
Tensor Field Design in Volumes

JONATHAN PALACIOS, LAWRENCE ROY, and PRASHANT KUMAR, Oregon State University
CHEN-YUAN HSU, Bournemouth University
WEIKAI CHEN, University of Hong Kong and USC Institute for Creative Technologies
CHONGYANG MA, Snap Inc.
LI-YI WEI, University of Hong Kong
EUGENE ZHANG, Oregon State University

b
e
f
o
r
e

a
f
t
e
r

(a) degenerate curves (b) chains (c) leaves (d) noodles

Fig. 1. Different tensor fields can lead to different element synthesis results.With our tensor field design system, users can create any tensor field and control the
topology of the tensor field by deforming, removing, and reconnecting degenerate curves in the field (colored curves in (a)). The modified tensor field topology
can lead to improved element synthesis results (before the topological editing (top) and after (bottom) in (b), (c), and (d)). The underlying 3D model is David’s
head, which is viewed from the top.

3D tensor field design is important in several graphics applications such as

procedural noise, solid texturing, and geometry synthesis. Different fields

can lead to different visual effects. The topology of a tensor field, such as

degenerate tensors, can cause artifacts in these applications. Existing 2D

tensor field design systems cannot be used to handle the topology of a

3D tensor field. In this paper, we present to our knowledge the first 3D

tensor field design system. At the core of our system is the ability to edit the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association

for Computing Machinery.

0730-0301/2017/11-ART188 $15.00

https://doi.org/10.1145/3130800.3130844

topology of tensor fields. We demonstrate the power of our design system

with applications in solid texturing and geometry synthesis.

CCS Concepts: • Computing methodologies → Texturing; Parametric
curve and surface models;

Additional Key Words and Phrases: 3D tensor fields, tensor field design,

topology, texture synthesis, geometry synthesis, element synthesis

ACM Reference format:
Jonathan Palacios, Lawrence Roy, Prashant Kumar, Chen-Yuan Hsu, Weikai

Chen, Chongyang Ma, Li-Yi Wei, and Eugene Zhang. 2017. Tensor Field

Design in Volumes. ACM Trans. Graph. 36, 6, Article 188 (November 2017),

15 pages.

https://doi.org/10.1145/3130800.3130844

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

https://doi.org/10.1145/3130800.3130844
https://doi.org/10.1145/3130800.3130844

188:2 • Jonathan Palacios, Lawrence Roy, Prashant Kumar, Chen-Yuan Hsu, Weikai Chen, Chongyang Ma, Li-Yi Wei, and Eugene Zhang

Fig. 2. Tensor field design naturally leads to line field design and frame field
design. Given the tensor field designed by our system for a double torus
(left: yellow and blue curves are degenerate curves and grey curves are
hyperstreamlines following the minor eigenvector field), the tensor field
can be used to generate element synthesis (right) with line-type elements
(wood sticks) and elements with box-type symmetry (leaves). Moreover, a
tensor field has both linear regions and planar regions (Section 3), naturally
enabling two different elements to be synthesized with the same field. These
properties are not shared by cross-frame fields.

1 INTRODUCTION
Many applications rely on the ability to locally model anisotropy

inside a volume, such as texturing [Kopf et al. 2007; Lagae and Dret-

takis 2011], meshing [Ray et al. 2016], modeling [Ma et al. 2011],

and deformation [von Funck et al. 2006]. In these applications, the

quality of the results heavily depends on the properties of the guid-

ing anisotropy field, such as continuity and smoothness. Thus, field

design has been a key focus in computer graphics and geometry

processing [Vaxman et al. 2016].

There are various types of volumetric fields, each with different

symmetry properties and consequently suitable for different appli-

cations. For example, cross-frame fields (with octahedral symmetry)

are ideal for hexahedral remeshing [Nieser et al. 2011] as they are

able to properly model fundamental singularities (Figure 3a). On the

other hand, the design and processing of cross frame fields is inade-

quate for the line-type and box-type of objects (e.g. Figure 3c). In

contrast, tensor fields can model such objects (Figure 3d and Figure 2

− leaves (box-type) and wood sticks (line-type)). This is because a

3D tensor contains not only directional information (eigenvectors)

but also anisotropic sizing information (eigenvalues). Moreover, due

to anisotropy, a tensor field can be considered as a collection of three

mutually perpendicular line fields. In contrast, such a distinction is

not available for cross-frame fields. Consequently, cross-frame field

processing does not apply to line field design, while tensor field

design naturally leads to line field design. Moreover, a tensor field

naturally contains a linear region and a planar region (Section 3),

which enables the use of two different elements in the same field

(see Figure 2). A cross-frame field does not have this capability. On

the other hand, tensor field singularities do not properly model basic

irregular vertices and edges in hex meshes (Figure 3). Consequently,

tensor field design is inadequate for hexehedral remeshing.

We address the problem of designing volumetric tensor fields.

To our knowledge, there has been little work on 3D tensor field

(a) cross field (b) tensor field

(c) mesh + texture from (a) (d) mesh + texture from (b)

Fig. 3. This figure compares the difference in the types of first-order singulari-
ties in a cross-frame field (left) and a tensor field (right). Both fields have a line
of singularities (top row), and we show the pattern of the fields projected
on a plane perpendicular to the singularity line. The projection of the cross-
frame fields on the plane is a 4-RoSy field (a), while the projection of the
tensor field is a 2D tensor field (b) (both major and minor eigenvector fields
shown). Notice that a cross-frame field singularity has an index of k

4
(k ∈ Z),

while a tensor field singularity has an index of k
2
(k ∈ Z). This is because

cross-frames have a larger symmetry group than tensors. In quadrangular
remeshing (c)-(d) (mesh elements highlighted by the black curves), valence
3 and 5 vertices cannot be modeled by a tensor field singularity, making 2D
tensor fields inadequate for quadrangular remeshing. Similarly, 3D tensor
fields are inadequate for hexahedral remeshing. On the other hand, for line
type of objects (c)-(d) (blue stripes), 4-RoSy fields can lead to visual artifact
(c), while 2D tensor fields do not have such artifacts (d).

design. Existing work on the processing of cross-frame fields in

hexahedral remeshing [Huang et al. 2011; Li et al. 2012; Nieser et al.

2011] does not naturally extend to the processing of tensor fields.

Furthermore, existing work on cross-frame fields mostly focuses on

the automatic generation and modification of a cross-frame field

based on the boundary of the domain, while we strive for a user

design system for flexibility. The user can generate any tensor field,

whether aligned with the boundary or not.

A major challenge facing tensor field design is the existence of

singularities, where the tensor field has repeating eigenvalues and

the orthonormal frames have discontinuity. Similar to 2D tensor

field design, the set of singularities in a 3D tensor field plays an

important role in shaping the behavior of the tensor field. Unlike

2D tensor fields, where the singularities (referred to as degenerate

points) are isolated points under structurally stable conditions, in

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

Tensor Field Design in Volumes • 188:3

(a) a surface tensor field (b) volume tensor field for (a)

(c) singularity pair cancellation of (a) (d) volume tensor field for (c)

Fig. 4. The topology of a surface tensor field (a) does not provide a complete
picture of the corresponding volume tensor field (b). The 2D tensor field in
(a) contains eight degenerate points on the boundary surface (yellow and
cyan points). However, as a 3D tensor field in (b) there are two degenerate
loops completely in the interior of the volume and thus not visible from
the surface field in (a) Notice that it is difficult to predict which surface
degenerate points belong to the same degenerate curves. Also, there can be
degenerate loops which do not intersect the boundary surface. In addition,
topological editing operations applied on the boundary tensor field can
lead to unpredicted behaviors in the topology of the corresponding volume
tensor field. For example, when removing a singularity pair in the surface
tensor field (from (a) to (c)), two degenerate curves in the volume tensor
field are joined, one of the degenerate loops is eliminated, and the shape of
the other degenerate loop is altered (compare (b) with (d)).

3D tensor fields, degenerate points form curves (degenerate curves).
Such curves can intersect the domain or reside inside the volume

and form degenerate loops (Figure 4).

While it is conceivable to control the topology of a volume ten-

sor field by controlling its behavior on the boundary surface, thus

reusing 2D tensor field editing operations from existing research,

this strategy can lead to undesired effects due to the following rea-

sons. The topology of the surface tensor field does not provide a

complete picture of the topology of the corresponding 3D tensor

field. Thus when simplifying the topology of the 3D tensor field by

2D tensor field topological editing [Zhang et al. 2007], unpredicted

changes may occur. An example is shown in Figure 4. Identifying

possible, fundamental operations to modify the topology of 3D ten-

sor fields, i.e., only targeted degenerate curves are impacted, is a

challenging yet important problem for 3D tensor field design.

In this paper, we present to our knowledge the first interactive,

3D tensor field design system. The user can create a tensor field

by specifying desired tensor values and local patterns inside the

volume, or on the boundary surface, or in both places. The field can

be made boundary-conforming, i.e., the surface normal direction is

aligned with one of the eigenvectors of the tensor field everywhere

on the surface.

At the core of our system is a set of topological editing operations

such as degenerate curve removal, degenerate curve deformation, and
degenerate curve reconnection, which we have identified and used

to control the number, location, and shape of degenerate curves.

We also provide robust algorithms to accomplish these degenerate

curve editing operations. Figure 1 shows the results of geometry

synthesis guided by a tensor field with degenerate points.

We demonstrate the efficacy of our system by applying it to the

control of anisotropic Gabor noise, data-driven solid texturing, and

geometry element synthesis.

2 PREVIOUS WORK
There has beenmuchwork in the design of orientations fields in both

2D and 3D, and it is beyond the scope of this work to thoroughly

review all of them. Instead, we will focus on work that is most

relevant to this research and refer interested readers to a recently

published survey [Vaxman et al. 2016] for a comprehensive review.

Vector field design on surfaces starts with applications in texture

and geometry synthesis [Nieser et al. 2012; Praun et al. 2000; Turk

2001; Wei and Levoy 2001], fluid simulation [Stam 2003], and non-

photorealistic rendering [Hertzmann 1998; Hertzmann and Zorin

2000]. Zhang et al. [2006] present a vector field design system in

which they use Conley index theory to control the number and

location of the singularities in the vector field. Fisher et al. [2007]

use discrete exterior calculus to design a vector field with control

over the singularities in the field. Palacios and Zhang [2007] address

the more generic problem of designing 2D orientations under N -

way rotational symmetries, which they refer to as N -RoSy’s. Ray et

al. [2008] also develop a design system for such orientation fields

under rotational symmetries with a focus on the control of location

and type of the singularities in the field. They later automate this

process to generate a field whose directions conform to the geometry

of the surface [Ray et al. 2009]. Bommes et al. [2009] integrate field

generation and quadrangular remeshing into the same systemwhich

they solve by a mixed-integer solver.

The analysis and design of 3D orientation field is a relatively new

topic. Applications of 3D orientation fields include solid texture

and geometry synthesis [Bénard et al. 2010; Kopf et al. 2007; Lagae

and Drettakis 2011; Lagae et al. 2009; Landes et al. 2013; Ma et al.

2011; Takayama et al. 2008; Wei et al. 2009; Zhang et al. 2011] and

hexahedral remeshing [Gregson et al. 2011; Huang et al. 2011; Lévy

and Liu 2010; Li et al. 2012; Nieser et al. 2011]. However, it is difficult

to specify and control the topology of the orientation fields, such as

the number, location, shape, type, and connectivity of degenerate

features [Ray et al. 2016; Solomon et al. 2017].

One exception is 3D symmetric tensor fields, for which there has

been some work on topological analysis. Delmarcelle and Hesselink

extend the notion of degenerate points from 2D tensor fields to

3D tensor fields [Delmarcelle and Hesselink 1994; Hesselink et al.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

188:4 • Jonathan Palacios, Lawrence Roy, Prashant Kumar, Chen-Yuan Hsu, Weikai Chen, Chongyang Ma, Li-Yi Wei, and Eugene Zhang

1997]. Zheng et al. [2004; 2005b] point out that numerically stable

topological features in a 3D tensor field form curves and provide

three methods to extract them. They further point out that tensor

patterns near a degenerate point on a degenerate curve exhibits 2D

tensor degenerate patterns such as wedges and trisectors [Zheng

et al. 2005a]. Palacios et al. [2016b] introduce the notions of eigen-
value manifold and neutral surfaces into 3D symmetric tensor field

topology.

In this paper we focus on the design of 3D tensor fields, which

naturally leads to line field design and frame field design (Section 1).

We have identified a set of editing operations that allows the topol-

ogy of a 3D tensor field to be modified in an isolated fashion, i.e.,

without impacting other singularities. To do so, we rely on a num-

ber of observations on 3D tensor field topology that have not been

made or reported previously. We also develop a unified framework

in which these editing operations can be carried out. A preliminary

version of this work is described in [Palacios et al. 2016a].

3 BACKGROUND
In this section we review background on 3D symmetric tensor fields

mostly relevant to this work. This section is based on published

works [Zhang et al. 2007; Zheng and Pang 2004]. As this paper only
deals with symmetric tensors, we will omit the word symmetric.
A 3D (symmetric) tensor T has three real-valued eigenvalues:

λ1 ≥ λ2 ≥ λ3. They are referred to as the major, medium, and minor
eigenvalues, respectively. An eigenvector belonging to the major

eigenvalue is referred to as a major eigenvector. Medium and minor

eigenvectors can be defined similarly. Eigenvectors belonging to

different eigenvalues are mutually perpendicular.

The trace of a tensor T is trace (T) =
∑K
i=1 λi . T can be uniquely

decomposed as D + A where D = trace (T)
K I (I is the K-dimensional

identity matrix) and A = T − D. The deviator A is a traceless tensor,
i.e., trace (A) = 0. Note that T and A have the same set of eigenvec-

tors. Consequently, the topology of a tensor field can be defined in

terms of the topology of its deviator tensor field. Another nice prop-

erty of the set of traceless tensors is that it is closed under matrix

addition and scalar multiplication, making it a linear subspace of

the set of tensors. Given these considerations, we will focus on the

analysis and design of traceless tensor fields and also omit the term

traceless in the remainder of the paper.

When K = 3, a tensor can be classified as either linear (L), planar
(P), or neutral (N), corresponding to λ1 − λ2 > λ2 − λ3, λ1 − λ2 <
λ2−λ3, and λ1−λ2 = λ2−λ3, respectively. For traceless tensors, the
above conditions are equivalent to λ2 < 0 (linear), λ2 > 0 (planar),

and λ2 = 0 (neutral).

A tensor is said to be degenerate if it has repeating eigenvalues.
When K = 2, the only degenerate (traceless) tensor is the zero

matrix. When K = 3, there are three types of degenerate tensors:

neutral (λ1 = λ2 = λ3 = 0), linear (λ1 > λ2 = λ3), and planar

(λ1 = λ2 > λ3). The neutral degeneracy is also referred to as the

triple degeneracy, for which all non-zero vectors are an eigenvector.

The linear and planar degeneracies are called double degeneracies.
The non-repeating eigenvalue is referred to as the non-degenerate
eigenvalue, while the repeating eigenvalues are referred to as the

degenerate eigenvalues. The non-degenerate eigenvalue is the major

(a) wedge (b) transition (c) trisector

Fig. 5. The projection of a tensor field onto the non-repeating planes. Along a
degenerate curve, the projection can exhibit 2D degenerate patterns such as
a wedge (left) and a trisector (right). Between segments of wedges (green)
and trisectors (blue), transition points can appear (middle).

eigenvalue for L-type degenerate tensors and the minor eigenvalue

for the P-type degenerate tensors. The eigenvectors corresponding
to the non-degenerate eigenvalues are referred to as non-degenerate
eigenvectors. The plane perpendicular to a non-degenerate eigenvec-
tor is referred to as a degenerate plane. Any vector inside this plane

is an eigenvector corresponding to the degenerate eigenvalue.

We now discuss tensor fields and their topology. A tensor field
T(p) (p ∈ Ω) is a tensor-valued function defined over some domain

Ω ⊂ RK . A tensor field can be thought of as K eigenvector fields,

corresponding to the K eigenvalues. A point p0 ∈ Ω is a degenerate
point if T(p0) is degenerate. The topology of a tensor field consists

of its degenerate points.

In 2D, the set of degenerate points of a tensor field are isolated

points under numerically stable configurations, i.e., when the topol-

ogy does not change given sufficiently small perturbation in the

tensor field. An isolated degenerate point can be measured by its

tensor index [Zhang et al. 2007], defined in terms of the winding
number of one of the eigenvector fields on a loop surrounding the

degenerate point. The most fundamental types of degenerate points

are wedges and trisectors, with a tensor index of
1

2
and − 1

2
, respec-

tively. The total tensor index of a continuous tensor field over a

two-dimensional manifold is equal to the Euler characteristic of the
underlying manifold. Consequently, it is not possible to remove one

degenerate point. Instead, a pair of degenerate points with oppos-

ing tensor indexes (a wedge and trisector pair) must be removed

simultaneously [Zhang et al. 2007].

In 3D, the situation is more complicated. Zheng et al. [2004;

2005a] point out that stable topological features consist of degener-

ate curves, each of which is either linear or planar. The projection of

the tensor field onto the degenerate plane exhibits either a wedge or

trisector pattern. Consequently, a degenerate curve can be divided

into consecutive segments of purely wedge points and trisector

points. The boundary points between these segments are transition
points, where the non-degenerate eigenvector is perpendicular to
the tangent of the degenerate curve. Figure 5 illustrates this with

an example. Along degenerate curves, we can observe two 2D de-

generate patterns such as wedges (left) and trisectors (right). At the

transition point (middle), the projected pattern is neither a wedge

nor a trisector.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

Tensor Field Design in Volumes • 188:5

Fig. 6. The interface of our tensor field design system. Our UI includes a
graphics display sub-window (middle), a visualization option panel (left),
and a design option control (right). Please refer to the accompany video for
live actions.

4 OVERVIEW
We now describe our 3D tensor field design system, which consists

of two steps. First, the user generates a tensor field by providing

constraints inside the volume and/or on the boundary surface. Sec-

ond, the user performs editing operations to individual degenerate

curves of the tensor field. The user interface of our system is shown

in Figure 6.

The computational setup of our system is as follows. The input

domain is a tetrahedral mesh M ⊂ R3. Quite often the input is

actually a triangle mesh representing a closed, orientable surface.

In this case the volume bound by the triangle mesh is tetrahedral-

ized using existing software such as TetGen [Si 2015]. A 3D tensor

field is represented as a set of tensor values, one per vertex of M .

Piecewise linear interpolation is used to extend the tensor values

from a set of points (vertices ofM) to a continuous tensor field over

M . When performing tensor field design and editing, we modify the

tensor field by modifying its values on the vertices ofM . After each

modification to the tensor field, the degenerate curves are extracted

based on the method of Zheng and Pang [2004]. The LP-type as well
as wedge/trisector classification along degenerate curves are also

performed and color-coded. As shown in Figure 5, an L-type wedge
degenerate point is colored in green, while an L-type trisector point
is colored in blue. A P-type degenerate point is colored in yellow

if a wedge, or red if a trisector. We will describe the first step, i.e.,

the specification of tensor fields through a set of user constraints,

in Section 5. The discussion of topological editing of tensor fields is

in Section 6.

5 3D TENSOR FIELD SPECIFICATION
Our specification system is based on a number of requirements.

First, it is important to be able to specify the tensor value at a given

point in space. Second, if the desired tensor value is degenerate, it

is usually important to also specify the degenerate tensor pattern

near the point of interest. Third, we would like the interface to be

both intuitive and easy-to-use.

Our specification system consists of the following steps. First,

the user places design elements using our design system, each of

which is a desired tensor value at a given point, usually inside a

tetrahedron in the mesh. Second, the design elements are used to

generate tensor values at a set of vertices in the mesh, usually the

vertices of the tetrahedrons that contain the design elements. Each

of such vertices are referred as a fixed vertex. Finally, the tensor

values at the fixed vertices are propagated to the remaining mesh

vertices as follows.

Propagation. We treat each entry in the tensor fieldTi, j as a scalar
field. A 3D symmetric, traceless tensor field can be considered as five

scalar fields defined on the same mesh. The problem of propagating

tensor values from the fixed vertices to the remaining vertices is

thus converted into computing five scalar fields over the mesh. For

each scalar field the values are given at the fixed vertices. To find the

values at the remaining vertices, one can use the so-called Laplacian

smoothing framework. Basically, for each scalar field, we create

a harmonic vertex-based scalar field ψ on M given the boundary

conditions (from the values at the fixed vertices). Note that ψ is

harmonic if it minimizes the following energy,

∫
x ∈M

1

2

∥∇ψ ∥2dx =
∑
t ∈T

1

2

Vt ∥∇ψ ∥
2

(1)

where T is the set ofM’s tetrahedrons, Vt is the volume of the

tetrahedron t , and∇ψ is the gradient vector ofψ . Whenψ minimizes

this energy we say that it solves the Laplace equation. This energy

is equivalent to using cotangent edge weights [Jacobson 2013].

Once all five scalar fields have been obtained over the whole

mesh, they are assembled into a 3 × 3 symmetric, traceless tensor

field, which satisfies the boundary condition (fixed vertices). Note

that this framework has been used successfully in 2D tensor field

processing [Alliez et al. 2003; Zhang et al. 2007].

Design. Next, we focus on the details of the second step, i.e.,

computing the set of fixed vertices and tensor values at these vertices

based on user-specified design elements.

A design element can be either degenerate or non-degenerate. In

the latter, it is in the form of a non-degenerate tensor. A degenerate

design element is in the form of

T0 + (x − x0)Tx + (y − y0)Ty + (z − z0)Tz (2)

Here (x0,y0, z0) is the 3D coordinates of the vertex, T0 is a degen-
erate tensor, while Tx , Ty , and Tz are traceless tensors that may be

degenerate or non-degenerate. Together, the coefficients of Tx , Ty ,
and Tz form the Jacobian of the tensor field and are responsible for

the local tensor degenerate patterns (wedges, trisectors) around the

point where the constraint is placed.

We have found that it is easier and often more intuitive to specify

not just a single design element, but a set of design elements along

a curve. This is especially true when specifying degenerate tensor

elements, which naturally form curves. Given a user-specified curve,

our system first generates a spline that best captures the sketched

curve. The spline curve is then subsampled at a set of evenly spaced

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

188:6 • Jonathan Palacios, Lawrence Roy, Prashant Kumar, Chen-Yuan Hsu, Weikai Chen, Chongyang Ma, Li-Yi Wei, and Eugene Zhang

N Φ(N)

Φ

Fig. 7. Space-warping parameterization for constraint generation. Left: a tubu-
lar neighborhood N surrounding the user’s placed curve c (dark gray with
black endpoints in the center) is found using the fast marching method. This
region is then mapped to a cylindrical parameter space Φ(N), so that we
can easily generate a 3D tensor field in N . To further illustrate the mapping
locally, we show two local frames along c with the X , Y , Z axes colored in
red, green, and blue.

points on the curve including both end points. At each sample point

p, we compute a frame based on the method of Bergou et al. [2008].

The first vector in the frame, i.e., the curve tangent, is assumed to

be a non-degenerate eigenvector.

For a non-degenerate design element, the other two vectors in the

frame are assumed to be the remaining eigenvectors. The user can

change the eigenvectors by freely rotating the frame in 3D. The user

can also specify the eigenvalues along the degenerate curves. The

default maximal eigenvalue is 1 for L-type, and the default minimal

eigenvalue is −1 for P-type of constraints.
For a degenerate design element, the other two vectors in the

frame give the degenerate plane. Again, the user can change the

non-degenerate eigenvector and the degenerate plane by rotating

the frame. The default eigenvalues are 2,−1,−1 for an L constraint

and 1, 1,−2 for a P constraint. The default values for the Jacobian

are

Tx =
*.
,

1 0 0

0 −1 0

0 0 0

+/
-
,Ty =

*.
,

0 1 0

1 0 0

0 0 0

+/
-
,Tz = 0 (3)

for a wedge constraint. A default Jacobian for a trisector constraint

simply negatesTy . The user can change the 2D tensor pattern inside

the degenerate plane by changing the 2 × 2 sub-blocks inTx andTy .
The user can also rotate the non-degenerate eigenvector direction

freely in 3D, which will lead to the rotation of the 3D frame but the

Jacobian coefficients do not change with respect to the new local

coordinate system. This can lead to change in the angle between

the non-degenerate eigenvector and the curve tangent.

Parameterization. Notice that the subsamples along a user-specified

curve are usually not the vertices of the mesh. Recall that in our

framework, the fixed vertices are at the vertices of the mesh, not

the middle of the tets. While it is possible to find the set of tets con-

taining the user-specified curve and somehow transfer the tensor

constraints from the curve to the vertices of these tets, we have

found that such an approach leads to poor control over tensor pat-

terns (especially degenerate patterns) near the degenerate curves.

Consequently, we compute a tubular neighborhood for the speci-

fied curve (cylinder if open curve and torus if a loop). An illustration

is shown in Figure 7 (left). We then compute a volumetric parame-

terization of this neighborhood with respect to the curve, which is

equivalent to deforming the neighborhood into a canonical neigh-

borhood as shown in Figure 7 (right). Then for each vertex v inside

the neighborhood, we locate the closest vertex v0 on the curve and

applies the displacement vector v −v0 into v0’s local linearization
(tensor value and Jacobian) to obtain the desired tensor value at v .
When two user-specified curves have intersecting neighborhoods, a

conflict occurs for vertices inside the intersection. Consequently, we

allow the desired tensor values from two curves to be blended, with

each tensor value weighted by its distance to the respective curve.

This way, a vertex closer to one curve will receive a larger influence

from that curve. In our system, the radius of the neighborhood can

be adjusted by the user. Generally speaking, the larger the radius, the

better control over local tensor patterns around degenerate curves.

Boundary-conforming tensor fields. The users often wish the de-

signed tensor field to conform to the boundary surface of the vol-

ume, i.e., one of the eigenvector fields is aligned with the surface

normal everywhere on the boundary. However, tensor fields gen-

erated from the aforementioned Laplacian system are in general

not boundary-conforming. To handle this difficulty, we perform one

more Laplacian smoothing using some additional fixed vertices. Let

T be the tensor field generated from design elements as described

earlier. For each vertex v on the boundary surface of the domain,

we modify the tensor value at v to be aligned with the boundary

normal. Specifically, let δ be a local basis at v such that the normal

at v , Nv is the third vector in δ . Under this basis

T(v) =
(

MB MBN
MBN

ᵀ MN

)
(4)

whereMB is a 2 × 2 matrix corresponding to the projection of T(v)
in the tangent plane at v , Bv . MBN is a 2 × 1 matrix, and MN is a

1×1 matrix. To make T(v) boundary-conforming, we simply change

it by settingMBN = 0. We now add these boundary vertices to the

set of fixed vertices (from design elements) and perform Laplacian

smoothing a second time. The resulting tensor field is boundary-

conforming and respects design elements.

Tensor fields from curvature tensor. The user may wish the tensor

field to be aligned with the curvature tensor field on the boundary

surface. We reuse the idea above, except that we first need to convert

the curvature tensor, a 2×2 tensor, into a 3×3 tensor. This is achieved

by adding an eigenvalue corresponding to the new eigenvector, the

surface normal. The user can also specify the new eigenvalue. Once

the curvature tensor has been converted into a 3D tensor field, it is

included in the boundary condition.

Local field smoothing. It is often important to reduce the topolog-

ical and geometric complexity of the tensor field in a region R with

the field outsideR unchanged.We refer to this operation as local field
smoothing. This is achieved with the same tensor-valued Laplacian

smoothing framework with different boundary conditions.

If R is strictly in the interior of the volume, we use the tensor

values on the boundary of R, which are in the interior of the volume,

as the boundary condition for the Laplacian system. If R intersects

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

Tensor Field Design in Volumes • 188:7

the boundary of the volume, we also use K = R
⋂
∂M as a boundary

condition.

6 TOPOLOGICAL EDITING OPERATIONS
The tensor fields generated in the first step (Section 5) often contain

degenerate curves in addition to the ones specified by the user (Fig-

ure 8). As mentioned earlier, excessive and misbehaving degenerate

curves can lead to visual artifacts in the applications of tensor fields.

In this section, we describe three fundamental topological editing
operations that we have identified as part of this research:

Fig. 8. Tensor field
design based on
purely user-specified
constraints (curves
with spikes) can lead
to excess degenerate
curves (without spikes).

Degenerate curve deformation which refers to deforming

part of a degenerate curve (Section 6.1).

Degenerate curve reconnection which refers to cutting open

two degenerate curve segments and stitching together pieces

from different segments, thus resulting in two new degen-

erate curve segments (Section 6.2).

Degenerate curve removal which refers to removing either

one degenerate curve or simultaneously two degenerate

curves, under respective conditions (Section 6.4).

These operations are designed to impact the least number of de-

generate curves, while, together, can provide enough flexibility to

modify tensor field topology. Figure 9 shows a sequence of topo-

logical editing operations on a tensor field. Next we describe our

analysis and algorithms that enable these editing operations.

6.1 Degenerate Curve Deformation
Deforming a degenerate curve γ by itself is straightforward, but we

need to resample tensor values at the surrounding meshM vertices

while keeping the rest intact (boundary condition). To deform part

of a degenerate curve γ , our system identifies a regionM (Figure 10

(a-b): cylinder), a topological ball that encloses the segment γ1 ⊂ γ
(Figure 10 (b): curve) and its deformed version γ2 (Figure 10 (a):

curve) but no other degenerate points. Next, we strive for a self-

homeomorphism ϕ ofM that maps γ2 to γ1. Finally, we use the map

ϕ to generate a deformed tensor field. Figure 9 shows the result of

deforming the longest degenerate curve near Moai’s ear.

RegionM . We build the region surrounding the degenerate curves

via a sequence of topology-aware morphological dilation and ero-

sion operations. We start with the set of tetrahedrons containing γ1
and γ2. Typically the topology of this set, referred to asU , is not a

ball. We then compute the distance function dU of any tetrahedron

in the mesh toU . Based on dU we iteratively add one tetrahedron at

a time toU ′ (initially the same asU) untilU ′ is a ball. We then shrink

U ′ by iteratively removing tetrahedrons fromU ′ while keeping both

after curve
deformation

after curve
reconnection

after curve
removal

Fig. 9. A sequence of topological editing operations applied to a 3D tensor field.
(upper-left) the input tensor field, (upper-right) remove a mixed degenerate
loop insideMoai’s body (yellow/red), (lower-right) deform part of the longest
degenerate curve near Moai’s ear (yellow), and (lower-left) reconnect two
mixed degenerate curves near Moai’s bottom (both green/blue).

γ1 and γ2 inside U
′
and requiring U ′ to remain a topological ball.

Once this process terminates, we compute a new distance function,

dU ′ , which measures the distance to the closest tetrahedron inU ′,
and use it to grow the region M from U ′ out to a user specified

distance (30% of the mesh radius works well in our experiments).

A tetrahedron with the minimal dU (or dU ′) will not be added if

it contains part of a degenerate curve not intended by this editing

operation.

Mapping ϕ. We construct the map ϕ by treating it as a volumetric

parameterization problemwith the conditions that the parameteriza-

tion is the identity map on the boundary ofM and maps the desired

degenerate curve segment γ2 to the original curve γ1. Note that

degenerate curves are usually inside tetrahedrons. Consequently,

we first establish a bijective map of γ2 to γ1 by sampling both curves

with the same number of sample points. Next, we compute the mini-

mal tetrahedral envelope for γ2, i.e., any tetrahedron in the envelope

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

188:8 • Jonathan Palacios, Lawrence Roy, Prashant Kumar, Chen-Yuan Hsu, Weikai Chen, Chongyang Ma, Li-Yi Wei, and Eugene Zhang

ϕ

(a) desired γ2 (b) original γ1

Same VertexSame Location

(c) desired

(d) • = ϕ−1 (•)

(e) original

ϕ (•) = •

Fig. 10. Our deformation algorithm modifies the tensor field to make the
degenerate curve move from its location in the input (b) to a user designed
output curve (a). The procedure is shown in (c)-(e) for the purple cross section
in (a) and (b). We compute a map ϕ that deforms the neighboring vertices
of the target location (black dot) (c) into the neighborhood of the original
singularity (red dot) (e) for interpolation.

contains at least part of γ2. For each vertex vi in the envelope, we

find the closest sample point pi on γ2 and compute the displacement

vector dvi = vi −pi . We then set the constraint that ϕ (vi) = qi +dvi
where qi is the sample point on γ1 corresponding to pi . With these

constraints, we solve the parameterization of the remaining vertices

inM by solving the Laplacian given by Equation (1) on the coordi-

nates of the points. Note that since our map takes γ2 to γ1, we are
essentially assigning a pre-deformation location to each vertex.

Note that the parameterization may have fold-overs and usually

has suboptimal distribution of stretches. This can cause the resulting

tensor field to be less smooth. If the fold-over tetrahedrons cover

the degenerate curve, the editing operation may fail as there can be

extra degenerate curves after the deformation. However, we find

that this relatively simple method works well in practice.

Interpolation. Once the parameterization is given, we can look up

the new tensor value at each vertex vi ∈ M by using its pre-image

under the parameterization,ϕ (vi). We then set the tensor value atvi
to be that of ϕ (vi). Figure 10 (c-e) shows the process of computing

ϕ and deforming the tensor field with a 2D illustration.

6.2 Degenerate Curve Reconnection
Letγ1 andγ2 be two segments of degenerate curves that do not share

any common degenerate points. Furthermore, the endpoints of γ1
are p1 and q1 while the endpoints of γ2 are p2 and q2. A degenerate

curve reconnection of γ1 and γ2 will result in a new tensor field

whose degenerate curves are the same as the original tensor field

except that γ1 and γ2 are replaced with γ ′
1
and γ ′

2
where γ ′

1
has

endpoints of either p1 and p2 or p1 and q2 while γ
′
2
is bounded by

the other two points. Figure 11 shows the atomic scenarios.

Note that {p1,q1,p2,q2} can be on the same degenerate curve or

two different degenerate curves. Reconnecting them can change the

number of degenerate curves in the field. For example, if these points

are on a degenerate loop, after reconnection the loop can be broken

up into two. Reconnection allows us to change the connectivity of

the degenerate curves to facilitate degenerate curve deformation and

removal. Figure 9 shows a reconnection of two mixed degenerate

curves (both green/blue) near Moai’s bottom.

Uniqueness of reconnection. When two degenerate curves are re-

connected, there appear to be two ways of doing so, i.e., (1) p1,p2
and q1,q2, and (2) p1,q2 and p2,q1. Consequently, it seems that

the user would need to specify how the reconnection occurs. The

following analysis shows that this is not necessary. Once the user

specifies the curves to reconnect, there is only one way to reconnect

them. To see this, we need the following result from [Markus 1955],

which is also referred to as combing [Vaxman et al. 2016]. Given a

line field L defined in R3, let B be a simply connected, finite region

such that L|B has no singularities/zeros. Then L can be turned into

a continuous vector field without singularities.

We now consider a region B where the non-repeating eigenvector

field (a line field) has no singularities, then the non-repeating eigen-

vector field can be turned into a continuous vector field in B. Given
a chosen orientation of the non-repeating eigenvector field inside

B, the boundary of B is divided into the incoming region, where the
vector fieldV points into B, and the outgoing region, whereV points

to the outside of B (Figure 11). The following observation is useful.

Lemma 6.1. A pure wedge (or trisector) curve intersecting the bound-
ary of the above region B must have its two endpoints in different
regions, i.e., one in the incoming region, and the other outgoing region.
In contrast, a degenerate curve with one wedge segment and one tri-
sector segment must have its endpoints in the same region, i.e., either
both incoming or both outgoing.

Proof. Trace the degenerate curve from one end so that the

dot product between the forward curve tangent and the oriented

non-degenerate eigenvector field is positive at the starting point.

Notice that every time a transition point occurs, the dot product

changes its sign, i.e., a turn has occurred. To travel from a point

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

https://en.wikipedia.org/wiki/Hairy_ball_theorem

Tensor Field Design in Volumes • 188:9

(a) 2 pures↔ 2 hybrids (b) 2 pures

(c) 1 pure + 1 hybrid (d) 2 hybrids

Fig. 11. Different fundamental reconnection scenarios. The non-repeating
eigenvector field in the regions are pointing upward, dividing the boundary
of the regions, a topological sphere, into incoming regions (below the equa-
tor) and outgoing regions (above the equator). A green segment is wedge,
and a blue segment is a trisector. Notice that there are two fundamental
cases in (a), while one fundamental case each for the rest.

inside the incoming region to the outgoing region, there must be an

even number of turns, i.e., transition points. To connect two points

in the same region (either incoming or outgoing), there must be an

odd number of transition points. See Figure 11 for illustration.

�

Theorem 6.2. Given two degenerate curve segments γ1 and γ2 to
be reconnected inside a simply-connected region M , there is only one
way to reconnect them.

Proof. Assume that p1 and p2 are in the incoming region, and q1
and q2 are in the outgoing region (e.g. Figures 11a and 11b left). This

means that T(p1) and T(q1) have the same wedge/trisector type,

and T(p2) and T(q2) have the same wedge/trisector type. Without

the loss of generality, assume that T(p1) and T(q1) are both wedge

types. If T(p2) and T(q2) are both wedges, then p1 and p2 cannot be
reconnected. This is because if they could be reconnected, then there

must be an even number of transition points between two wedges.

On the other hand, since both p1 and p2 are in the incoming region,

Theorem 6.1 states that there must be an odd number of transition

points between p1 and p2, a contradiction. In this case, it is only

possible to reconnect p1 with q2, and p2 with q1. Now, assume that

p2 and q2 are trisectors. Using similar arguments (Theorem 6.1) it is

straightforward to verify that p1 cannot be reconnected with q2. The
only possibility is to reconnect p1 with p2, and q1 with q2. Similar

analysis can show that reconnection is unique for other cases. �

There are only five fundamental reconnection scenarios as shown

in Figure 11. Note in case (a) there are two scenarios: from left (1

wedge and 1 trisector) to right (two hybrid wedge/trisector), and

from right to left. In other cases, the reconnection from left to right

and from right to left are equivalent.

Reconnection algorithm. The steps can be summarized as follows:

(1) Compute a topological ballM that contains γ1 and γ2 but
no other degenerate points (Figure 12a). The process is

similar to computing the envelope B for degenerate curve

deformation (Section 6.1).

Find sheet
Cancel

singularities

on sheet

Smooth
except

on sheet

M

(a) (b) (c) (d)

Fig. 12. Steps for reconnecting degenerate curves for Figure 11a. From left to
right: compute the containing region M , find an insulating sheet (red), over
which generate a singularity-free tensor field, and propagate it to M .

Fig. 13. The sheet for Figure 11b is more complex than the sheet shown in
Figure 12 for Figure 11a.

(2) Determine which pair of endpoints should be connected

after reconnection.

(3) Compute a sheet (Figure 12b: red plate) insideM that sepa-

ratesM into two regions, each of which contains precisely

two endpoints that are connected after the reconnection.

(4) Reassign tensor values on the interior vertices of the sheet

so that there are no degenerate points on the sheet.

(5) Recompute the tensor values for the remaining interior

vertices of M that are not already on the sheet. This is

achieved by simultaneously solving Equation (1) for each

entry in the tensor field.

Below we provide more details on steps 2, 3, and 4.

Step 2. To decide how to pair the endpoints after reconnection,

we need to convert the non-repeating eigenvector field into a contin-

uous vector field inM . This is achieved as follows. We first choose

a vertex in the regionM and arbitrarily choose a forward direction

from two of its unit non-repeating eigenvectors. We then parallel

transport this vector to all the other vertices inM and use it to choose

the forward direction of each of the non-repeating eigenvectors.

This will lead to the conversion of the non-repeating eigenvector

field onM to a vector field since it is free of singularities as a line

field. Depending on the type of degenerate points the endpoints

of the curves are (wedge or trisector) and where they situate on

the boundary of M with respect to the vectorized non-repeating

eigenvector field (incoming or outgoing), we determine which pair

of endpoints to reconnect after reconnection using the idealized

illustrations in Figure 11.

Step 3. To generate the sheet, we compute two curves, one for

each pair of endpoints after reconnection, by using Fast March-

ing [Kimmel and Sethian 1998] to find the shortest path between

the desired endpoints. We require that the two curves do not inter-

sect, which is generally the case based on our observation. If there

are intersections, we perform local adjustment inM to remove the

intersections. Next, we compute the distance function from these

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

188:10 • Jonathan Palacios, Lawrence Roy, Prashant Kumar, Chen-Yuan Hsu, Weikai Chen, Chongyang Ma, Li-Yi Wei, and Eugene Zhang

two curves to the rest of the vertices in the region M and record

which curve is the closest to the vertices. We then extract all the

edges in M whose two vertices have different closest curves. The

set of tetrahedrons that contains these edges is a thickened version

of the sheet.

Step 4. To strive for a degenerate point free tensor field in the

sheet, we consider amore generic problem: given a simply-connected,

topological ball over which the tensor field’s non-repeating eigen-

vector field has no singularities, how to modify the tensor field in

the region to be free of degenerate points with tensor values fixed

at part of or the whole boundary of the region? The algorithm to

achieve this is not only useful for degenerate curve reconnection,

but also degenerate curve removal (Section 6.4). We provide the

details of this in Section 6.3.

6.3 Singularity-Free Tensor Field Generation
Given a simply-connected regionM where the non-repeating eigen-

vector field has no singularities, any degenerate point must be a

singularity in the medium eigenvector field. This implies that to

compute a degenerate-point-free tensor field insideM , we only need

to ensure that the medium eigenvector field has no singularities.

In addition, as pointed out earlier (Section 6.2), the non-repeating

eigenvector field inM can be turned into a continuous vector field.

Consequently, this vector field can be considered as a map ϕ from

M to the unit sphere S2. Given a point p0 ∈ M , a unit medium

eigenvector at p0 can be considered as a tangent vector at ϕ (p0).
Figure 14 illustrates this map.

Angle field. We further model the medium eigenvector field as

a scalar field, i.e. its angular component, and perform Laplacian

smoothing (Equation (1)) on this scalar field with the given boundary

conditions. The resulting scalar field (angular component of the

medium eigenvector field) will then be combined with the non-

repeating eigenvector field (not changed in the process) to generate

the new tensor field inside region that is free of degenerate points.

Note that the angular component of a vector depends on the

coordinate system. Give two points q1 and q2 on S
2
, their tangent

planes are not the same, nor are their respective coordinate systems

correlated. We thus need a continuous, singularity-free vector field

defined on M that is also perpendicular to the non-repeating eigen-

vector field everywhere in the domain. This vector field, denoted

byU , serves as the references with which we compute the angular

component of the medium eigenvector field.

Parallel transport. To compute this reference vector fieldU , one

can start with a seed vertex in the regionM and assign a reference

vector there. This reference vector is then iteratively propagated

to the remaining vertices inM through its edges (e.g. breadth-first

search). Given an edge e = (v0,v1) where the reference vectorU (v0)
is available, we obtain U (v1) by parallel transporting U (v0) along
the geodesic connecting ϕ (v0) and ϕ (v1) (Figure 15).

Jump. Results from classical differential geometry [Lai et al. 2010]

state that when parallel transporting a vector along a simple loop

on the sphere, the resulting vector may differ from the initial vector

by a 2D rotation. The angle of the rotation is proportional to the

area of the region enclosed by the loop. This means that when

(a) tensor field (b) line field

Fig. 14. Mapping a 3D tensor field to a tangential vector field on the Gauss
sphere. A point in the plane can be mapped to the sphere based on its
non-repeating eigenvector (red), and the tensor field (a) is now reduced to
a tangential line field on the sphere (b) where the line field corresponds
to the medium eigenvectors in the tensor field (blue). Singularities in the
medium eigenvector field (green dot) are degenerate points in the tensor
field, which we strive to remove.

parallel transporting the reference vector U (v1) from a vertex v0
to v1 and then to v2 where v0, v1, and v2 form a spherical triangle

(Figure 15), the resulting reference vector U (v2) will be different
from directly parallel transportingU (v0) to v2 along the edge v0v2.
The angular difference α is proportional to the signed area of the

spherical triangle ϕ (v0)ϕ (v1)ϕ (v2). We refer to −α as the jump from

v0 to v2. Note that in our reference propagation process, the jump

is zero for edges used in the propagation and usually non-zero for

the ones not used.

φ(v2)
u(v0)

α

u'(v2)

φ(v1)

φ(v0)u(v2)

u(v1)

Ω

Fig. 15. Parallel transport and
jump.

Propagation. If jumps are not

properly accounted for, singu-

larities can occur in the medium

eigenvector field [Lai et al. 2010;

Li et al. 2006]. Consequently,

our reference propagation algo-

rithm also simultaneously com-

putes jumps for edges not used

in the propagation.

As illustrated in Figure 16a,

we start with a seed vertex v0
where the reference vector is al-

ready defined. We then select

one of the tetrahedrons incident

to v0 as the seed tetrahedron.

Denote this tetrahedron as t0,
which has three other vertices v1, v2, v3. We first propagate the

reference vector from v0 to v1 and set the jump to zero on the edge

v0v1. We handlev2 andv3 in a similar fashion. Next, we set the jump

on edge v1v2 to be the negative of the signed area of the spherical

triangle ϕ (v0)ϕ (v1)ϕ (v2). The jumps for the edges ofv2v3 andv3v1
are computed in the same way.

Once t0 has been processed, we perform region growing from t0
until all the tetrahedrons inM have been covered as demonstrated

in Figure 16b. In every iteration, a new tetrahedron t in M that

shares a face with the set of visited tetrahedrons is included in the

set. Moreover, we require that at any given moment the set of visited

tetrahedrons forms a topological ball. Note that there is at most one

vertex of t that has not been assigned a reference vector, and at most

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

Tensor Field Design in Volumes • 188:11

v0

v1 v2

v3д 0
1
=
0 д

0
2
=
0

д
0
3 =

0

(a) seed tetrahedron

v1 v2

v3

v4

д12

д 2
3

д31

д
1
4 =

0

(b) other tetrahedron

Fig. 16. Reference vector field propagation. Given the seed vertex v0 and
seed tetrahedron (a), the reference vector U (v0) is propagated to v1, v2,
and v3 (dashed lines) along edges with a jump zero (red edges). The jumps
for the remaining edges (black) will be computed based on areas of the
triangles with two red edges and one black edge. For other tetrahedron (b),
three vertices have been assigned a reference vector and three edges (blue)
have their jumps computed. The reference vector at the new vertex v4 can
be obtained from one of the three vertices where the reference vectors are
available, with the corresponding edge given a zero jump (red). The other
edges (black) will have their jumps computed based on the areas of triangles
with only one black edge.

three edges whose jumps have not been computed. We assign the

new vertex a reference vector by parallel transporting the reference

vector from that of one of the other three vertices in the tetrahedron

and set the jump to zero for the corresponding edge. If there are still

edges in t for which the jump has not been computed, we identify a

triangle in t incident to the edge that has two edges with already

computed jumps, and subtract the area of the spherical triangle from

the sum of the two already computed jumps to get the third jump.

Note that this is always possible since our algorithm requires that at

the end of each iteration the visited tetrahedrons form a topological

ball.

Conversion. Once the reference vector field U is generated and

the jumps computed, we convert the medium eigenvectors at the

fixed vertices of the regionM as follows. Starting from a seed fixed

vertexv0, we compute θ (v0) as the oriented angle fromU (v0) to the
medium eigenvector there. To compute θ (v1) where v1 is adjacent
to v0, we first assign θ (v1) to be the oriented angle from U (v1) to
the medium eigenvector at v1. Let д01 be the jump from v0 to v1.
We then find k0 ∈ Z so that

��θ (v1) + 2k0π − (θ (v0) + д01)�� <
π

2

(5)

and update θ (v1) to be θ (v1) + 2k0π . This process repeats until θ
has been computed for all the fixed vertices.

Next, we compute θ for vertices in M that are not part of the

boundary condition by using the θ values at the fixed vertices. To

solve for the new angular field, we need to modify Equation (1) to

take into account the jumps. That is, given a vertex v0 and the set

of vertices {v1, ...,vk } adjacent to v0, the Laplace of the angular

component is

k∑
j=1

w j
(
θ (vj) − θ (v0) − д0j

)
(6)

whereд0j is the jump fromv0 tovj andw j is the cotagent weight [Ja-

cobson 2013].

Finally, the θ field is converted back to a line field by using the

reference vector field U . This is the singularity-free medium eigen-

vector field, which, by being combined with non-repeating eigen-

vector field (not changed during the process), generates the new

eigenvector fields inM that is free of degenerate points.

In addition to the eigenvector fields, we also need to compute

the eigenvalue fields in order to obtain the tensor field in M free

of degenerate points. This is achieved as follows. We consider the

major eigenvalue field as a scalar field. Given the major eigenvalues

at the fixed vertices ofM , we find the major eigenvalues elsewhere

in M by solving Equation (1). Similarly, we compute the minor

eigenvalues in M . Finally, since the tensor field is traceless, the

medium eigenvalue field can be obtained from the major and minor

eigenvalue fields. This leads to a tensor field inM free of degenerate

points.

6.4 Degenerate Curve Removal
The third topological editing operation is degenerate curve removal,
which is responsible for reducing the number of degenerate curves

in the field. Figure 9 shows the removal of a degenerate loop inside

Moai’s body (yellow/red).

Recall that in 2D tensor fields, at least two degenerate points

with opposite tensor indices (wedge and trisector) must be removed

simultaneously. However, in 3D tensor fields, there does not exist a

known index to measure degenerate points or curves. A degenerate

curve may consist of both wedge and trisector segments, and each

degenerate curve has an additional linear-planar (L−P) classification.
These additional complexities make it more challenging to decide

the necessary and/or sufficient conditions for degenerate curve

removal.

Empirically, we have identified the following four scenarios of

degenerate curve removal (Figure 17):

One-curve removal One open degenerate curve with op-

posite wedge/trisector types at its ends is removed (Fig-

ure 17a).

Two-curve removal One open wedge degenerate curve is

cancelled with one open trisector degenerate curve of the

same linear/planar type (Figure 17b).

One-loop removal One degenerate loop with both wedge

and trisector sections is removed (Figure 17c).

Two-loop removal A pure wedge degenerate loop is can-

celled with a trisector degenerate loop of the same lin-

ear/planar type (Figure 17d).

For all but the last case, the enclosing region is a topological

ball (simply connected). For each case the removal operation is

always theoretically possible if an enclosing topological region can

be found that intersects no other degenerate curves. Our degenerate

curve removal algorithm for these cases again makes use of the fact

that inside these enclosing regions (if they exist), the non-repeating

eigenvector field is a vector field. Therefore, we employ a similar

framework to that of degenerate curve reconnection (Section 6.2).

We first compute a region M of the appropriate type given the

type of the above scenarios using amethod similar to region growing

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

188:12 • Jonathan Palacios, Lawrence Roy, Prashant Kumar, Chen-Yuan Hsu, Weikai Chen, Chongyang Ma, Li-Yi Wei, and Eugene Zhang

(a) 1-curve (b) 2-curve (c) 1-loop (d) 2-loop

Fig. 17. Fundamental removal scenarios. Note that the enclosing region is a
topological ball for cases (a)-(c) and a topological torus for case (d).

for degenerate curve deformation and reconnection. Next, we use

the tensor values on the boundaryM as constraints and generate the

tensor field insideM using the angle-based method in Section 6.3.

For two-loop removal, the enclosing region is a topological solid

torus (not simply-connected). Consequently, the angle-basedmethod

(in particular, the jump assignment step) would not always result in

a singularity free continuous tensor field inside the region. There-

fore, we implement two-loop removal operation as a composite

operation. By first reconnecting the two loops, we obtain a single

loop with both wedge and trisector segments that can be handled

with the one-loop removal.

For all our topological editing operations, the success depends on

the shape and size of the regionM . The larger and rounder the region,

the higher the success rate is. We have conducted 47 experiments of

applying topological editing operations to fields defined on various

3D models such as the bunny, Moai, buddha, and dragon. The fields

were generated either through manual design or, more commonly

in our experiments, extrapolation from the curvature tensor on the

boundary surfaces. Our algorithms have a success rate of over 90%.

7 PERFORMANCE
Our tool has been tested on a system with Intel(R) Xeon(R) CPU

with 3.40 Ghz speed with a RAM of 64 GB and an Nvidia Quadro

K420 graphics card. We have tested our design system on various

models, with a resolution varying from 150, 000 tets to 1, 000, 000

tets. Thesemodels can bemathematically defined (e.g., sphere/torus),

organic (e.g., Stanford bunny, feline, fertility), or CAD models (e.g.,

rocker arm and fan disk). The boundary of these tet meshes have

a range of 10, 000 to 60, 000 triangles. The tet meshes are usually

generated from the boundary mesh using TetGen, which typically

leads to adaptive meshes where the tets are much smaller around

sharp features. Our system can handle such meshes since we do not

assume a minimal tet mesh resolution anywhere in our algorithm

and implementation. Our system can also be used to generate tensor

fields on meshes with sharp edges, such as the rocker arm. Solving

for the field from boundary or interior constraints takes less than

five seconds on all of our test models. All of the editing operations

finish within 10 seconds for most models, and within 60 seconds for

larger models (> 500, 000 tets).

8 APPLICATIONS
In this section we demonstrate applications of our method in solid

texture and geometry synthesis.

8.1 Solid Texturing
Example based solid texture. In 2D texture synthesis the goal is

to take a small input exemplar texture and generate larger output

texture with the same visual characteristics; this problem is well-

explored as surveyed in [Wei et al. 2009]. Solid texture synthesis is

the logical extension of this problem to the voxel case, and relatively

fewer methods have been proposed [Dong et al. 2008; Owada et al.

2004; Pietroni et al. 2007; Takayama et al. 2008; Zhang et al. 2011].

Interestingly, with the exception of [Takayama et al. 2008] most

methods still rely on 2D exemplars as the direct input, as they are

easier to acquire. When the input texture exhibits anisotropy, an

orientation field is needed to guide the orientation and placement of

the exemplar texture [Takayama et al. 2008; Zhang et al. 2011]. As

generating smooth fields that naturally follow shapes can easily be

accomplished by our method (nearly automatically, when using the

curvature tensor), our system readily benefits this application. The

only difference is that a tensor field is sampled instead of a vector

or frame field, and the eigenvectors must be computed and used as

the local orientation for each neighborhood. As long as the texture

is symmetric (or at least nearly so), the algorithms work without

other modification. We adapt the method of [Zhang et al. 2011] to

use symmetric tensor fields. See Figure 18 for results.

Anisotropic procedural noise. Procedural noise is a powerful way
to model natural phenomena and enrich visual details, with par-

ticular advantages such as fast evaluation, low memory consump-

tion, virtually infinite resolution, and appearance control [Ebert

et al. 2002; Lagae et al. 2010]. Of particular interest to us is solid

anisotropic noise, such as that introduced in [Lagae et al. 2009] and

extended in [Bénard et al. 2010; Lagae and Drettakis 2011], which

requires an axis at each point in the target domain to guide the

orientation of the corresponding anisotropic noise pattern. Vector

fields are unable to model all of the features that anisotropic Gabor

noise is capable of exhibiting. As far as we know, the results gener-

ated in [Bénard et al. 2010; Lagae and Drettakis 2011; Lagae et al.

2009] use only surface tensor fields for 2D noise and constant or

simple 3D vector field functions to orient solid noise, likely because

of the lack of methods for easily producing 3D tensor fields. Our

system addresses this need, and allows the generation of much more

complex effects. Also, we find that Gabor noise makes for an apt

texture-based method of interactively visualizing 3D tensor fields,

because of its fast computation. Examples of our artistic results

using Gabor noise can be seen in Figure 18.

8.2 Geometry Synthesis
Placing and orienting 2D image/text and 3D geometry elements

has shown to be an important application for many graphical and

interactive tasks [Gal et al. 2007; Hausner 2001; Ijiri et al. 2008;

Landes et al. 2013; Ma et al. 2011; Maharik et al. 2011; Ostromoukhov

and Hersch 1999; Pedersen and Singh 2006; Praun et al. 2001; Roveri

et al. 2015; Xu and Kaplan 2007]. These applications require good

orientation fields for the corresponding domains for maximal visual

benefits. However, as discussed in Section 2, the design of 3D fields

has been much less explored than the 2D counterparts. Thus, our

method offers benefits for applications that require the placement

of 3D elements as exemplified by [Ma et al. 2011].

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

Tensor Field Design in Volumes • 188:13

Fig. 18. Solid texture synthesis based on examples (horse, bunny, and feline) and procedures (Gabor noise rocker arm and streamtubes bunny). The output is
rendered through different cross sections (bottom row) to illustrate its volumetric nature.

(a) bamboo feline (b) leaf fertility (c) wire torus (d) chain bunny (e) stick Moai

Fig. 19. 3D geometry element synthesis. Bamboo, stick, and wire patterns are line-type elements while leaf and chain patterns have box-type symmetry.

Unlike prior methods which place elements according to a vector

or frame field, our method deals with tensor fields which can gener-

ate line fields as well as frame fields satisfying the box symmetry

(the Klein group [Conway et al. 2016]). Figure 19 shows various

elements applied to a variety of 3D models with tensor fields de-

signed using our tensor field design system. Moreover, due to the

co-existence of linear/planar regions in a tensor field, we can have

two different elements in the same field (Figure 2). Figure 20 shows

the synthesis results using fields that were created completely from

scratch and are not aligned with the boundary surface (the sphere

in this case). Elements can also be used to visualize the effects of

topological editing operations as shown in Figures 1 and 21.

9 LIMITATIONS AND FUTURE WORK
In this paper we introduce the problem of 3D tensor field design and

have identified a number of graphics applications. We also provide

the first 3D tensor field design system that is interactive, intuitive,

and efficient. At the core of our system we provide the capability to

design and control degenerate curves, which is tensor field topology.

With these we have made a number of theoretical observations of 3D

tensor field topology and identified a set of fundamental topological

editing operations.

Our system has several limitations. First, our topological editing

operations can fail. In the future, we plan to seek more theoretical

understandings as well as explore improved algorithms that can lead

to topological editing algorithms with guaranteed success. Second,

our degenerate curve deformation algorithm relies on the ability

to compute a bijective space warping of the region in which the

operation is performed. However, we cannot guarantee that the

warping is indeed bijective, i.e., foldovers may occur. We plan to

explore volumetric parameterization techniques that are guaranteed

to produce low-distortion and bijectivemaps. A series of recent work

on the topic has the potential of benefiting our method [Aigerman

and Lipman 2013; Campen et al. 2016; Kovalsky et al. 2015, 2016;

Rabinovich et al. 2017; Schüller et al. 2013].

In the future, we plan to also improve the UI of our system to

make it more accessible to non-expert users. Moreover, we plan

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

188:14 • Jonathan Palacios, Lawrence Roy, Prashant Kumar, Chen-Yuan Hsu, Weikai Chen, Chongyang Ma, Li-Yi Wei, and Eugene Zhang

Fig. 20. Tensor field visualization with a noodle element. Three tensor fields
(top row: only degenerate curves are shown) are applied with a noodle tex-
ture (middle row) where the noodles follow the major eigenvector directions.
The bottom row shows the cutaway views.

to explore adding the design of trace into our tensor field design

system. Our topological editing functions are also impacted by the

quality of techniques for extracting tensor field topology, which is

an area we plan to conduct further research in.

ACKNOWLEDGMENTS
We would like to thank Guoxin Zhang, Shimin Hu, and Kun Xu

for sharing the code of [Zhang et al. 2011]; Yue Zhang, Amy Roy,

and Tom Roy for their help in proofreading the paper; and the

anonymous reviewers for their valuable suggestions. This work has

been partially supported by US National Science Foundation awards

(0546881, 0830808, 0917308, 1340112, and 1619383) as well as Hong

Kong RGC general research fund 17202415.

REFERENCES

Noam Aigerman and Yaron Lipman. 2013. Injective and Bounded Distortion Mappings

in 3D. ACM Trans. Graph. 32, 4, Article 106 (2013), 14 pages.
Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu Desbrun.

2003. Anisotropic Polygonal Remeshing. ACM Trans. Graph. 22, 3 (2003), 485–493.
Pierre Bénard, Ares Lagae, Peter Vangorp, Sylvain Lefebvre, George Drettakis, and

Joelle Thollot. 2010. A Dynamic Noise Primitive for Coherent Stylization. In EGSR
’10. 1497–1506.

Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun.

2008. Discrete Elastic Rods. ACM Trans. Graph. 27, 3, Article 63 (2008), 12 pages.
David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer Quadrangulation.

ACM Trans. Graph. 28, 3, Article 77 (2009), 10 pages.
Marcel Campen, Cláudio T. Silva, and Denis Zorin. 2016. Bijective Maps from Simplicial

Foliations. ACM Trans. Graph. 35, 4, Article 74 (2016), 15 pages.
John H Conway, Heidi Burgiel, and Chaim Goodman-Strauss. 2016. The symmetries of

things. CRC Press.

Thierry Delmarcelle and Lambertus Hesselink. 1994. The Topology of Symmetric,

Second-Order Tensor Fields. IEEE Computer Graphics and Applications (1994), 140–
147.

Yue Dong, Sylvain Lefebvre, Xin Tong, and George Drettakis. 2008. Lazy solid texture

synthesis. Computer Graphics Forum 27, 4 (2008), 1165–1174.

David S. Ebert, Kenton F. Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley.

2002. Texturing & Modeling: A Procedural Approach. Morgan Kaufmann.

Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe. 2007. Design of

Tangent Vector Fields. ACM Trans. Graph. 26, 3, Article 56 (2007).
Ran Gal, Olga Sorkine, Tiberiu Popa, Alla Sheffer, and Daniel Cohen-Or. 2007. 3D

collage: expressive non-realistic modeling. In NPAR ’07. 7–14.
James Gregson, Alla Sheffer, and Eugene Zhang. 2011. All-Hex Mesh Generation via

Volumetric PolyCube Deformation. Comput. Graph. Forum 30, 5 (2011), 1407–1416.

Alejo Hausner. 2001. Simulating decorative mosaics. In SIGGRAPH ’01. 573–580.
Aaron Hertzmann. 1998. Painterly rendering with curved brush strokes of multiple

sizes. In SIGGRAPH ’98. 453–460.
Aaron Hertzmann and Denis Zorin. 2000. Illustrating smooth surfaces. In SIGGRAPH

’00. 517–526.
Lambertus Hesselink, Yuval Levy, and Yingmei Lavin. 1997. The Topology of Symmetric,

Second-Order 3D Tensor Fields. IEEE Transactions on Visualization and Computer
Graphics 3, 1 (1997), 1–11.

Jin Huang, Yiying Tong, Hongyu Wei, and Hujun Bao. 2011. Boundary Aligned Smooth

3D Cross-frame Field. ACM Trans. Graph. 30, 6, Article 143 (2011), 8 pages.
Takashi Ijiri, Radomír Mech, Takeo Igarashi, and Gavin Miller. 2008. An Example-based

Procedural System for Element Arrangement. Computer Graphics Forum 27, 2 (2008),

429–436.

Alec Jacobson. 2013. Algorithms and interfaces for real-time deformation of 2d and 3d
shapes. Ph.D. Dissertation. ETH.

Ron Kimmel and James A Sethian. 1998. Computing geodesic paths on manifolds.

Proceedings of the national academy of Sciences 95, 15 (1998), 8431–8435.
Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani Lischinski, and

Tien-Tsin Wong. 2007. Solid Texture Synthesis from 2D Exemplars. ACM Trans.
Graph. 26, 3, Article 2 (2007).

Shahar Z. Kovalsky, Noam Aigerman, Ronen Basri, and Yaron Lipman. 2015. Large-

scale Bounded Distortion Mappings. ACM Trans. Graph. 34, 6, Article 191 (2015),
10 pages.

Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated Quadratic

Proxy for Geometric Optimization. ACM Trans. Graph. 35, 4, Article 134 (2016),

11 pages.

Ares Lagae and George Drettakis. 2011. Filtering Solid Gabor Noise. ACM Trans. Graph.
30, 4, Article 51 (2011), 6 pages.

Ares Lagae, Sylvain Lefebvre, Rob Cook, Tony DeRose, George Drettakis, D.S. Ebert,

J.P. Lewis, Ken Perlin, and Matthias Zwicker. 2010. State of the Art in Procedural

Noise Functions. In Eurographics ’10 State of the Art Report. 2579–2600.
Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip Dutré. 2009. Procedural

Noise Using Sparse Gabor Convolution. ACM Trans. Graph. 28, 3, Article 54 (2009),
10 pages.

Yu-Kun Lai, Miao Jin, Xuexiang Xie, Ying He, Jonathan Palacios, Eugene Zhang, Shi-

Min Hu, and Xianfeng Gu. 2010. Metric-Driven RoSy Field Design and Remeshing.

IEEE Transactions on Visualization and Computer Graphics 16, 1 (2010), 95–108.
Pierre-Edouard Landes, Bruno Galerne, and Thomas Hurtut. 2013. A Shape-Aware

Model for Discrete Texture Synthesis. Computer Graphics Forum 32, 4 (2013), 67–76.

Bruno Lévy and Yang Liu. 2010. Lp Centroidal Voronoi Tessellation and Its Applications.

ACM Trans. Graph. 29, 4, Article 119 (2010), 11 pages.
Wan-Chiu Li, Bruno Vallet, Nicolas Ray, and Bruno Lévy. 2006. Representing Higher-

Order Singularities in Vector Fields on Piecewise Linear Surfaces. In IEEE Transac-
tions on Visualization and Computer Graphics (Proceedings Visualization ’06).

Yufei Li, Yang Liu, Weiwei Xu, WenpingWang, and Baining Guo. 2012. All-hex Meshing

Using Singularity-restricted Field. ACM Trans. Graph. 31, 6, Article 177 (2012),

11 pages.

Chongyang Ma, Li-Yi Wei, and Xin Tong. 2011. Discrete Element Textures. ACM Trans.
Graph. 30, 4, Article 62 (2011), 10 pages.

Ron Maharik, Mikhail Bessmeltsev, Alla Sheffer, Ariel Shamir, and Nathan Carr. 2011.

Digital Micrography. ACM Trans. Graph. 30, 4, Article 100 (2011), 12 pages.
L. Markus. 1955. Line Element Fields and Lorentz Structures on Differentiable Manifolds.

Annals of Mathematics 62, 3 (1955), pp. 411–417.
Matthias Nieser, Jonathan Palacios, Konrad Polthier, and Eugene Zhang. 2012. Hexago-

nal Global Parameterization of Arbitrary Surfaces. IEEE Transactions on Visualization
and Computer Graphics 18, 3 (2012), 865–878.

Matthias Nieser, Ulrich Reitebuch, and Konrad Polthier. 2011. Cubecover–

parameterization of 3d volumes. Computer graphics forum 30, 5 (2011), 1397–1406.

Victor Ostromoukhov and Roger D. Hersch. 1999. Multi-color and artistic dithering. In

SIGGRAPH ’99. 425–432.
Shigeru Owada, Frank Nielsen, Makoto Okabe, and Takeo Igarashi. 2004. Volumetric

Illustration: Designing 3D Models with Internal Textures. ACM Trans. Graph. 23, 3
(2004), 322–328.

Jonathan Palacios, Chongyang Ma, Weikai Chen, Li-Yi Wei, and Eugene Zhang. 2016a.

Tensor Field Design in Volumes. In SIGGRAPH ASIA ’16 Technical Briefs. Article 18,
4 pages.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

Tensor Field Design in Volumes • 188:15
b
e
f
o
r
e

a
f
t
e
r

(a) degenerate curves (b) streamtube visualizations (c) element synthesis results: leaves, chains, coins

Fig. 21. A degenerate curve removal example. The top and bottom rows show respectively the tensor fields before and after the removal of some degenerate
curves as visualized in (a) (degenerate curves only) and (b) (using streamtubes). The differences between the tensor fields are clearly reflected in the element
synthesis results (c).

Jonathan Palacios, Harry Yeh, Wenping Wang, Yue Zhang, Robert S. Laramee, Ritesh

Sharma, Thomas Schultz, and Eugene Zhang. 2016b. Feature Surfaces in Symmetric

Tensor Fields Based on Eigenvalue Manifold. IEEE Transactions on Visualization and
Computer Graphics 22, 3 (2016), 1248–1260.

Jonathan Palacios and Eugene Zhang. 2007. Rotational Symmetry Field Design on

Surfaces. ACM Trans. Graph. 26, 3, Article 55 (2007).
Hans Pedersen and Karan Singh. 2006. Organic labyrinths and mazes. In NPAR ’06.

79–86.

Nico Pietroni, Miguel A Otaduy, Bernd Bickel, Fabio Ganovelli, and Markus Gross. 2007.

Texturing internal surfaces from a few cross sections. Computer Graphics Forum 26,

3 (2007), 637–644.

Emil Praun, Adam Finkelstein, and Hughes Hoppe. 2000. Lapped Textures. In SIGGRAPH
’00. 465–470.

Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkelstein. 2001. Real-time

hatching. In SIGGRAPH ’01. 581–.
Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.

Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 16 (2017),

16 pages.

Nicolas Ray, Dmitry Sokolov, and Bruno Lévy. 2016. Practical 3D Frame Field Generation.

ACM Trans. Graph. 35, 6, Article 233 (2016), 9 pages.
Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Levy. 2009. Geometry-aware

Direction Field Processing. ACM Trans. Graph. 29, 1, Article 1 (2009), 11 pages.
Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. 2008. N-symmetry direction

field design. ACM Trans. Graph. 27, 2 (2008), 10:1–10:13.
Riccardo Roveri, A. Cengiz Öztireli, Sebastian Martin, Barbara Solenthaler, and Markus

Gross. 2015. Example Based Repetitive Structure Synthesis. Computer Graphics
Forum 34, 5 (2015), 39–52.

Christian Schüller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung. 2013.

Locally Injective Mappings. Computer Graphics Forum (proceedings of EUROGRAPH-
ICS/ACM SIGGRAPH Symposium on Geometry Processing) 32, 5 (2013), 125–135.

Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Softw. 41, 2, Article 11 (2015), 36 pages.

Justin Solomon, Amir Vaxman, and David Bommes. 2017. Boundary Element Octahedral

Fields in Volumes. ACM Trans. Graph. 36, 3, Article 28 (2017), 16 pages.
Jos Stam. 2003. Flows on Surfaces of Arbitrary Topology. ACM Trans. Graph. 22, 3

(2003), 724–731.

Kenshi Takayama, Makoto Okabe, Takashi Ijiri, and Takeo Igarashi. 2008. Lapped

Solid Textures: Filling a Model with Anisotropic Textures. ACM Trans. Graph. 27, 3,
Article 53 (2008), 9 pages.

Greg Turk. 2001. Texture Synthesis on Surfaces. In SIGGRAPH ’01. 347–354.
Amir Vaxman, Marcel Campen, Olga Diamanti, David Bommes, Klaus Hildebrandt,

Mirela Ben-Chen, and Daniele Panozzo. 2016. Directional Field Synthesis, Design,

and Processing. In SIGGRAPH ASIA ’16 Courses. Article 15, 30 pages.
Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. 2006. Vector Field Based

Shape Deformations. ACM Trans. Graph. 25, 3 (2006), 1118–1125.
Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. 2009. State of the art

in example-based texture synthesis. In Eurographics 2009, State of the Art Report,
EG-STAR. 93–117.

Li-Yi Wei and Marc Levoy. 2001. Texture Synthesis over Arbitrary Manifold Surfaces.

In SIGGRAPH 2001. 355–360.
Jie Xu and Craig S. Kaplan. 2007. Calligraphic packing. In GI ’07. 43–50.
Eugene Zhang, James Hays, and Greg Turk. 2007. Interactive Tensor Field Design and

Visualization on Surfaces. IEEE Transactions on Visualization and Computer Graphics
13, 1 (2007), 94–107.

Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2006. Vector Field Design on

Surfaces. ACM Trans. Graph. 25, 4 (2006), 1294–1326.
Guo-Xin Zhang, Song-Pei Du, Yu-Kun Lai, Tianyun Ni, and Shi-Min Hu. 2011. Sketch

Guided Solid Texturing. Graphical Models 73, 3 (2011), 59–73.
Xiaoqiang Zheng and Alex Pang. 2004. Topological Lines in 3D Tensor Fields. In VIS

’04. 313–320.
Xiaoqiang Zheng, Beresford Parlett, and Alex Pang. 2005a. Topological structures of

3D tensor fields. In VIS ’05. 551–558.
Xiaoqiang Zheng, Beresford N. Parlett, and Alex Pang. 2005b. Topological Lines in

3D Tensor Fields and Discriminant Hessian Factorization. IEEE Transactions on
Visualization and Computer Graphics 11, 4 (2005), 395–407.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 188. Publication date: November 2017.

	Abstract
	1 Introduction
	2 Previous Work
	3 Background
	4 Overview
	5 3D Tensor Field Specification
	6 Topological Editing Operations
	6.1 Degenerate Curve Deformation
	6.2 Degenerate Curve Reconnection
	6.3 Singularity-Free Tensor Field Generation
	6.4 Degenerate Curve Removal

	7 Performance
	8 Applications
	8.1 Solid Texturing
	8.2 Geometry Synthesis

	9 Limitations and Future Work
	Acknowledgments
	References

