave and wave
elevation is negligibly small. Thus, the heave impact on the hy-
drostatic righting moment is negligible.

To address the need for an accurate yet efficient predictive
model for reliability analysis, a quasi-2DOF model is developed
by expressing heave in terms of wave elevation to preserve the
coupling effects of heave on roll motion in the 2DOF model.
Specifically, heave velocity is approximated by vertical wave ve-
locity to approximate inertia moment caused by coupling between
heave velocity and the eccentricity of roll center and KG. Time-
and probability domain simulations indicate that the quasi-2DOF
model retains the predictive capability of the 2DOF model and yet
requires only 107> times the computational effort.

Stability analysis of the barge under the entire range of sea
states (1 through 9) considered by the U.S. Navy is performed
using a first-passage-time formulation with the quasi-2DOF
model. The response density evolutions are obtained via the path-
integral solution to the associated Fokker-Planck equation. Expo-
sure times that create capsizing probability of 1, 2, 5, and 10% are
presented for selected sea states. Results indicate that the reliabil-
ity of barge is significantly reduced when operating under sea
states 7 or higher. Numerical results show that for sea states 1 and
2, the probability of capsizing in 10 h exposure is significantly
less than 1%. It takes approximately 1 to 5 h for a barge operating
in sea state 3 through 6 to have 1 to 10% overturning probability.
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