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Abstract—Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances
in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a
number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of
eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the
boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces

together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves
alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found
useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra
method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract
neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from
algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic
geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding
degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.

Index Terms—Tensor field visualization, feature-based visualization, tensor field topology, traceless tensors, A-patches, scalar fields

1 INTRODUCTION

HREE-DIMENSIONAL symmetric tensor fields have a wide

range of applications in science, medicine, and engi-
neering. Most earlier work focuses on semi-positive definite
tensors, with the main application in medical imaging.
More recent advances focus on the understanding and
extraction of degenerate tensors in a tensor field. For exam-
ple, Zheng et al. [1], [2] point out that under structurally sta-
ble conditions degenerate points form curves. Along a
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degenerate curve the tensor field exhibits 2D degenerate
tensor patterns such as wedges and trisectors [3]. Tricoche
et al. [4] develop an efficient degenerate curve extraction
method by noticing that degenerate curves in the tensor
field are a subset of the ridge and valley lines of mode, a ten-
sor invariant. All of these advances are inspirational to our
research, for not only the insights they provide but also new
and interesting questions they open.

For example, are degenerate tensors the only features in a
tensor field? If not, what other features should be included
in tensor field analysis, and why? What is the relationship
among these features?

In searching for answers to these questions, our research
leads to the notion of eigenvalue manifold, which shows that
the set of traceless tensors and the set of neutral tensors (the
medium eigenvalue equal to the average of the major and
minor eigenvalues) are also important features in a tensor
field. Across neutral surfaces, the predominant eigenvector
field switches from the major eigenvector field to the minor
eigenvector field. Together, neutral surfaces and traceless
surfaces divide the domain into four types of regions, each
of which has a unique characteristic.

Neutral surfaces are the zeroth levelset of tensor mode
function, which is a trivariate polynomial in terms of spatial
coordinates. Using the standard Marching Tetrahedra
method [5] can lead to large errors in the geometry and topol-
ogy of the neutral surfaces. To robustly extract neutral surfa-
ces, we convert the problem of finding such features into the
problem of finding algebraic surfaces, a well-researched
topic in the computer-aided design and algebraic geometry
communities. By adopting the idea of A-patches, based on
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Fig. 1. This figure shows the results of applying our tensor field visualization to the Sullivan vortex: (a) the vector field shown in colored arrows supple-
mented with tensor field topology such as degenerate curves (colored curves), (b) our glyphs (Section 6: Fig. 5) based on the eigenvalue manifold
(Section 4), and (c) neutral surfaces (chartreuse color) which separate linear degenerate tensors (green curves) and planar degenerate tensors

(yellow curves).

Bernstein polynomials [6], neutral surfaces can be extracted
with controlled topological errors. In addition, we make use
of the idea of Bernstein polynomials to help improve the
speed of degenerate curve extraction by first locating tetrahe-
dra that do not contain degenerate curves and eliminating
them from further processing.

We also extract and visualize the isosurfaces of tensor
mode, magnitude, and isotropy. We have found that the
transition of these surfaces over different isovalues can lead
to insights into the domain applications.

We apply our analysis and visualization to data sets from
solid mechanics and fluid dynamics and provide physical
interpretations based on the analysis and visualization. Fur-
thermore, we observe that tensor field analysis, when
applied to the Hessian of a 3D scalar field, can provide criti-
cal information that is difficult to extract from existing scalar
field visualization techniques.

In this paper we make the following contributions:

1)  We introduce the notion of eigenvalue manifold for the
analysis of 3D symmetric tensor fields, and include
the set of neutral tensors and the set of traceless ten-
sors into tensor field features. We also connect neu-
tral tensors to tensor field topology through their
interplay with degenerate tensors (Section 4).

2) We provide an efficient method to extract neutral
surfaces and traceless surfaces, by reusing techni-
ques from algebraic surface extraction. In addition,
we speed up the degenerate curve extraction process
based on Bernstein polynomials (Section 5).

3) We extract and visualize the isosurfaces of tensor
mode, magnitude, and isotropy index (Section 4).

4) We provide physical interpretation of our analysis
and visualization in the context of solid mechanics
and fluid dynamics (Section 7).

5) We point out that tensor field analysis can provide
critical insights into scalar field analysis (Section 7).

The rest of the paper is organized as follows. We review

related work in Section 2 and relevant background on tensor
fields in Section 3. We describe the theory of our tensor field
analysis in Section 4. In Section 5 we provide a framework

for robust extraction of feature surfaces as well as degener-
ate curves. We describe our visualization system in Sec-
tion 6, including a set of glyphs that focus on showing
tensor modes, i.e., traceless tensors. In Section 7 we show
the results of applying our feature-based tensor field visual-
ization to data sets from solid mechanics, fluid dynamics, as
well as scalar field analysis. Section 8§ summarizes our work
and discusses limitations of our approaches as well as some
possible future research directions.

2 PREvVIOUS WORK

We start by reviewing relevant prior work on the topic of 3D
tensor fields for scientific visualization. There has been
much work on 2D tensor fields, and we refer the readers
to [7], [8] and references therein. For 3D symmetric tensor
fields, surveys on diffusion tensors from medical images
can be found in [9], [10] while a survey on non-positive-defi-
nite tensors is available by Kratz et al. [11]. Much work on
tensor field topology is inspired by topological analysis of
vector fields, and the readers can find a good review of
work in vector field topology in [12]. In this paper we will
only review work most closely related to the present topic.
Delmarcelle and Hesselink [13] introduce the notion of
hyperstreamlines for the visualization of 2D and 3D symmet-
ric tensor fields. Hsu [14] and Zheng and Pang [15] visualize
hyperstreamlines by adapting the well-known Line Integral
Convolution (LIC) method of Cabral and Leedom [16]
to symmetric tensor fields which they term HyperLIC [15].
Jankun-Kelly and Mehta [17] provide glyphs for traceless
tensors arising from the study of nematic liquid crystals.
Schultz and Kindlmann [18] extend ellipsoidal glyphs that
are traditionally used for positive-definite tensors to super-
quadric glyphs which can be used for general symmetric ten-
sors. Their glyph design is based on mapping the set of 3D
symmetric tensors to a lune on a sphere representing possi-
ble eigenvalue compositions. Recall that a lune is a region on
a sphere bounded by two intersecting great circles (a great
circle divides the sphere into two equal halves). In our paper
we use the same lune for our topological analysis. However,
we partition the lune differently from Schultz et al. and
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introduce the notion of traceless tensors and neutral tensors,
which we incorporate into tensor field analysis.

Delmarcelle and Hesselink [13], [19] introduce the topol-
ogy of 2D symmetric tensor fields as well as conduct some
preliminary studies on 3D symmetric tensors in the context
of flow analysis. Hesselink et al. later extend this work to 3D
symmetric tensor fields [20] and study the degeneracies in
such fields. Zheng and Pang [1] point out that triple degener-
acy, i.e., a tensor with three equal eigenvalues, cannot be
extracted in a structurally stable fashion. They further show
that double degeneracies, i.e., only two equal eigenvalues,
form lines in the domain. In this work and subsequent
research [2], they provide a number of degenerate curve
extraction methods based on the analysis of the discriminant
function of the tensor field. Schultz et al. [21] point out the
degenerate curve extraction methods of Zheng and Pang are
often not adequate for real world data, such as those from
medical imaging. Tricoche et al. [4] show that the degenerate
curves in a tensor field are a subset of the ridge and valley
lines of mode, a tensor invariant. They also develop a method
to detect ridge and valley lines (degenerate curves) based on
the parallel vector operator method [22]. In this paper, we
introduce the notion of neutral surfaces and traceless
surfaces, which we include in tensor field analysis and
visualization.

In this paper we apply our analysis to a number of tensors
arising from solid and fluid mechanics, including the stress
tensors. Applying tensor field analysis to the stress tensor
has been carried out recently by a number of visualization
researchers [23], [24], with a focus on hyperstreamlines. In
addition, we show that tensor field analysis can provide crit-
ical insights to scalar field analysis that is difficult to extract
from existing scalar field visualization techniques.

3 TENSOR BACKGROUND

We review the relevant background on 3 x 3 symmetric ten-
sors and tensor fields. This paper focuses on symmetric ten-
sors. Consequently, in the remainder of the paper we will
omit the mention of symmetric when referring to symmetric
tensors. A 3 x 3 tensor 1T has three real eigenvalues
A1 > Ay > A3, referred to as the major eigenvalue, medium
eigenvalue, and minor eigenvalue, respectively. When the
eigenvalues are mutually distinct, 7" is referred to as non-
degenerate. In this case, it is possible to choose three unit
eigenvectors {vy,v2,v3} such that v; corresponds to \; for
any 1 <i < 3 and v;’s form a right-hand orthonormal basis
of the space.

There are five important quantities derived from 7" that are
invariant under the change of basis: (1) trace: P = \j + Ay
+A3, (2) minor Q = MM+ X3+ A3y, 3) determinant

R = M X\ao)s, (4) tensor magnitude: ||T|| = \/A} + A2 + A2, and

M=’ +00-5*+0-5)°
(5) mode M = /6 3 3 3
W=D+ 0052+ -5

uniquely decomposed as £1 + A where I is the three-dimen-

. A tensor can be

sional identity matrix and A =T — £1T is referred to as the
deviator of T. Ais a traceless tensor, i.e., P(A) = 0. More impor-
tantly, the directional information (eigenvectors) in 7" is con-
tained purely in its deviator in the following sense: a vector v
is an eigenvector of 7" if and only if v is an eigenvector of A. In
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fact, as we will discuss later, the topology of a tensor field can
be defined in terms of its deviator tensor field. Another nice
property of the set of traceless tensors is that it is closed under
matrix addition and scalar multiplication, making it a linear
subspace of the set of tensors.

We now consider degenerate tensors, which refer to ten-
sors with repeating eigenvalues. There are three types of
degenerate tensors: neutral (A\; = Xy = A3), linear (\; >
A2 = A3), and planar (A\; = Ay > A3). The neutral degener-
acy is also referred to as the triple degeneracy, for which any
non-zero vector is an eigenvector. The linear and planar
degeneracies are called double degeneracies. The non-repeat-
ing eigenvalue is referred to as non-degenerate eigenvalue,
while the repeating eigenvalues are referred to as the degen-
erate eigenvalues. Degenerate tensors can be described as the
zeros of the so-called discriminant: D = (A} — Ag)*(\g — Ag)*
(A3 — A1) = Q°P? —4RP® — 4Q° + 18PQR — 27R?. Linear
degenerate tensors have a mode value of 1, while planar
degenerate tensors have a mode value of —1.

A tensor field is a continuous tensor-valued function in R®.
A point p is a (linear, planar, triple) degenerate point if T(p) is
a degenerate tensor of the corresponding type. Given a
generic tensor field, the set of triple degenerate points is
structurally unstable, i.e., the structure does not persist
under any arbitrarily small perturbation [25]. Under struc-
turally stable conditions, linear and planar degenerate
points form curves. The degenerate points on a degenerate
curve must either be always linear or always planar. More-
over, a linear degenerate curve cannot intersect a planar
degenerate curve because such an intersection point would
be a triple degenerate point.

4 NOVEL TENSOR FIELD FEATURES
AND EIGENVALUE MANIFOLD

Existing topological analysis of 3D symmetric tensor fields
focuses on analyzing the behaviors of the tensor field around
a degenerate curve. Such analysis is influenced primarily by
the eigenvector analysis around individual degenerate
curves. In this section, we introduce two new types of feature
surfaces, the neutral surfaces (Section 4.1) and the traceless sur-
faces (Section 4.2). We also present the concept of eigenvalue
manifold for symmetric tensors (Section 4.3), which integrates
degenerate curves, neutral surfaces and traceless surfaces.

4.1 Neutral Surfaces

As we discussed earlier, along a linear degenerate curve, the
major eigenvectors are well-defined, and the medium and
minor eigenvectors are degenerate. Similarly, along a planar
degenerate curve, the major and medium eigenvectors are
degenerate, while the minor eigenvectors are well-defined.
An interesting question is where the medium eigenvectors
become special. The following theorem helps address this
question.

Theorem 1. Consider a continuous 3D symmetric tensor field
T(z,y, z) defined on a finite subvolume Q C R3. The major
eigenvector field, a line field, can be converted into a continu-
ous vector field on any simply-connected component U C () of
the linear region in the tensor field, i.e., where T(z,y, z) satis-

fies Xy < % Similarly, the minor eigenvector field of



PALACIOS ET AL.: FEATURE SURFACES IN SYMMETRIC TENSOR FIELDS BASED ON EIGENVALUE MANIFOLD

T(z,y, z) can be converted into a continuous vector field inside
a simply-connected component of the planar region in the ten-

sor field, where T(x,y, z) satisfies Ao > 237,

The proof is based on a classical result from differential
topology [26] which states that a continuous line field on a
differential manifold M is orientable, i.e., can be turned into
a vector field consistently, if the line field has no singulari-
ties in M and the fundamental group of M contains no
proper subgroups of order two. Since U is simply-con-
nected, its fundamental group is trivial, i.e., containing only
one element, the identity. Consequently, there is no element
of order two in the group.

One significance of Theorem 1 is that the major and
minor eigenvectors play different roles in regions where
Ao < % (linear region) and regions where A, > %
(planar region). In the former, the minor eigenvector field
contains all the interesting topological features in the tensor
field (discontinuity in the eigenvector directions), while the
major eigenvector field bears no topological significance.
Transitioning into the latter type of region, the roles of the
two eigenvector fields are reversed. The major eigenvector
field now contains the topological features in the tensor
field, while the minor eigenvector field is topologically
insignificant. The boundary between these two types of
regions, i.e., \y = Al;’“, or equivalently A\ = 0 if traceless,
acts as the transition boundary between the major and
minor eigenvector fields where their roles switch. We refer
to such tensors as neutral tensors.

In a generic tensor field, the places where the tensor field
is neutral form surfaces. We define the following descriptor:

N — Al—m )\2_)\3-‘1-)\1 )\3_)\1-"-)\2 W
2 2 2

Then a tensor T is neutral if and only if N = 0. For trace-
less tensors, N(T') = 2L R(T'). Consequently, N is a multiple
of the determinant of the deviator part of a tensor. It is
straightforward to verify that a tensor is neutral if and only if
its mode is zero. The eigenvalues of a neutral tensor have the
form of Ay + k, \g, and )y — k for some k > 0. If the neutral
tensor is also traceless, then its eigenvalues are k, 0, and —&.

The normal to the neutral surface at a given point p,, is
the same as that of the neutral surface of its deviator ten-
sor field. Assuming a traceless tensor field, this normal is
then R(T(py)) =¥ (MAeds)(py) = Aa(Po)hs(py) ¥ Au(py) +
A3(Po)AL(Pg) V A2(pg) + A1(Pg)A2(py) ¥ As(py)- Since Ay =0
on neutral surfaces, the normal is simply \7a2(p,). This
suggests that the middle eigenvalue plays a special role at
the neutral surface. It dictates both the location of the neu-
tral surface (\; = 0) and its normal (57 \2).

The above discussions, i.e., major and minor eigenvector
fields switching roles at the neutral surface, and the
medium eigenvalue playing a key role in deciding the loca-
tion and normal of the neutral surface, inspire us to incorpo-
rate neutral surfaces into the topology of 3D symmetric
tensor fields for the first time.

4.2 Isotropy Index and Traceless Surfaces
Given a tensor T and its trace-deviator decomposition £ + A,
the quantity ¢ = arctan(%ﬁ) measures the ratio between the
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strength of the isotropy £1 and the strength of the anisotropy
A. For the stress tensor, ||T]| is the total stress, while £ and
[|A|| are the octahedral normal stress and the octahedral shear
stress, respectively. The octahedral shear stress is also called
the von Mises stress [27]. When ¢ = +Z, T = £ 1 is purely iso-
tropic (/2 for expansion and —m/2 for contraction) and
when ¢ =0, T'= A is pure shear (purely anisotropic). We
refer to ¢ as the isotropic index, a name inspired by the shape
index [28], [29] for a 2 x 2 curvature tensor and is used to clas-
sify surface geometry into elliptical and hyperbolic sectors.
Unfortunately, this quantity is not an algebraic function of the
tensor entries. For robust surface extraction, we wish to find a
quantity that can also characterize the ratio between isotropy
and anisotropy in the tensor yet can lead to an algebraic
expression. Consequently, we choose the quantity m

which has a range of [—1, 1]. We will refer to the latter formu-
lation as the isotropy index in the remainder of the paper. The
two quantities are equivalent in describing the isotropy and
anisotropy ratios in the tensors because they can be expressed
as monotonically increasing functions of the other quantity.

Given a generic tensor field, the set of points where the
tensor field is traceless form surfaces. We refer to such sur-
faces as the traceless surface. While the trace of a tensor field
is not affecting the eigenvectors of the tensor field, we wish
to point out that the traceless surface represents significant
change in the behavior of the tensor field. Therefore, we
incorporate traceless surfaces into tensor field analysis
along with neutral surfaces, which present transitions in the
eigenvector fields (from rich in degenerate curves to free of
degenerate curves and vice versa).

4.3 Eigenvalue Manifold

We now describe one model to characterize the behaviors of
a tensor field, which we term the eigenvalue manifold of ten-
sors. Consider the set of 3 x 3 tensors, which is a six-dimen-
sional linear space. One of the simplifications of this space
is to consider all possible eigenvalue combinations, i.e.,
{(A\1, 22, A3)|A1, A2, A2 € R}. This is a three-dimensional lin-
ear space. The unit sphere in the space centering the origin
is the set of unit tensors, i.e., unit tensor magnitude. How-
ever, there is a six-fold symmetry in this representation due
to the permutations of A, A2, A3. Consequently, it is suffi-
cient to consider {(A1, Ao, A3)[A+ N+ X =10 >N\ >
A3}, which is a lune on the sphere {(A1, Ao, A3)|A7 + A3 + A3
=1} bounded by two planes {(Ai, A2, A3)|A\1 = X2} and
{(A1; A2, A3)[ A0 = Az}

The aforementioned lune representation has been devel-
oped by Schultz and Kindlmann [18] to design glyphs for
tensors with potentially negative eigenvalues. In their work,
the lune is then divided into regions based on the sign of
individual eigenvalues or their pairwise sums and
differences.

In our analysis, we reuse the lune of Schultz et al. as the
geometric representation of our eigenvalue manifold, but
with a different parameterization (thus different analysis).
Each point inside the eigenvalue manifold is characterized
by two quantities: the tensor mode, and the isotropy index
(Fig. 2 (top)). On any horizontal line, the tensor isotropy
index remains constant, while the mode decreases from 1
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Fig. 2. The top of the figure shows the eigenvalue manifold, which is the
shape of a lune. Notice that the same lune has been used by Schultz
and Kindimann [18] for the design of glyphs for indefinite tensors. The
left and right parts of the lune’s boundary correspond to linear degener-
ate tensors and planar degenerate tensors, respectively. The vertical
bisector corresponds to the set of neutral tensors while the horizontal
bisector corresponds to the set of traceless tensors. The corner points of
the lune correspond to triple degenerate points. There are two types of
such points, one with a positive trace, and the other with a negative
trace. The two bisectors divide the eigenvalue manifold into four regions,
representing different tensor behaviors. The bottom image shows the
four-way partition of the eigenvalue manifold by neutral tensors and
traceless tensors. The partition is demonstrated on a tensor field (bot-
tom), which is the Hessian of the von Mises stress of a simulation data
(Fig. 7: left).

(left boundary representing linear degenerate tensors) to —1
(right boundary representing planar degenerate tensors).
The vertical bisector consists of neutral tensors. The top and
bottom tips of the lune represent pure positive isotropy and
pure negative isotropy, respectively. Travelling along the
strictly descending path from the highest point to the lowest
point in the lune, the isotropy index decreases, and one
observes initially pure material expansion, followed by a
mix of material expansion and shear deformation, pure
shearing, a mix of material contraction and shear deforma-
tion, and finally pure material contraction. The horizontal
bisector of the lune corresponds to traceless tensors. We
wish to also comment that given a generic tensor field, the
highest and lowest points in the lune are not possible, since
they represent triple degenerate points that are structurally
unstable. This implies that in material deformation, a pure
expansion or contraction is structurally unstable as some
shear deformation must occur.

The two bisectors (neutral tensors and traceless tensors)
partition the lune into four parts of equal size (Fig. 2 (top)),
based on the mode and trace of the tensor: (1) positively-
traced linear tensors in the upper-left region, (2) positively-
traced planar tensors in the upper-right region, (3) negatively-
traced linear tensors in the lower-left region, and (4) nega-
tively-traced planar tensors in the lower-right region. Fig. 2
(bottom) shows the result of applying this partition to a 3D
tensor field. Each partition is given a unique color. Note that a
positively-traced linear region cannot border a negatively-
traced planar region. Similarly, a positively-traced planar
region cannot border a negatively-traced linear region. The
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Fig. 3. This figure compares the neutral surface of the three ball simula-
tion using the Marching Tetrahedra method (top) and the A-patches
method (bottom). Notice that not only does the A-patches method better
preserve geometry details such as the outline of the holes, it also
reduces the topological errors caused by the Marching Tetrahedra
method.

notion of the eigenvalue manifold has been developed for 2D
asymmetric tensor fields [8].

In our visualization system, we extract isosurfaces of ten-
sor mode, tensor isotropy index, and magnitude, which we
have found to be useful in our physical interpretations of
various applications (Section 7).

5 FEATURE EXTRACTION METHODS

In this section we describe our method to extract neutral
surfaces, traceless surfaces, and degenerate curves.

Marching Tetrahedra is a well-known technique to
extract the levelsets of a function defined over a tetrahedral
mesh. However, it assumes that the function is linear, which
implies that if the function values at the two vertices of an
edge have different signs, there must be one and exactly
one zero crossing on the edge. Furthermore, if a tetrahedron
intersects with a plane, then the plane must also intersect
some edges of the tetrahedron, ie., no plane can be
completely enclosed by the tetrahedron. For the levelsets of
non-linear functions, these assumptions do not hold, and
errors in the surface topology can be uncontrolled. A state-
of-the-art technique developed by the CAGD and algebraic
geometry communities, called A-patches, provides a remedy
to the problem [6]. Fig. 3 shows a comparison of the two
methods for a simulation data set (Section 7).

In this paper, we incorporate the use of the A-patches
method to extract neutral surfaces and traceless surfaces. In
addition, we make use of the fundamental idea behind the
A-patches to speed up the process of finding degenerate
curves.

Given a polynomial function f and a tetrahedron ¢, the A-
patches approach seeks to answer the following questions:
does the zero levelset of f intersect t. If so, does it intersect ¢
with a single sheet, and whether the single sheet is triangular
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(a) Level 0 (b) Level 3

(c) Level 4
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(d) Level 5 (e) 2D Isolation

Fig. 4. Our framework based on A-patches can cull out tetrahedra not containing degenerate curves (a-d). In addition, on each face of a tetrahedron
containing degenerate curves (e: the largest triangle), our method finds sub-regions on the face that can intersect with degenerate curves (e: the
sub-triangles). The combination of tetrahedron culling and efficient search inside faces makes our degenerate curve extraction faster.

or quadrangular? The main idea behind the answers to these
questions is the conversion of the polynomial of three varia-
bles (z, y, 2) to the Bernstein polynomials of four variables (c, 8,
8, y) where «, B, y, and § are the barycentric coordinates of
points inside the tetrahedron ¢. The degree of polynomial f,
denoted by n = degree(f), gives rise to a set of control points
(see [6] for an illustration of the control grid). The number of
control points on each edge of ¢ is n + 1. The properties of
Bernstein polynomials ensure that if the function f has the
same sign at two adjacent control points, then there are no
zero crossings on the edge connecting them. If the signs are
different, then there is exactly one zero crossing. Moreover,
if a sub-tetrahedron formed by mutually adjacent control
points have the same sign, then there cannot be a zero level-
set of the polynomial surface in the interior of the sub-tetra-
hedron. In other words, by using the Bernstein polynomials,
we are able to develop a grid inside the tetrahedron such that
the properties of the Marching Tetrahedra method for linear
functions are obtained, even when the function is not linear.
Moreover, there is no need to perform random subdivision
and search, as the degree of the polynomial produces the
grid that guarantees the success of the A-patches method. The
only exceptions to this are the singularities of the surfaces,
which require additional subdivision.

At a high-level, the A-patches algorithm considers a few
cases. In the first case, all the control points in the grid have
the same sign. In this case there is no zero levelset inside the
tetrahedron ¢. In the second case, there is a separating layer
in the grid such that the control points on one side of the
layer have one sign and the control points on the other side
of the layer have the opposite sign. In this case there is a sin-
gle sheet of zero levelset surface which can be extracted in a
similar fashion to the Marching Tetrahedra method. If one
side contains one vertex of the original tetrahedron and the
other side contains three vertices of the tetrahedron, the sur-
face is a triangular sheet. If each side contains two vertices
of the tetrahedron ¢, then there is a quadrangular sheet of
the surface. In the last case where the control points have
mixed signs but no separating layer can be found or there
are more than one separating layer, the tetrahedron is sub-
divided, and the process repeats for each tetrahedron in the
subdivision.

Notice that the neutral surface and the traceless surface
are both polynomials in terms of the components of the ten-
sor fields, which are polynomials in terms of the 3D
coordinates.

Besides extracting neutral surfaces, we have found the
idea of A-patches useful for improving the degenerate curve
extraction method. Existing techniques [1], [4] rely on find-
ing the intersections of degenerate curves with the faces of
the cells. Since there may be more than one degenerate
curve intersecting a face, the techniques perform iterative
subdivisions of the face in order to find all such intersec-
tions. However, it is difficult to predict where the intersec-
tion points are on the faces. Consequently, the face needs to
be subdivided uniformly several times, without a clear stop-
ping criterion. Moreover, even if no intersections have been
found on any face of a cell, it is uncertain whether degener-
ate curves intersect the cell. Numerical issues are known to
cause missing solutions in root-finding.

We adapt the A-patches idea to help address these issues.
Recall that degenerate curves are the solutions to D =10
where D is the discriminant of the tensor and is a degree-six
polynomial in terms of the tensor entries. D can be
expressed as the sum of squares of seven polynomials, each
of which can be both positive and negative. Moreover, as
long as one of the seven functions is purely positive (or neg-
ative) inside a tetrahedron, the discriminant will be strictly
positive inside the tetrahedron, i.e., no degenerate curves.
Therefore, for each tetrahedron ¢, we perform the A-patches
algorithm on all seven functions. A tetrahedron or a sub-tet-
rahedron is eliminated as soon as all of the control points
have the same sign for at least one function. This helps us
quickly eliminate the tetrahedra that cannot contain degen-
erate curves. Next, for tetrahedra that intersect degenerate
curves, we run the A-patches algorithm on each face of the
tetrahedron, again using the seven functions. This allows us
to efficiently identify regions in the face that intersect
degenerate curves. Once we find these regions on the face,
we resort back to the method of Zheng and Pang [1] by first
searching for a zero point in each region and then connect-
ing these points through tracing degenerate curves. Fig. 4
shows our method for both finding tetrahedra and sub-tet-
rahedra enclosing degenerate curves (a-d) and locating
regions in the faces of tetrahedra that intersect degenerate
curves (e).

6 VISUALIZATION TECHNIQUES

Our tensor field visualization system visualizes the features
and topology of 3D symmetric tensor fields by depicting its
degenerate curves, traceless surfaces, and neutral surfaces.
In addition, one can inspect the behavior of the tensor field
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Fig. 5. A visual comparison of the superquadric glyphs (top) and our
glyphs (bottom). From left to right, the tensor shown is linear degenerate,
linear non-degenerate, neutral, planar non-degenerate, and planar
degenerate, respectively. Our glyphs are based on the deviators, which
highlight the difference and symmetry between linear, neutral, and pla-
nar tensors. Green and red represent linear and planar, respectively.
The colored bands on the glyph’s faces correspond to eigenvalues with
the same sign (two negative, in the case of linear tensors, and two posi-
tive for planar tensors). The direction perpendicular to the bands are the
non-degenerate eigenvectors, i.e., major eigenvectors for linear tensors
(green) and minor eigenvectors for planar tensors (red).

using glyphs and hyperstreamlines following any of the
eigenvector fields. Furthermore, we extract the isosurfaces
for tensor mode, tensor isotropy index, and tensor magni-
tude. All of these surfaces are extracted using the A-patches
methods.

Degenerate curves are rendered as tubes around the
actual degenerate curves. This makes it easier to perceive
the absolute and relative depth of the degenerate curves. A
point p on a degenerate curve y can be further colored,
based on the trace, tensor magnitude, and determinant as
well as its linearity/planarity: green (linear) and yellow
(planar). Traceless surfaces, neutral surfaces, as well as iso-
surfaces of the tensor mode, the magnitude, and the isot-
ropy index are drawn using the smoke surface method [30].
To distinguish between them, we show isosurfaces of tensor
modes (including the neutral surfaces) in the chartreuse
color, the isosurfaces of the tensor isotropy index (including
traceless surfaces) purple, and the isosurfaces of the tensor
magnitude in cyan.

We have developed a set of glyphs that are designed for
traceless tensors. Unlike existing glyph designs for indefi-
nite tensors [17], [18] which employ both convex and con-
cave glyph shapes, our approach only uses convex shapes.
This is motivated by a number of needs from the domain
users:

1)  to highlight the location and eigenvector directions
of neutral tensors.

2)  to help emphasize the special eigenvector directions
in degenerate tensors and make it easier to distin-
guish them from other eigenvectors.

3) to convey the symmetry between linear tensors and
planar tensors, thus conveying once again the impor-
tance of neutral tensors.

4)  to show the magnitude of tensor mode.

Consequently, we provide three glyph types: (1) degener-

ate tensors, (2) neutral tensors, and (3) non-degenerate and
non-neutral tensors. Fig. 5 illustrates each glyph we use. A
degenerate tensor is a cylinder where the axis of the cylinder
indicates the non-degenerate eigenvector direction. A loop is
drawn in the middle of the cylinder, circling this axis. The
cylinder is color-coded in green if it is a linear degenerate
tensor, and in red if it is a planar degenerate tensor. A neutral
tensor is drawn as a flat disk with a color of gray, and the nor-
mal to the disk indicates the medium eigenvector direction.
A red loop is drawn perpendicular to the minor eigenvector
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direction, and a green loop is drawn perpendicular to the
major eigenvector direction. For a non-degenerate, non-neu-
tral tensor, we use a box with rounded corners and edges.
The color of the box is green if it is linear, and red if planar. A
loop is drawn at the middle of the faces of the box perpendic-
ular to the non-degenerate eigenvector direction. Notice that
the glyphs are designed to have continuity. For example,
starting from a degenerate tensor (a cylinder) and decreasing
tensor mode, the cylinder will morph into a box with round
corners and edges. Eventually, it becomes a flat disk, i.e.,
middle image of the bottom row in Fig. 5. We wish to empha-
size that we do not intend to replace existing, well-accepted
glyph designed with our own. Instead, we consider our
design a complementary approach.

7 APPLICATIONS

Performance. We have applied our analysis to a number of
well-known data sets. The data is collected from a computer
with an Intel Core i7 3.07 GHz processor, 24 MB of RAM,
and an NVIDIA GTX Titan graphics card. The running time
for our CPU-based feature (curves and surfaces) extraction
algorithms is between 40 to 120 seconds.

Two fundamental quantities in solid and fluid mechanics
are the stress and strain tensors. How the solid material
deforms determines the design and performance of bridges,
automobiles, circuit boards and medical devices that are
investigated with the theories of solid mechanics. Being able
to visualize the topology of the stress tensors can shed light
on the force distribution. In fluid mechanics, one often stud-
ies the instantaneous velocity field and its spatial gradient.
Such a gradient is asymmetric in general. The symmetric
part of this velocity-gradient tensor is assumed to be propor-
tional to the deviatoric stress tensor. This is the hypothesis
for Newtonian fluid mechanics.

For a stress tensor, the eigenvectors indicate principal
stress directions. The eigenvalues indicate the stress magni-
tude in these directions. The trace is three times the mean
normal stress, while the determinant is the total volumetric
change for the displacement gradient tensors, when the
stress is proportional to the strain. The anisotropy in the ten-
sor is measured by the relative strengths of the eigenvalues.
For example, in medical imaging, researchers often classify
the diffusion tensors into three types, linear, planar, and
spherical, based on the eigenvalues.

In this paper, we focus on indefinite tensors such as the
stress and strain tensors from solid and fluid mechanics.
Stress tensors are symmetric which we can prove by calcu-
lating the angular momentum for an infinitesimal material
volume. The degenerate curve indicates either tensile stress
(linear) represented by the major eigenvalue or compressive
stress (planar) represented by the minor eigenvalue on the
material. Consequently, the linear domain and the planar
domain express tension dominant (i.e., only one positive
eigenvalue with the largest magnitude) and compression
dominant regions (i.e., only one negative eigenvalue with
the largest magnitude), respectively. On the neutral surfa-
ces, the stress field becomes two dimensional, i.e., no devia-
toric stress on one of the principal directions.

Below we show results of our techniques applied to two
applications.
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Fig. 6. The Sullivan Vortex viewed in the z-y plane (left) and the z-z
plane (right).

7.1 Sullivan Vortex

The Sullivan vortex [31] is an exact analytical solution of the
Navier-Stokes equations for incompressible fluids, whose
flow patterns in the horizontal and vertical planes are
depicted in Fig. 6. Away from the vortex center, the flow is
predominantly in the negative radial direction (toward the
center) with the upward flow. Near the center, the flow is
outward with the down-welling motion. Note that the local
flow pattern near the center resembles that of a hurricane or
a tornado. To extract the symmetric part of the velocity-gra-
dient tensor of the Sullivan vortex, we first compute
%V“)T in which u is the velocity vector: this tensor repre-
sents the time rate of angular deformation (i.e., the rate-of-
strain tensor), and is traceless because of the assumption of
incompressible fluids, i.e., A; + A2 + A3 = 0. Even though
the volume of the fluid particles are not changing, we call
that the fluid parcels are predominantly compression when
A1 > 0 and A; > 0, while they are predominantly expan-
sion when \s < Oand A3 < 0.

Fig. 1 shows (a) the velocity vector field and (b) the glyph
presentation of the symmetric tensor field for the half
domain that is cut vertically through the center, and (c) the
degenerate curves with the neutral surface. Fig. 10 shows
the glyph presentations in the horizontal cut planes at the
mid-level and at the bottom of the domain, respectively.
The figure also includes the location of the neutral surface
on the cut planes. The visualization of the velocity vector
field (Fig. la) shows the up-welling and down-welling
motions. Additional information can be extracted from the
glyph plot. In the outermost part in the plot in Fig. 1b (in
the region far from the center of the vortex), the fluids are
compressed in the horizontal direction, presented by the
red glyphs (the planar type) with the red band oriented in
the radial direction. The glyph presentation in the horizon-
tal cut plane at the midlevel (Fig. 10 (top)) explicitly shows
that the orientation of the minor eigenvector is in the clock-
wise spiral direction toward the center. At the level very
close to the bottom (Fig. 10 (bottom)), the pattern is consis-
tent with that at the midlevel, but they are closer (but not
exactly) to the degenerate state. Across the outer neutral
surface, the pattern of glyphs transforms to the green color
(the linear type) pointing in the vertical direction (the green
band around the glyphs are vertically oriented). The glyphs
in the cut planes (Fig. 10 (top and bottom)) indicate the
eigenvalues in the azimuthal direction are very small: the
condition close to the neutral state. Across another neutral
surface, fluid deformation takes place primarily in the x-z
plane in the further inward and upper region away from
the ground (Fig. 1b): the red glyph orientation in the region
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Fig. 7. Two geometric configurations of a linear elastic block being
pressed from above by solid spheres.

inside of the green band in Fig. 10 shows the eigenvalues in
the azimuthal direction are small. Furthermore, fluids
stretch vertically downward toward the center and com-
pressing vertically upward toward the center (see the green
and red band loop orientations in Fig. 1b). Near the ground
level of the vortex center, the fluid deformation becomes
complex, but is dominated by compression in the counter-
clockwise spiral direction toward the center, which is oppo-
site to the pattern of the outer region. Furthermore, we see
the degenerate glyphs that correspond to the degenerate
curves (yellow) shown in Fig. 1b: the planar degenerate
curves that represent pure compression in the direction rep-
resented by the glyph orientations and the other eigenvec-
tors being undefined: note that the direction of pure
compression does not coincide with the tangential direction
of the degenerate curve. The structure of degenerate curves
for the Sullivan Vortex is further discussed next.

Fig. 1c presents the degenerate curves of the rate-of-strain
tensor field. There are two distinct vertical planar type (yel-
low) lines surrounded by the two planar-type circular degen-
erate loops and the one linear circular degenerate loop
(green). The two larger loops (the planar and linear types) are
very close to the bottom boundary. The vertical planar degen-
erate curves represent the fluid compression due to the
down-welling flow motion, which can be identified as the
degenerate glyphs (red cylindrical shape) between the second
and third neutral surfaces shown in Fig. 10b. As discussed
earlier, the direction of the pure compression is not aligned
with the (yellow) degenerate curve, but deviated in the coun-
terclockwise spiral direction toward the center. Fig. 10b also
shows the linear-type degenerate curve between the two inner
neutral surfaces. The linear degenerate glyphs reveal that the
stretching orientation is closely tangential to the degenerate
curve. The successive linear type and planar type degenerate
loops near the ground represent the fluid deformation (pure
expansion near the center followed by pure compression
away from the center). Note that the neutral surfaces shown
in the transparent chartreuse color separate the linear type
from the planar domain (Fig. 1c). The outer annular neutral
surfaces coincide with the location of the cylindrical wall-like
region of the linear type (green) shown in Fig. 1b. The transi-
tion pattern of the mode surfaces shown in Fig. 9 explicitly
illustrates the flow kinematics associated with the Sullivan
vortex, i.e.,, compression and expansion dominated deforma-
tions of the fluid parcels. Without the present tensor field
visualization, such information is difficult to capture even for
the simple flow like the Sullivan vortex.

The interplay of the small planar-type degenerate loop
above the floor with the two vertical planar degenerate
curves is worth noting. First, the glyphs in Fig. 1 indicate
that the direction of eigenvector of A3 (compression) along
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Fig. 8. This figure shows the degenerate curves in the Sullivan vortex in
connection with its magnitude surfaces. Left and right, the isovalues of
the magnitude surfaces are 15.44 and 13.79, respectively. Notice that the
surface in the left is tangent to the vertical degenerate curves (yellow). In
the center regions in both figures, the topology of the magnitude surface
changes so that it is now tangent to the smallest degenerate loop (yel-
low). While the shape of the magnitude surfaces can be predicted based
on the definition of the Sullivan vortex, their interesting interplay with the
degenerate curves was not known to the best of our knowledge.

the degenerate loop is nearly vertical, slightly pointing
upward toward the center. The iso-magnitude surfaces
shown in Fig. 8 demonstrate that the small degenerate loop
plays a role in the topology of the magnitude surface. Those
topological features enable us to analyze the detailed and
complex flow kinematics that appear in the relatively sim-
ple flow field of the Sullivan vortex.

We emphasize that the velocity gradient tensor of incom-
pressible fluids is traceless. Consequently, it does not help
to compute isosurfaces of the tensor isotropy index.

7.2 Spheres Compressing Linear Elastic Block
In the second application we include a solid mechanics
example of a block deformed by spheres pressing on top
(Fig. 7). We consider two scenarios with increasing com-
plexity, and in our visualization, the spheres and the block
themselves are omitted to accentuate the feature-based and
topological surfaces. These numerical examples are
extracted from research involving vehicle loading on roads
and bridges.

We first apply the isosurfaces of the tensor isotropy index
(not applicable to incompressible fluids) to the stress tensors
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Fig. 10. Glyphs based on eigenvalue manifold in the horizontal cut plane
at the midlevel (top) and at the bottom (bottom) of the Sullivan Vortex.
The thin circular curves in chartreuse represent the intersect of neutral
surface onto the cut plane, and the planar- and linear-type degenerate
curves are shown with the thick lines in yellow and green, respectively.
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for the one sphere case. In Fig. 11, we show that while the
isotropy index varies from 0.70 to —0.70, the zones with
shear stress grow and then shrink similar to the behavior
analogous to the vertical bisector of the lune.

The combination of the traceless surface and the mode sur-
face of this dataset is shown in Fig. 12 (1a and 1b: neutral sur-
faces in chartreuse and traceless surfaces in purple). The left
column shows an angle view and the middle row a side view.
Notice that both surfaces reveal the indentation, the hollow
area in the middle, made by the sphere. In addition, the neu-
tral surface and the traceless surface are both mostly aligned
with the top face of the block, implying that the behaviors of

Fig. 9. The mode surfaces of the Sullivan vortex (Fig. 1). From left to right, the mode values are 0.8, 0.4, 0 (the neutral surface), —0.4, and —0.94,
respectively. Notice that the linear degenerate curves (green) and the planar degenerate curves (yellow) are separated by the neutral surface. More-
over, the topology of the mode surface changes. As the mode increases, the mode surfaces converge toward linear degenerate curves. In contrast,
when the mode decreases, the mode surfaces converge toward planar degenerate curves.
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Fig. 11. The isosurfaces of the isotropy index with values at 0.70, 0.36, 0, —0.36, and —.70 for the single sphere scenario in Fig. 7.

the materials are nearly uniform, i.e., vertical compression. It
is interesting to note that the neutral surface (two layers) sand-
wich the traceless surface. This is an observation that can lead
to further investigations by material scientists. Typically,
engineers who evaluate the stress distribution are limited
to plotting the von Mises stress, which presents a high-low
magnitude of the deviatoric stress and is insufficient in track-
ing the displacement of the material. The traceless surfaces
separate the important zones of material layers which are in
expansion and compression, and this division can facilitate
creation of designs that incorporate multi-materials and sen-
sors. By viewing the neutral surfaces, investigation can evolve
in correlating the eigen-directions to material displacement.
This information enables intelligent and optimal definition of
boundary conditions for the materials. Furthermore, in the
three sphere (bottom row) scenario (Fig. 12), we note that
between every pair of adjacent spheres, a tubular region
emerges underneath. The neutral tensors enclose these

tubular regions, an observation that shows the material being
compressed by the pair of spheres and is pushed to the sides,
changing from planar compression to linear compression
while crossing the neutral surfaces. The capability of isolating
these regions is new to the best of our knowledge. We wish to
point out that the tensor mode surfaces, including the neutral
surfaces, do not possess global self-intersections. While this is
hard to see in Fig. 12 (lower-middle), it is more discernable
from another viewpoint (Fig. 13).

7.3 Scalar Field Analysis

The Hessian of a smooth scalar field is a 3 x 3 symmetric
tensor field, containing its partial second derivatives. Exam-
ples in which Hessians were previously used in scalar field
visualization include the classification of critical points
when constructing Morse-Smale complexes [32], or the defi-
nition of curvature-based transfer functions for direct vol-
ume rendering [33].

(1b)

(2b)

(3b)

Fig. 12. This figure shows the neutral surfaces (left and middle columns) and degenerate curves (right column) for two scenarios of spheres pressing
a block. The left column shows an angled view and the middle column shows a side view. In the top row, we also show the traceless surface. We
note the two surfaces are nearly parallel generally following the shape of the block. In addition, the neutral surface has two sheets which sandwich
one sheet of the traceless surface. Above the traceless surface is the region of expansion while below the traceless surface is the region of contrac-
tion. The expansion region is linear above the upper sheet of the mode surface and planar below it. The bottom row shows a tubular region emerging
beneath pairs of spheres for the three sphere scenarios. These regions indicate planar tensors. In addition, the trace in those regions are negative,
indicating compression. However, the compression is not isotropic. There is one direction with the most compression while the other two directions
exhibit less compression (or even with slight extension). In the right column, the degenerate curves for one sphere and three spheres are shown,
respectively. Notice that the linear degenerate curves and planar degenerate curves are separate from each other in the one sphere case. However,
for three spheres, the two types can interact through links (green curves linking yellow curves).
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Fig. 13. The neutral surface is the zeroth levelset of the tensor mode
function and has no self-intersections. While this can be difficult to per-
ceive given our choice of surface rendering [30] when there are multiple
layers in the surface (e.g., Fig. 12-1b), viewing the dataset from different
angles (e.g., this figure) can clarify this. Notice that in this figure there is
clearly a separation between the outermost part of the neutral surface
and the next layer, which is difficult to judge from the top figure.

Applying our newly proposed method for tensor field
analysis to Hessians allows us to use it to gain insight into
scalar fields. For example, a classic method for edge detec-
tion in volumetric scalar data involves localizing the Lapla-
cian zero crossings [34], which coincide with the traceless
surfaces in our framework. Similarly, Schultz et al. [35]
point out that generic height ridge and valley surfaces end
in degenerate curves of the Hessian field briefly before they
form a junction. Thus, neutral surfaces partition the domain
into parts in which ridge surfaces (negative mode) or valley
surfaces (positive mode) can form such a configuration.

Fig. 14 shows the neutral (b) and traceless (c) surfaces in
the Hessian of the von Mises stress, a scalar field that is
derived from the one-sphere simulation. We have found
that these surfaces reveal interesting structures that are com-
plementary to those in the stress tensor field itself (Fig. 12,
top row). Together, neutral and traceless surfaces lead to a
four-way partitioning of the domain. Fig. 14a illustrates it
using a color coding on a slice that is located near the top of
the block, oriented perpendicular to the external force. This
subdivision clearly reflects the main maximum of the Von
Mises stress (green) and the ridges leading up to it (yellow).

In general, positive Hessian trace indicates a region in
which the scalar field is concave (including all local min-
ima), while negative trace indicates convexity (local max-
ima). The mode of the Hessian tensor is affected by the
dimensionality of the local extremum. For example, Hes-
sians along a typical valley line have negative tensor mode,
with two clearly positive eigenvalues, and a remaining less
dominant one. In contrast, a planar valley surface is charac-
terized by a single dominant positive eigenvalue, leading to
positive tensor mode. As indicated in the legend of Fig. 14a,
the roles of positive and negative mode are reversed in case
of ridges.

8 CONCLUSION AND FUTURE WORK

In this paper, we have presented novel analysis of 3D sym-
metric tensor fields. At the core of our approach is the intro-
duction of the eigenvalue manifold for 3D tensors, as well
as the neutral surfaces and traceless surfaces and their inclu-
sion into tensor field analysis. We have also defined the con-
cept of tensor isotropy index which, along with tensor
mode, are used to parameterize the eigenvalue manifold.
We make use of the A-patches method to efficiently
extract mode surfaces (including the neutral surfaces) and
the isotropy index surfaces (including the traceless surfa-
ces). Finally, we provide physical interpretation of our anal-
ysis and visualization in the context of fluid dynamics and
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Fig. 14. This figure shows that tensor field analysis can also be useful for
scalar field visualization. Given a 3D scalar field (a: top), which is the
von Mises stress for the one-sphere simulation data in Fig. 7 (left), the
Hessian is a symmetric tensor field which can contain rich structures
(a (bottom), b and c) and provide critical and complementary information
about the original scalar field.

solid mechanics. We also demonstrate that our analysis can
be applied to scalar field visualization.

Our system is not without limitations. Our system does
not guarantee that all degenerate curves and neutral surfa-
ces are extracted. This can be attributed to the fact that the
A-patches algorithm that we adapted [6] does not guarantee
convergence when there are singularities on the surfaces,
like cusps.

Like scalar and vector fields, noise and numerical issues
can lead to noise in tensor field analysis. As a future
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direction, we plan to investigate techniques to reduce geo-
metric and topological noise in tensor field analysis. Fur-
thermore, extending our analysis to 3D asymmetric tensor
fields is also a natural direction. Finally, we wish to explore
means to reduce the visual cluttering associated with dis-
playing degenerate curves and neutral surfaces.
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