
Interactive Design and Visualization of N-ary Relationships
Botong Qu

Oregon State University
Corvallis, OR 97331, USA

Prashant Kumar
Oregon State University
Corvallis, OR 97331, USA

Eugene Zhang
Oregon State University
Corvallis, OR 97331, USA

Pankaj Jaiswal
Oregon State University
Corvallis, OR 97331, USA

Laurel Cooper
Oregon State University
Corvallis, OR 97331, USA

Justin Elser
Oregon State University
Corvallis, OR 97331, USA

Yue Zhang
Oregon State University
Corvallis, OR 97331, USA

(a) (b) (c ) (d )

Figure 1: A social network data set is visualized using a graph layout algorithm (a). N-ary relationships in the data are repre-
sented as cliques, which can be difficult to recognize visually due to the increasing number of edges in the cliques. We address
this challenge by using the notion of CW complexes (b), a mathematical concept that extends graphs. An N-ary relationship
is visualized with an N-sided polygon, and a binary relationship with a digon. With translucent rendering, our visualization
makes N-ary relationships more easily recognized, and their cardinality more pronounced. To deal with the large overlaps of
the polygons, we develop a 3D layout method where overlapping polygons are placed at different layers (c) . In addition, we
can render the polygons as opaque or translucent objects (d). Note that the colors for the polygons are based on the number
of edges in the polygons (cardinality).

ABSTRACT
Graph and network visualization is a well-researched area. How-
ever, graphs are limited in that by definition they are designed
to encode pairwise relationships between the nodes in the graph.
In this paper, we strive for visualization of datasets that contain
not only binary relationships between the nodes, but also higher-
cardinality relationships (ternary, quaternary, quinary, senary, etc).
While such higher-cardinality relationships can be treated as cliques
(a complete graph of N nodes), visualization of cliques using graph
visualization can lead to unnecessary visual cluttering due to all the
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pairwise edges inside each clique. In this paper, we develop a visu-
alization for data that have relationships with cardinalities higher
than two. By representing each N-ary relationship as an N-sided
polygon, we turn the problem of visualizing such data sets into that
of visualizing a two-dimensional complex, i.e. nodes, edges, and
polygonal faces. This greatly reduces the number of edges needed
to represent a clique and makes them as well as their cardinalities
more easily recognized.

We develop a set of principles that measures the effectiveness
of the visualization for two-dimensional complexes. Furthermore,
we formulate our strategy with which the positions of the nodes
in the complex and the orderings of the nodes inside each clique
in the complex can be optimized. Furthermore, we allow the user
to further improve the layout by moving a node or a polygon in
3D as well as changing the order of the nodes in a polygon. To
demonstrate the effectiveness of our technique and system, we
apply them to a social network and a gene dataset.
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1 INTRODUCTION
Graph and network visualization has been well-researched by the
visualization and graph layout communities. Graphs, by definition,
include a set of nodes and a set of edges, where each edge encodes
a binary relationship between a pair of nodes.

While graphs are a powerful representation of many phenomena
from biology to social science, they are intrinsically limited in the
sense that they are designed to capture binary relationships between
the entities of interest, such as mutual friendships and opponents
in an NBA game. However, in many applications an entity (node)
may be involved in an N -ary relationship whose cardinality (N ) is
higher than two. For example, three chess players representing the
same club are involved in a ternary relationship, which is different
from the case where three players are involved in three binary
relationships but not a ternary relationship, e.g. players A and B
play chess, players A and C play golf, and players B and C play
tennis.

N -ary relationships have been noted in many research domains
that include social science, physical science and engineering appli-
cations. Students adjust to school lives by knowing their social cir-
cles and which clique to join. Engineering designs optimize length,
width, and depth of an object. Physical and mathematical theo-
ries often rely on groups of parameters. Conventionally, to store
these data structures, we utilize pairwise relationships and conduct
searching and grouping on them during post processing.

Existing visualization techniques model N -ary relationships as
cliques in a graph, i.e. each N -ary relationship is represented as a
complete subgraph with N (N−1)

2 edges. While this approach works
well for data with relatively few relationships and the maximum
cardinality of all relationships is relatively low, it suffers from a
number of challenges for more complex and more realistic data
sets.

First, when the cardinalities of an N -ary relationship is high, this
visualization involves a large number of edges, making it difficult
to visually identify and verify whether a subgraph is a clique. For
example, consider verifying whether a subgraph of 10 nodes form
a clique. This would involve checking 45 edges between the nodes,
which is a daunting task and can put a great mental load on the
user. At the same time, it is difficult to mentally associate all the
nodes in a clique as part of the same object. This is because these
nodes are often obscured by all the edges incident to the nodes.

Second, such a visualization can often lead to confusion over
whether N nodes are involved in an N -ary relationship or N (N−1)

2
binary relationships.

Third, when generating the optimal layout of the nodes, only
information regarding the edges are considered (binary relation-
ships). This is akin to the finite difference method in numerical
simulation [14], where a quantity at a node is computed based on
edges incident to the node, rather than the faces or cells. Such an
approach naturally optimizes for binary relationships but disregard
N -ary relationships.

All of the above highlight the fundamental flaw in a graph-
based representation of data with N -ary relationships, that is, an
N -ary relationship is not explicitly modeled, but instead, implicitly
modeled as cliques.

In this paper, we address this problem by extending the notion
of graphs to CW complexes. A zero-dimensional CW complex con-
sists of a set of unconnected nodes, while a one-dimensional CW
complex consists of a set of nodes and a set of edges each of which
connects a pair of nodes. Note that a graph is a one-dimensional
CW complex. A two-dimensional CW complex consists of nodes,
edges, and polygons. The notion of an N -dimensional CW complex
can be defined in a similar fashion.

By explicitly modeling each relationship in the visual display as
a single object (a polygon in a two-dimensional CW-complex , it is
easier to identify an N -ary relationship, understand its cardinality,
and see the nodes involved in the relationship. Moreover, when
generating optimal layouts of the data by moving the nodes, N -ary
relationships are better modeled as a whole.

To the best of our knowledge, there has been relatively little
research in achieving CW complex layout. In this paper, we explore
the requirement and quality measures for CW complex layout. In
addition, we provide a CW complex layout technique that allows a
two-dimensional CW complex to be placed in a plane. To reduce
the potential overlaps between polygons, we identify a set of layout
editing operations including moving a node, moving a polygon,
and changing the order of the nodes in a polygon. In addition,
our system allows the input data to be filtered, which can result
in better layout for the remaining nodes and polygons. Moreover,
we provide an overlap-free approach by allowing the data to be in
multiple planes. To avoid curved polygons due to different polygons
involving the same node, we represent each node as a cylindrical
tube, and polygons from different layers that are incident to the
same node do not share the same physical point (Figure 1).

We have applied our technique to social network data and bio-
logical applications.

2 PREVIOUS WORK
There has been much work in graph layout algorithms, and we
refer interested readers to the following surveys [11, 12, 15, 19].

N -ary relationships have found many applications [3]. Many
algorithms exist for finding cliques in the data [26]. Open source
tools such as Iridia (http://iridia.ulb.ac.be/ fmascia/graphvisualizer)
demonstrate examples of cliques that have cardinality of 4 and
5. During the visualization of cliques or nodes with high-order
cardinality, cluttering and edge cris-crossing can be seen. Lack of
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clarity hinders domain scientists from seeing the N -ary relation-
ships quickly or even from knowing the existence.

Klamt et al. [18] modelN -ary relationships with the notion of hy-
pergraphs and use line glyphs to represent such relationships. They
have demonstrated their techniques on relatively small datasets
with only a number of nodes and a handful of relationships. It is un-
clear how well their techniques scale to datasets with more realistic
complexity. Moreover, it is not clear how well their technique can
handle the case where the nodes in one relationship is a subset of
the nodes of another relationship. Our CW complex visualization
framework can handle data with larger complexity as well as the
aforementioned relationships.

N -ary relationships have also been modeled as cliques in a graph.
With this representation, nodes in the same clique are clustered
during node placement. In addition, an envelop with color can be
placed around the cluster to highlight the fact that these nodes
are part of the same object (a clique) [8]. Force-based methods [17]
have been used for this purpose. However, such an approach suffers
from the overlapping cliques which share nodes, which we strive
to address with the CW complex representation and user editing.

Dunne and Shneidermann [10] develop clique glyphs to highlight
each clique in the graph as a data abstraction. While each clique is
clearly distinguishable from other cliques, the nodes in the cliques
are not explicitly shown. We seek to develop a framework in which
both the nodes and the relationships are visible.

3 PROBLEM STATEMENT
In this section, we make rigorous the problem statement in our
system. First, the input data to our system has the following format:

C = {E,R2,R3, ...,R |E | } (1)

where E is the set of entities which may have their attributes in-
cluding their importance, and |E | is the number of entities in E.

Rk (2 ≤ k ≤ |E |) is the set of k-ary relationships among the
entities in E. More specifically, a relationship r ∈ Rk is a set
(e1, e2, ..., ek ) where ei ∈ E for 1 ≤ i ≤ k and ei , ej for any
1 ≤ i < j ≤ k . Note that the order of the entities in this relationship
is insignificant, i.e., we do not consider permutations among the
entities. As an example, a binary relationship r = (e1, e2) is the
same as r = (e2, e1). Note that when R3 = R4 = ... = R |V | = ∅, our
data reduces to an undirected graph where each element in R2 is
an edge in the graph.

Recall that we model this type of data as a two-dimensional
CW complex. Every entity in E is mapped to a node in the com-
plex, while every relationship r ∈ Rk is mapped to a k-sided poly-
gon (two-dimensional complex). Our problem of visualizing the
entity-relationship data is thus converted to that of visualizing
a two-dimensional CW complex. We will use entities and nodes
in an interchangeable fashion. This is true also for polygons and
relationships.

We define the degree of a node to be the number of relationships
that involve the node. In addition, two nodes are said to be adjacent
if they are involved in at least one relationship.

In a graph, two edges may share one or zero common node.
Moreover, in a multi-graph, there can be multiple edges between
the same pair of nodes. In a CW complex, there are more cases due
to the existence of N -ary relationships where N > 2:

(a) (b) (c )

(d ) (e ) ( f )

Figure 2: Example adjacent polygons scenarios: (a) unre-
lated, (b) nodely adjacent, (c) edgely adjacent, (d) partially
overlapping, (e) enclosing, and (f) co-locating.

(1) Two polygons have no common nodes. In this case we refer
to the polygons (relationships) as being unrelated.

(2) Two polygons share one common node. The two polygons
are said to be nodely adjacent.

(3) Two polygons share two common nodes while one of the
polygons has at least one extra node. The two polygons
are said to be edgely adjacent.

(4) Two polygons share at least three common nodes but each
has at least a node that is not part of the other polygon. In
this case the polygons are said to be partially overlapping.

(5) The set of nodes of one polygon is a subset of the nodes of
another polygon. In this case, the larger polygon encloses
the smaller one.

(6) Note that as a special case of the aforementioned case, the
two polygons involve exactly the same set of nodes. The
two polygons are said to be co-locating.

See Figure 2 for examples. As with nodes, each relationship may
have an importance property and other properties. The cardinality
of a polygon refers to the number of nodes in the polygon, while
the degree of the polygon refers to the number of relationships that
have at least one common node with the relationship.

There are a number of tasks that are essential in applications of
this type of data.

(1) Each node should be visually distinguishable from other
nodes and can be highlighted so that its properties can be
inspected.

(2) A node’s importance should be clearly visible.
(3) Each polygon should be visually distinguishable from other

polygons even when the two polygons share some nodes.
A polygon can be highlighted for the user to inspect its
properties.

(4) A polygon’s cardinality should be easily determined visu-
ally. Moreover, the nodes belonging to a polygon should
be easily identified.

(5) A polygon’s importance should be clearly visible.
This naturally leads to following research questions:
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(1) How to measure the quality of the visualization, i.e., what
layout principles apply here?

(2) Based on these principles, how to generate an optimal
layout given a dataset, i.e., node placement and ordering
of the nodes inside a polygon?

(3) How to implement the strategy to produce interactive vi-
sualization?

(4) How to improve the design with user interaction, and what
fundamental operations are needed to provide the user
with sufficient flexibility?

We address these questions in the following sections.

4 CW COMPLEX LAYOUT PRINCIPLES
In this section we describe the CW complex layout principles that
we have identified during this research. While some principles are
common with graph layout, others are specific to CW complex
layout.

(1) Nodes should not overlap or cluster
(2) A node should not be placed inside or on the boundary of

any polygon that is not incident to the node.
(3) Every polygon should be as close to being regular as possi-

ble.
(4) The number of overlaps between polygons should be mini-

mized.
If achieving Principle 3 is impractical, i.e., it is not possible to

make all the polygons regular, at least the polygon should be convex.
This principle not only increases the aesthetics of the polygon, it
also helps the user distinguish between two overlapping polygons
and see the cardinality of the polygon.

Principle 4 states that unrelated polygons should not overlap,
while nodely and edgely adjacent relationship should only over-
lap at a node or an edge, respectively. Note that it is not possible
to reduce the number of partially overlapping, enclosing, and co-
locating relationships since there are algebraic intersections of the
nodes of the polygons. By algebraic intersections, we mean two
sets of nodes have common elements, each set represents one rela-
tionship. However, in case of partial overlapping relationships, the
number of crossings between the edges of the two polygons should
be minimized.

Based on these principles, we have come up with two approaches
to CW complex layout, described in Sections 5 and 6.

5 PLANAR CW COMPLEX LAYOUT
In our approach, we seek to layout a CW complex on the plane
that follows the aforementioned layout principles. This is achieved
through a two-step pipeline. First, we automatically generate an ini-
tial layout by treating the data as a graph and reusing a force-based
graph layout algorithm [17] to compute the locations of the nodes.
Then a clique’s outline is used to generate an N -sided polygon.
Next, the user can further improve the quality of the CW complex
layout with a set of editing operations that we have identified as
being fundamental to CW complex editing. Given a layout, the com-
plex is visualized as follows. Every node is visualized as a sphere
centered at its computed location. Its color and reflectance material
is specified by the user. Lights are given in the scene. Rendering
point clouds as points can make it difficult to see the depth of

(a) (b)

Figure 3: This figure shows the importance of rendering the
nodes and polygons with lighting.

the points [4]. By rendering the nodes as spheres, highlights and
shadows on the sphere can improve the perception of the nodes.
Similarly, each polygon is rendered with a color and reflectance
properties which, when interacting with light, can improve depth
perception. Figure 3 compares the rendering without and with
lights, or as points and as spheres. In addition, we implement depth
peeling [2], a technique in which overlapping surfaces are rendered
as translucent materials.

It seems rather counter-intuitive to compute the locations of
the nodes by using the input data as the graph format. After all,
we wish to use regular polygons instead of a “spaghetti" of edges
inside the cliques in the graph. However, we have found through
experiments that by using all the edges in a clique, the force-based
layout method tends to have the outline of the clique in a nearly
regular polygonal shape. As one might expect, the initial layout can

Figure 4: This figure demonstrates the importance of the
polygon reconnection operation. In (a), a polygon having
unnecessary overlaps in the initial layout cannot be easily
fixed (b).

be rather suboptimal, with many unnecessary overlaps of polygons
that are not adjacent. This is because the force-based method does
not take into account the shape of the associated polygons when
optimizing the location of the nodes. We address this by providing
users with the capability of editing the layout of the CW complex
as follows.

First, the user can choose to move a node. However, all the
polygons incident to the nodewill be deformed due to this operation.
Second, the user can also move, rotate, and resize a polygon. All of
the adjacent polygons adjacent will be deformed.

While the above operations seem intuitive, they cannot change
the order of the nodes in a polygon. Figure 4 (left) shows an example
in which a sub-optimal order inside a triangle can make it difficult
to generate a satisfactory layout. This inspires the following editing
operation.

Third, the user can change the order of nodes in a polygon. By
allowing the nodes in the polygon to be re-ordered, more degree of
freedom is available (Figure 4 (right)).

In our system, polygon reconnection is achieved through pair
swapping operations. More specifically, given a k-sided polygon
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{e1, e2, ..., ei , ..., ej , ..., ek } where em has the location (xm ,ym ) for
1 ≤ m ≤ k , we can swap ei and ej to generate a new polygon:
e1, e2, ..., ej , ..., ei , ..., ek . Moreover, the node ei will take the co-
ordinates (x j ,yj ) while the node ej take the coordinates (xi ,yi ).
Figure 4 shows the effect of performing a swap on a polygon. Note
that all polygons incident to ei and ej are swapped.

While the aforementioned operations can help improve the lay-
out by reducing visual overlaps between unrelated or adjacent
polygons, they do not address polygons that are partially overlap-
ping, enclosing, or co-locating since in these scenarios the visual
overlaps are caused by the overlaps in the data, not the suboptimal
layout. Therefore, we develop the fourth operation as follows.

Fourth, when overlapping polygons exist, the user can change
the layout by sending the top polygon to the bottom, thus making
the next-to-the-top polygon the new top polygon. As Figure 5
shows, different rendering order changes visibility of the polygons.

In addition to the above editing operations, our system allows
users to filter their data, either based on nodes or polygons. We
have found that the optimal layout for the whole data set is usually
different from that of a subset. Figure 6 compares the optimal layout
of the whole data set with one for a filtered subset.

Figure 5: This figure compares the results of different ren-
dering orders: (top) Polygons are rendered after edges, the
triangles are rendered last so that they have the highest ren-
dering priority. (bottom) The edges are rendered last so they
are the most visible ones.

Figure 6: This figure compares the optimal layout for a
dataset (left) and that of a filtered subset (right). Notice that
visualizing a subset of relationships can lead to a layout that
better shows the sebset.

6 MULTI-PLANE CW COMPLEX LAYOUT
While our editing operations can improve the planar layouts of
CW complexes, it is usually not possible to completely remove
visual overlaps among polygons. Depth peeling allows multiple
visually overlapping polygons to be visible. However, we observe
that the effectiveness of depth peeling decreases as the number of
overlapping polygons increases.

To address this limitation of 2D visualization, we allow the poly-
gons to be placed in 3D, which has the promise of removing the
spatial overlaps between polygons that are partially overlapping
or enclosing. The viewer can now inspect the layout in 3D with a
much richer set of viewpoints to understand the data.

However, partially overlapping polygons, enclosing polygons,
and co-locating polygons must be deformed to create spatial sepa-
ration due to their common nodes. While having curved polygons
may be visually pleasing, it can be difficult to see the cardinality of
the polygon due to the curved boundary of the polygon. We wish
to keep the polygons flat. To do so, we change the representation
of a node from a sphere to a cylindrical tube (Figure 1: (c)-(d)). Poly-
gons that have any overlaps in the planar layout are now placed in
different but parallel planes and remain flat. Their shared node is
visually represented as different nodes on the same tube.

The 3D layout is generated by first computing the planar layout
(Section 5). Next, we compute a height for each polygon so that
no spatial overlaps can occur between any pair of polygons. This
is achieved with a greedy approach. We put the first polygon in
the plane z = 0. Then we iteratively place the remaining polygons
in some plane as follows. Given a new polygon to be placed, we
test for each existing plane whether by adding this polygon to the
plane a spatial overlap with an already placed polygon can occur
(collision). If such a collision does not occur, the polygon will be
placed in the plane. Otherwise, the polygon will be tested for the
next available plane. If all existing planes collide with the polygon,
a new plane will be created at z = N + 1 where N is the height of
the highest plane.

This leads to a 3D layout free of spatial overlaps between poly-
gons.

7 APPLICATIONS
We have applied our analysis to two applications with N -ary rela-
tionships in order to demonstrate the utility of our CW complex
visualization approach.

Social Network Complex Visualization: In this example, we
make use of a synthetic social network dataset in which a group of
individuals are connected through friendship circles, daily activities,
and hobbies. Individuals and groups are represented by nodes and
polygons, respectively. Our visualization can be used to answer
questions regarding individuals as well as groups. In this case,
we strive to clearly show the size and influential power of each
group. The size of a group is measured in terms of the number of
individuals in the group (cardinality of a polygon). Study groups,
sewing clubs, and car pool participants tend to have a relatively
high cardinality. The influential power is measured by the total
number of other groups that share at least one member (degree
of a polygon). We conjecture that if a group of high influential
power initiates a social activity, the spread range will be the biggest
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(a) (b) (c ) (d )

Figure 7: In (a) and (b) we show the groups (polygons) with a size (cardinality) of three (a) and seven (b). In contrast, in (c) and
(d) we show the groups with influential power (degree) of 1 − 8 (c) and 12 − 18 (d). It is interesting to notice that larger groups
tend to have more influential power (polygons in (b) are also in (d)). Such insights are difficult to validate with traditional
graph based visualization.

comparing with other groups. Or, if a member of this group is
having a infectious disease while participating group activities, the
disease has a high probability of being spread to the entire network
of people.

Figure 7 shows the groups in terms of its size (a-b) and influence
power (c-d). It is interesting to observe that larger groups tend
to be more influential. Such insights, while intuitive, is difficult
to validate with traditional graph-based visualization techniques.
Further applications include disease modeling in the community
of humans, animals and plants with reference to the geographic
co-location and movement of the subjects, interactions-groups and
their environment.

Gene InteractionComplexVisualization: We also apply our
visualization to biological visualization. In gene visualization, when
we have a very complicated and dense network, the visualization
can only give viewers an impression of the structure. Most often,
only the special nodes with more number of edges stand out and are
noticeable, where as some subtle interactions get lost in the maze.
For example, in Figure 8 a, we visualize a real gene interaction data
from Arabidopsis thaliana (Source: [1]), where each edge represents
an interaction determined experimentally. The locations of nodes
of the polygon are calculated by a force-directed method. As we
can see, the relationship between interacting genes, which should
construct a group is missing from this graph (Figure 8a).

However, using CW complexes visualization directly suffers seri-
ous overlapping problems since the algebraic interactions between
polygons often occur. In order to solve that problem, we apply
filters to open the visualization in an inside out approach to an-
alyze each layer separately. A similar approach was adopted to
normalize the visualization of complex data plots and data arrays
by the CIRCOS and Hive Plots [20, 21]. As Figure 9 shows, most
N-ary relationships have two or three nodes (Figure 9 (a-b)) com-
pared to the rarely occurring polygons with quaternary and quinary
relationships (Figure 9 (c)).

Note that we only assigned five vertices to a polygon when
these vertices construct a clique. This explains why polygons with
higher cardinalities are rare. Meanwhile, The study of these genes

shows clear N-ary relationships, e.g. the quaternary relationships
in Figure 8 (b). The Arabidopsis thaliana genes AT5G03150 (JKD,
JACKDAW), AT3G54220 (SCR, SCARECROW), AT4G37650 (SHR,
SHORT ROOT) and AT1G03840 (MGP, MAGPIE) encode for pro-
teins that bear transcription factor function. Based on the experi-
ments, the encoded proteins are known to interact physically with
each other [16, 24]) and play an important role in plant root de-
velopment and radial patterning. Similarly, the cells which con-
nect the genes AT2G35940, AT1G75410, AT2G23760, AT1G62360,
AT4G32040, AT2G30400, AT4G34610, and AT1G23380 play a role in
the maintenance of active shoot apical meristem where new cells
are formed and later committed to making new organs such as
leaves and reproductive parts and cell parts such as the secondary
cell wall [13, 22].

When using the degree filter to open the visualization results, we
can find N-ary relationships with different adjacency. We find even
though the cardinality of the polygon is relatively high (the quad
has a cardinality 4), the degree of this polygon can be low, which
means the genes inside this quaternary relationships may not have
much interactions with other genes. This implies that either there
is not much experimental evidence, or the information still needs
curation, or these N-ary relationships are yet to be analyzed in
future experiment.

Though we can only infer gene-gene interactions through these
networks as shown in the Figures 8 and 9, when combined and com-
plemented with directed acyclic graphs of Ontology-based knowl-
edge domains [5–7, 23, 27], such as molecular functions, biological
processes, pathways, location in a cell, plant body and the develop-
mental stage, environment [9, 25] and phenotypes the visualization
methods described here become powerful analytics-based tools in
the hands of biologists for making interpretations, building hypoth-
esis for future validation in the laboratory.

8 CONCLUSION AND FUTUREWORK
In this research, we introduce the problem of CW complex layout
and visualization, which is an extension of the graph layout prob-
lem. Instead of treating our data as cliques and using graph layout
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Figure 8: (a) Traditional graph visualization of the gene intersection data set. (b) The planar CW complex layout which suffers
serious overlapping among polygons caused by algebraic intersections.

(a) (b) (c ) (d )

Figure 9: The gene interaction data with different filters: (a) binary relationships, (b) ternary relations, and (c) quaternary and
quinary relationships. In (d) we show N -ary relationships with degrees from 34 to 44, highest degree among all polygons. Note
that in this application the cardinality of a polygon does not seem to correlate with the degree of a polygon as in the social
network example.

methods, we treat each N -ary relationship in the data as a polygon.
This leads to a much heightened sense that an N -ary relationship
being a single object. Furthermore, it is easier to see the cardinality
and degree of an N -ary relationship.

We have also developed a number of principles that our research
has shown to be important guidance for judging the quality of a
CW complex layout. In addition, we build a framework that allows
a CW complex to be visualized either in a single plane with possible
spatial overlaps, or multiple parallel planes without spatial overlaps.
We also provide a set of editing operations to improve the layout,
including changing the order of nodes in a polygon, the display
order of a polygon in a stack of overlapping polygons, as well as
filtering the data.

Our method is not without limitations. For very large graphs, we
have observed that the force-based graph method that we use to get
an initial CW complex layout is far from being satisfactory. As such,
the amount of user work involved to improve the layout makes
editing impractical. In the future, we plan to investigate automatic
techniques to generate an optimal layout.

While using 3D visualization can help with the overlapping
polygon problem, finding good viewpoints becomes essential. We
will investigate this further in our future research in this area.

We have applied our techniques to social network data and
biological data. In the future, we will continue working with domain
scientists in these areas for additional evaluations. Furthermore,
we plan to explore additional applications such as power supply
networks and road networks.
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