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Fig. 1. The Morse set containing a large periodic orbit in

the diesel engine dataset (7 refinement steps).

Fig. 2. Results for a height field on the original 1536-

triangle mesh (left) and its subdivided version (three

subdivision iterations). Note that only a source and two

saddles are visible from this viewpoint.
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Fig. 3. Morse sets and connecting regions for the figure

eight model subdivided three times.

APPENDIX A

APPROXIMATION PROPERTIES

In this section, we show that trajectories of a PC vector field,

defined on a fine enough mesh and constructed from a good

enough vertex-based approximation of a smooth vector field

g are close to the trajectories of g.

Let g be a smooth vector field on a smooth compact

manifold M embedded in R3 and a triangulated manifold

surface M be a G1-approximation of M , i.e. the vertices

of M are close to M and the triangle normals approximate

M ’s normals at nearby points. The approximate vertex based

vector field on M assigns the vector ḡ(v) = g(π(v))+ μ(v) to

a vertex v, where π is a function that maps vertices of M into

nearby points of M and μ(v) represents a perturbation, that

can include the noise or measurement uncertainty (Figure 4).
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Fig. 4. 2D counterpart of the setting of the convergence

proof. The black polygonal line is an approximation of

the green smooth curve (1D manifold). For vertices v

and w, π(v) and π(w) are nearby points on the smooth

curve. When constructing a vertex-based vector field on

the polygonal line, one strives to assign vectors close to

f (π(v)) and f (π(w)) (blue arrows) to v and w. However, in

practice, that vector would be slightly different because of

measurement or numerical issues, therefore the vectors

assigned to v and w (red lines) are slightly different. We

model the error using the function μ , which represents

the difference between a red vector and its corresponding

blue vector.

Our goal is to show that the trajectories of the PC vector field

obtained from ḡ using the procedure described in Section 3.3

converge to the trajectories of g as M converges to M in the

G1 sense, and the maximum diameter of a triangle of M and

maxima of |π(v)− v| and |μ(v)| over all vertices of M go to

zero.

By the assumptions, g(x) is tangent to M at x. Also, g

is bounded and Lipschitz continuous. Let L be the Lipschitz

constant. For a triangle Δ of M and x ∈ M , PΔ and Qx are

the orthogonal projections to the 2D linear space parallel

to Δ and to the tangent plane to M at x (respectively).

By D we denote the common upper bound on |g(x)| for

x ∈ M and |ḡ(v)| over all vertices of M. Let δ be the

maximum diameter of the set {a,b,c,π(a),π(b),π(c)} over

all triangles Δabc of M and κ be the maximum value of

|μ(v)| over all vertices of M. By our assumptions, δ and

κ converge to 0 as M gets closer to M . Pick any ε > 0.

Take a triangle Δ in M with vertices a, b and c. If M is a

good enough approximation of M , then ||PΔ−Qπ(p)||< ε for

p ∈ {a,b,c}. Since f (Δ) = PΔ( 1
3
(ḡ(a)+ ḡ(b)+ ḡ(c))), | f (Δ)−

g(π(a))| ≤ 1
3
(|PΔ(ḡ(a)) − g(π(a))| + |PΔ(ḡ(b)) − g(π(a))| +

|PΔ(ḡ(c))− g(π(a))|) by the triangle inequality. Notice that

|PΔ(ḡ(a))− g(π(a))| ≤ κ + |PΔ(g(π(a)))−Qπ(a)(g(π(a)))| ≤
κ + Dε . Since g(π(b)) belongs to the tangent plane to M

at π(b), Qπ(b)(g(π(b))) = g(π(b)). Therefore, by the tri-

angle inequality, |PΔ(ḡ(b)) − g(π(a))| ≤ κ + |PΔ(g(π(b)) −
Qπ(b)(g(π(b)))|+ |g(π(b))−g(π(a))| ≤ κ +Dε +Lδ . Similar

inequality holds if b is replaced by c. We conclude that

| f (Δ)− g(π(a))| ≤ η := 3κ + 3Dε + 2Lδ . Note that η → 0

as M converges to M .

If e is an exploding or imploding mesh edge with incident

triangles Δ0 and Δ1, then f (e) = Pe(w0 f (Δ0)+w1 f (Δ1)) where

Pe is the orthogonal projection to the 1D vector space W paral-

lel to e. Since Δ0 and Δ1 share a vertex, | f (Δ0)− f (Δ1)|< 2η .

If M is a good enough approximation of M , then the angle

between the outward normal vectors of any two adjacent

triangles is below π/2. Since e is exploding or imploding,

both f (Δ0) and f (Δ1) are no more than 2η away from W .

Therefore, the distance between a weighted average of these

two vectors and its projection to W is bounded by 2η . We

conclude that, for any vertex p of e, | f (e) − g(π(p))| =
|Pe(w0 f (Δ0)+ w1 f (Δ1))− g(π(p))| ≤ w0| f (Δ0)− g(π(p))|+
w1| f (Δ1)−g(π(p))|+2η ≤ 3η .

Now, let v be a mesh vertex that our algorithm makes

stationary. If M is a good enough approximation of M , the

outward normals of all triangles incident upon v are contained

in a cone of opening angle π/2. Let P be the orthogonal

projection to the linear 2D space U perpendicular to the cone’s

axis. P is a one-to-one mapping of the star of v (union of all

triangles incident to v) into U . Let V be the set of projections

of vectors assigned to triangles and edges incident to v by f .

The convex hull of V contains the zero vector because v is

stationary. Otherwise, one could rotate the domain so that all

vectors in V point into the upper half-plane. Thus, there would

be only one stable sector (in the lower half-plane) and only one

unstable sector (in the upper half-plane) and two hyperbolic

sectors (since the flow moves up near v): therefore, v would

not be stationary. Since the diameter of V is bounded by 6η by

the previous estimates, V consists of vectors shorter than 6η .

Hence the magnitude of any vector assigned to a triangle or

edge incident to v is below 6
√

2η (because the angle between

any vector in V and U is bounded by π/4). In particular,

since | f (Δ)−g(π(v))| < η , where Δ is a triangle incident to

v, |g(π(v))| < ξ := (6
√

2+1)η

To sum up, if z ∈ M is contained in a triangle Δ, then for

any vector v ∈ F∗(z), |v−g(π(a))|< ξ for some vertex a of Δ.

Hence, for any x ∈M , |v−g(x)| ≤ |v−g(π(a))|+ |g(π(a))−
g(x)| ≤ ξ +L|π(a)−x| ≤ ξ +L(|π(a)−a|+ |a−z|+ |z−x|)≤
ξ +2Lδ +L|z− x| = τ +L|z− x|, where τ = ξ +2Lδ .

Let σE be the trajectory of g starting at a point x0 ∈ M

and σPC be a trajectory the PC variant starting at a nearby

point x1 ∈ M. Since σ̇PC(t) ∈ F∗(σPC(t)) almost everywhere,

the inequality |σ̇E(t)− σ̇PC(t)| ≤ τ + L|σE(t)− σPC(t)| also

holds almost everywhere. By the Gronwall’s lemma [2],

|σE(t)−σPC(t)| ≤ |x0 − x1|exp(Lt)+ τ/L(exp(Lt)−1). Since

τ → 0 as M converges to M in the G1 sense, this means that

trajectories of the flow defined by the PC vector fields on M

converge to the trajectories of g.

APPENDIX B

ADMISSIBILITY

In this section, we show that the flow constructed in Section

3.3 is admissible. First, we prove upper semicontinuity, then

– acyclicity of the trajectory set.

Theorem 1: The flow induced by a PC vector field built as

described in Section 3.3 is upper semicontinuous.
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Proof: Take a convergent sequence of trajectories σn :

[0,T ] → M. We need to prove that σ∗ := limn→∞ σn is also a

valid trajectory.

Take t ∈ [0,T ]. If σ∗(t) is in the interior of triangle Δ then

σn(t +h) = σn(t)+h f (Δ) for small enough h and sufficiently

large n (since σn(t) → σ∗(t)). We conclude that also σ∗(t +
h) = σ∗(t)+h f (Δ) and therefore σ∗ has velocity f (Δ) in the

interior of a triangle Δ.

The rest of the proof is based on the following simple

observation related to general properties of piecewise linear

functions. Let gn : I → Rn be a sequence of piecewise linear

functions, each with no more than N linear segments with

derivatives in a finite set of vectors V ⊂ Rn. If gn converges

to g∗, then g∗ is also a piecewise linear function with no more

than N linear segments with derivatives in V .

Assume σ∗(t) is in the interior of an edge e. For some h > 0

and sufficiently large n, σn(t + s) belongs to e or the interior

of one of its incident triangles, Δ0 and Δ1, for any s ∈ [−h,h].
This means that σn|[t−h,t+h] is a piecewise linear function with

at most 2 segments with derivatives f (Δ0), f (Δ1) or f (e) if

e is exploding or imploding. The same is true about the limit

function σ∗|[t−h,t+h]. Since the velocity of σ∗ is f (Δi) in the

interior of Δi, σ∗|[t−h,t+h] is a valid trajectory.

Finally, assume that σ∗(t) is a non-stationary mesh vertex

v. We show that σ∗ does not stay at t for a positive time. For

small enough h and large enough n, σn([t, t +h]) is contained

in the interior of the union of triangles incident to v. Since v

is a non-stationary vertex, σn|[t,t+h] cannot leave a mesh edge

and return to the same edge later or reenter the interior of the

same triangle. Thus, it is a piecewise linear function of no

more than twice the degree of v segments. The derivatives of

each segment is either f (Δ), where Δ is a triangle incident to

v or f (e), where e is an exploding or imploding edge incident

to v. In particular, all of them are nonzero. Hence σ∗ leaves v

immediately at time t. Note that it can leave v only along an

unstable direction because we have already showed that σ∗ is

a valid trajectory at all points other than mesh vertices.

To sum up, we have proven that σ∗ is a (locally) valid tra-

jectory at all points except possibly stationary vertices (which

have not been considered above). In fact, this means that σ∗
is a valid trajectory. Note that σ∗ is Lipschitz continuous

and therefore also absolutely continuous since it is a limit

of Lipschitz-continuous functions with the same Lipschitz

constant. In particular, it has a well-defined derivative almost

everywhere. Because of what we have proven earlier, the

derivative satisfies σ̇∗(t) ∈ F∗(σ∗(t)) at all points where it

is defined. In particular, for a time t0 such that σ∗(t0) is a

stationary vertex v and σ∗(t) �= v for t in a neighborhood of

t0, the trajectory has to leave that vertex along its unstable

direction (which is then its derivative if it exists). Otherwise,

σ̇∗(t) = 0 if it exists.

Theorem 2: There exists a positive number h such that for

every point x0 ∈ M, the set S(x0,h) of trajectories starting at

x0 and defined over time interval [0,h] is acyclic for the flow

induced by a PC vector field built as described in Section 3.3.

The topology on S(x0,h) is induced by the standard maximum

norm on the space of continuous functions defined on [0,h]
and with values in the three-dimensional Euclidean space.

x0

Fig. 5. Sucking a red trajectory into a stationary point

x0. The black trajectories stay in x0 for increasing an

amount of time and then follow the red trajectory. The

black trajectories represent samples of H(σ ,s) where σ
is the red trajectory and H is the deformation used in the

case of x0 being a stationary point.

Proof: First of all, notice that since the vector field is

bounded, there exists a > 0 such that for every x0 ∈ M, any

trajectory in S(x0,a) is contained in the star of some vertex v,

i.e. in the interior (relative to M) of the union of all triangles

incident upon v. We shall prove that for any x0 ∈ M and h ∈
[0,a], S(x0,h) is acyclic.

First, assume that x0 is a stationary mesh vertex (note that

then v = x0). Let S = S(x0,h). It is easy to see that the function

H : S× [0,1]→ S defined by H(σ ,s)(t) = σ(max(0, t − sh)) is

well-defined and continuous. Also, H(.,0) is the identity on S

and H(.,1) maps every point into the constant trajectory that

stays at x0 for all times. We conclude that S is contractible

and therefore also acyclic. Intuitively, H sucks trajectories in

S into x0 as shown in Figure 5.

Now, let x0 be a non-stationary vertex, x0 = v. This means

that v has exactly one unstable parabolic sector, one stable

parabolic sector and two hyperbolic sectors. Trajectories in S

leave v in one of the unstable directions, pointing into the

unstable parabolic sector. Let di, i = 1,2, . . . ,n be all unstable

directions, in counterclockwise order in that sector. This means

that by moving from d1 to dn counterclockwise around v

one sweeps the entire sector. Let Si be all trajectories in S

contained in the part of the sector between di and dn. By

definition, Sn consists of exactly one trajectory and therefore

is contractible. We will show that Si+1 is a strong deformation

retract of Si. The trajectories in Si \Si+1 either move clockwise

or counterclockwise relative to v. Consider these two cases.

If they move counterclockwise, a trajectory σ ∈ Si \ Si+1

leaves v in the direction di and then turns toward di+1 (as

seen from v) at some time t ∈ (0,h], unless it does not turn at

all. In the former case, we denote σ by σt and in the latter case

– by σh (Figure 6). Note that σt is uniquely defined since it

cannot reach a mesh vertex or an exploding edge. Let σ0 be the

trajectory that moves along di+1 all the time. It is not hard to

see that σt depends continuously on t. The strong deformation

retraction H : Si× [0,1]→ Si+1 is defined by H(σt ,s) = σ(1−s)t

and H(σ ,s) = σ for any σ �∈ {σt |t ∈ [0,h]}.

If they move clockwise, a trajectory σ ∈ Si \ Si+1 leaves v

in the direction di+1 and then turns toward di at some time

t ∈ (0,h] (then we call it σt), unless it does not turn at all (σh).
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Fig. 6. The case of trajectories moving counterclockwise

between unstable directions di and di+1. σh is the red

trajectory that does not leave di. For t < h, σt is the red

trajectory that leaves di at time t. The deformation H

gradually scales down the parameter (time a trajectory

exits di) to zero. In other words, trajectories are mapped

into trajectories that stay on di for a shorter and shorter

time (as indicated by the green arrow). Ultimately, all

trajectories between di and di+1 are collapsed to the one

that follows di+1.
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Fig. 7. The case of trajectories moving clockwise be-

tween unstable directions di and di+1. σh is the red tra-

jectory that does not leave di+1. For t < h, σt is the red

trajectory that leaves di+1 at time t. The deformation H

gradually increases the parameter (time a trajectory exits

di+1) to one. In other words, trajectories are mapped into

trajectories that stay on di+1 for a gradually longer time (as

indicated by the green arrow). Ultimately, all trajectories

between di and di+1 are collapsed to the one that follows

di+1.

v

x
0

Fig. 8. Trajectories leaving an exploding edge containing

x0 to the same side. In this case, the limit trajectory σm∗
moves from x0 to v and then leaves v along an unstable

direction (red line). All trajectories that leave the edge in

the clockwise direction are collapsed by the deformation

retraction H that gradually increases the time for which a

trajectory follows the edge, pushing them toward the limit

trajectory (as indicated by the green arrow).

Let σ0 be the trajectory that follows di all the time. A suitable

deformation retraction, illustrated in Figure 7, can be defined

by H(σt ,s) = σh−(1−s)(h−t) and H(σ ,s) = σ for any σ ∈ Si+1.

Contractibility of S(v,h) for a non-stationary vertex follows

by induction on n. At this point, we have proven that S(v,h)
is contractible (and hence acyclic) for each mesh vertex v.

Now, assume that x0 belongs to an exploding edge e with

incident triangles Δ0 and Δ1. Consider a trajectory σ ∈ S. It

starts at x0 and either stays in the interior int(e) of e for all

times or leaves it at some time t < h. It can leave either by

arriving at v or by entering a triangle Δ0 or Δ1 at time t. In

what follows, we denote trajectories that stay in int(e) all the

time or leave by arriving at v by S∗. Let m∗ be the time needed

for a trajectory in S∗ to reach v, or h if S∗ = /0. Si,t is the set

of trajectories that leave into Δi at time t < m∗ for i ∈ {0,1}.

Let S′i =
⋃

t∈[0,m∗) Si,t and Si = S′i ∪S∗.

Let A consists of all i ∈ {0,1} such that Si,t consists of

exactly one trajectory σt for each t ∈ [0,m∗). Notice that S∗ is

a strong deformation retract of Si if i∈ A. The strong deforma-

tion retraction can be defined by H(σt ,s) = σsm∗+(1−s)t , where

σm∗ = limt→m−∗ σt and H(σ ,s) = σ if σ �∈ S′i. This is illustrated

in Figure 8. Note that the same idea can be used on both sides

of e if A = {0,1} to construct a deformation retraction from

S to S∗. Therefore, it remains to focus on showing that the set

Sc := S∗ ∪⋃
i∈Ac S′i is acyclic, where Ac = {0,1}\A.

Define a function m on Sc as follows. For a trajectory σ ,

let m(σ) be the smallest t such that σ(t) = v or h if no such t

exists. m is continuous, since trajectories in Sc leaving e move

toward a stable direction of v and therefore m is a continuous

function of the time at which they exit e (Figure 9).

Pick any trajectory τ out of v. For a trajectory σ ∈ Sc,

let σ̂ be defined by σ̂(s) = σ(s) for s ≤ m(σ) and σ̂(s) =
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Fig. 9. Trajectories that leave x0 and move toward a stable

direction (green) of v. Time at which the trajectory arrives

at v depends continuously on the trajectory.

τ(s − m(σ)) for s ∈ [m(σ),h]. Thus, σ̂ follows σ until it

reaches v and then follows τ for later times. Clearly, σ̂ ∈ Sc.

Let Ŝc = {σ ∈ Sc|σ̂ = σ}. The mapping F : Sc → Ŝc defined

by F(σ) = σ̂ is continuous. For θ ∈ Ŝc, F−1(θ) is equal to S∗
or Si,t for some i ∈ {0,1} and t ∈ [0,m∗). Therefore, it either

consists of a single point (if no trajectory in Si,t reaches v) or is

homeomorphic to S(v,h−m(σ)) (a homeomorphism is simply

the restriction of a trajectory to [m(σ),h], followed by a time

shift of −m(σ)). In all cases, it is acyclic and therefore, by

the Vietoris-Begle theorem [3], F induces an isomorphism on

homology. Hence Sc is acyclic if Ŝc is. It remains to show that

Ŝc is acyclic. Let σ̂i,t be the unique trajectory in Si,t ∩ Ŝc for

t < m∗ and i ∈ Ac or the unique trajectory in S∗ ∩ Ŝc if t = m∗.

A deformation retraction of Ŝc to a single point is given by

H(σi,t ,s) := σi,m∗+(1−s)(t−m∗). We conclude that Ŝc is acyclic.

The last case left to consider is x0 that does not belong to

an exploding edge and is not a mesh vertex. In this case, the

trajectory of x0 can be continued in the unique manner until

it reaches a vertex. Thus, if the trajectory does not reach v for

a time t < h, S(x0,h) consists of one point. Otherwise, if v is

reached at time t, S is homeomorphic to S(x0,h− t), that has

already been proven to be acyclic.

APPENDIX C

MORSE SETS

In this section, we provide a rigorous definition of a Morse set

represented by a strongly connected component of a transition

graph and prove its correctness. The most challenging task is

to define Morse sets so that they are disjoint. The definition

given in this section is similar to the definition of pseudo-

Morse sets, but it uses trajectory segments represented by long

enough paths in a strongly connected components (as opposed

to single arcs as in the definition of a pseudo-Morse set). This

has the effect of ‘shrinking’ the sets so that they are disjoint.

We start with a number of technical definitions. In this

section, we allow trajectories to be defined on a zero-length

interval. In other words, any function σ : [t, t] → M is also a

trajectory.

Definition 1: A path π = a1 → a2 → . . . → ak in the tran-

sition graph G captures a trajectory σ if σ can be obtained

by concatenating simple trajectory segments (possibly of zero

length) that start in ai and end in ai+1 for i = 1,2, . . . ,k− 1.

In what follows, we call the segment that starts in ai and ends

in ai+1 the i-th segment of π . If k is even, the middle segment

of π is its k
2
-th segment.

Definition 2: By a trivial trajectory we mean a trajectory

that stays at the same point over the entire time interval it is

defined on.

A trivial trajectory can either be defined on a zero-length

time interval or stay at a stationary point over the entire time

interval it is defined on. Note that trivial trajectories may be

captured by nontrivial (non-constant) paths in G . For example,

a path formed by edge pieces incident to a spiral sink captures

the trivial trajectory that stays at the sink. Here are the key

technical lemmas that will lead to the proof of correctness of

the Morse decomposition later on.

Lemma 1: Let σ be a nontrivial trajectory captured by a

path π . σ visits a point p such that a minimum n-set containing

p is on π .

Proof: Since σ is nontrivial and captured by a path in G ,

it has to visit a point p on M1 (the one-skeleton of M) that is

not a mesh vertex. The point p has to be on a simple trajectory

segment that starts in an n-set a and ends in an n-set b, with

the arc a → b belonging to the path π . Either a or b contains

p. Since p is not a mesh vertex, that n-set has to be an edge

piece and therefore is the minimal n-set containing p.

Lemma 2: Let D be the maximum degree of a vertex of M,

π – a path of length D+1 in G and σ – a trajectory captured

by π . If σ is trivial, then there are two possibilities:

(i) σ stays at a center, spiral sink or source or

(ii) σ stays at a mesh vertex v that is not a spiral sink or

source; in this case, v has to appear as one of the n-sets

along π .

Proof: Let p be the point on σ (p is unique since σ is

trivial). Notice that p cannot be in the interior of a triangle

(otherwise, σ would not be trivial). Thus, p has to be in M1.

Now, we show that p is a mesh vertex. Assume the contrary.

Then, p is on an edge e but is not at its endpoint. Edge pieces

in e are either not linked by arcs at all if the edge is crossing

or are linked in order along e otherwise. π can only visit edge

pieces containing p and therefore its length is at most 2 nodes

– this is a contradiction.

At this point, we know that p is a mesh vertex. Assume it is

not a center or spiral sink or source and the n-set corresponding

to p does not appear in π . Then, σ consists only of edge pieces

incident to p. However, there are at most D such edge pieces.

The arcs connecting them cannot form loops (since p is not a

spiral sink or source). Hence the path π satisfying all of the

above requirements cannot exist.

Definition 3: For a path π = a1 → a2 → . . . → a2D+2 in G ,

let U (π) be the union of middle segments of all trajectories

captured by π . Let Ai (i = 1,2, . . . ,m) be a strongly connected

component of G . Let Ci be the union of sets U (π) over all

paths π of length 2D+2 in Ai.
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The rest of this section is devoted to showing that the sets

Ci form a valid Morse decomposition.

Since any path π in Definition 3 is contained in Ai, its

middle segment is an arc connecting nodes in Ai. Therefore,

Ci is contained in the corresponding pseudo-Morse set R(Ai).
Note that in some cases, Ci is empty but R(Ai) is not.

However, this can only happen for a trivial Morse set by the

general results of [1].

Ci contains all stationary vertices v in Ai (they are on the

middle segment of the trivial trajectory captured by the path

π that stays at v). Also, any vertex v that is a center or a

spiral sink or source and has an incident edge piece in Ai

belongs to Ci. A path π whose middle segment contains v

can be obtained by following the loop in the transition graph

formed by edge pieces incident upon v. This proves that the

classification procedure (Section 5.2) yields correct results.

Lemma 3: Ci is closed.

Proof: It suffices to show that U (π) is closed for any

path π . Take a sequence (xi) of points in U (π) converging

to x∗. For each i, there is a trajectory σi captured by π with

the middle segment passing through xi. Select a subsequence

of trajectories (σi j
) such that the sequences of endpoints of

their k-th segments converge for each k ∈ {1,2, . . . ,2D + 1}.

By connecting the limit points with line segments, we obtain a

trajectory captured by π whose middle segment passes through

x∗. Hence x∗ ∈ U (π) and U (π) is closed.

Lemma 4: Ci and Cj do not intersect for i �= j.

Proof: First, notice that if s is a center, a spiral sink or

a spiral source and s belongs to a simple trajectory segment

connecting n-sets a and b connected by an arc a → b in G ,

then either a or b is an edge piece incident upon s (recall that

there is no node corresponding to s in the graph). The edge

pieces incident upon s form a loop in G and therefore all of

them are either in Ai or in A j. But this means that s can belong

to only one of the Morse sets Ci, Cj.

Now, assume Ci and Cj intersect and p be a point in the

intersection. There are paths πi in Ai and π j in A j such that

the sets U (πi) and U (π j) contain p. By the argument in the

first paragraph, p is not a spiral sink or source. Let σi and σ j

be trajectories through p captured by πi and π j (respectively).

Consider the trajectory σi→ j obtained by following the initial

section (call it section 1) of σi until p and then following σ j,

starting at p (section 2) until the end. By Lemmas 1 and 2,

section 1 passes through a point q1 such that the minimum

n-set containing it is on πi (in particular, in Ai). Similarly,

section 2 passes through a point q2 such that the minimum n-

set containing it is on π j (i.e. in A j). Now, follow σi→ j from

q1 to q2, recording the minimum n-sets of the encountered

points. The result is a path in G from a node in Ai to a node

in A j. By the same argument (with Ai and A j exchanged), we

obtain a path in the graph connecting A j in Ai. But this means

that Ai and A j are contained in the same strongly connected

component.

Theorem 3: The sets Ci form a valid Morse decomposition.

Proof: It remains to show that any trajectory that is not

contained in the union of all Morse sets links two different

Morse sets and that linkage graph is acyclic.

Consider a trajectory σ : (−∞,∞)→ M that is not contained

in the union of the Morse sets. By recording the minimum n-

sets of points along σ we obtain a path π = (nk)
∞
k=−∞ in G . π is

not contained in any strongly connected component. There are

strongly connected components Ai and A j such that nk ∈ Ai for

sufficiently large negative k and nk ∈ A j for sufficiently large

positive k. But then, by Definition 3, σ(t) ∈Ci for sufficiently

large negative times t and in σ(t) ∈ Cj for sufficiently large

positive times t. Hence σ links Ci and Cj.

Acyclicity of the linkage graph follows from the standard

property of strongly connected components: collapsing each

of them to a single supernode produces an acyclic graph.

APPENDIX D

INTERSECTIONS OF PSEUDO-MORSE SETS

In this section, we show that pseudo-Morse sets can only

intersect along the boundary. This means that there is no

significant overlap between Morse sets so that ambiguities in

visualization are generally easy to avoid.

Theorem 4: Let Ai and A j be strongly connected compo-

nents of G . Then R(A j) can intersect the interior of R(Ai)
only at mesh vertices if i �= j. In particular, R(Ai) and R(A j)
have disjoint interiors.

Proof. R(A) is the union of all sets represented by arcs that

start and end in A. These sets can be of one of three types that

we call sticks, blocks and dots. Blocks are sets with non-empty

interior represented by type T arcs. Sticks are line segments

(represented by type T or E arcs). Dots consist of a single

point (represented by type S arcs).

Assume p is in the interior of R(Ai) and in A j but is not

a mesh vertex. Then, all blocks containing p are represented

by arcs with both endpoints in Ai. First, assume p is in the

interior of a triangle Δ. Let q and r be points on the boundary

of Δ such that the line segment connecting them is a simple

trajectory segment containing p. One of these points (say, q) is

not a mesh vertex. All (one or two) edge pieces containing q

are in Ai (since each of them defines a block containing p). But

this means that p cannot belong to A j. This is a contradiction.

At this point, we know that p is on a mesh edge. All edge

pieces containing p are in Ai. On the other hand, since p ∈ A j,

there is a stick represented by an arc α in A j containing p.

At least one endpoint of α is an edge piece in A j containing

p. This is a contradiction. Q.E.D.

APPENDIX E

EFFECT OF REFINEMENT ON MORSE SETS

The goal of this section is to prove that finer transition graphs

lead to finer Morse decompositions (i.e. smaller Morse sets).

This means that our refinement scheme in fact produces a

hierarchy of Morse decompositions.

Lemma 5: Assume that the transition graph G ′ is obtained

from the transition graph G by means of a refinement operation

that replaces node f into two nodes f1 and f2. Then:

(i) An arc f → g (g → f) is in G if and only if at least one of

the arcs fi → g (respectively, g→ fi) is in G ′ for i∈ {1,2}.

(ii) Let β be a path in G ′. Define β̂ as the sequence of nodes

of G obtained by replacing each occurrence of f1 or f2 in
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β by f and then replacing any subsequence of consecutive

f’s in the resulting sequence with a single f. β̂ is a path

in G .

(iii) Any strongly connected component of G that does not

contain f is also a strongly connected component in G ′,
(iv) Assume there is a strongly connected component A′ of

G ′ containing f1 or f2. Then, f belongs to a strongly

connected component A of G that contains A′ \ {f1, f2}.

(v) Under the assumptions of (iv), the refined pseudo-Morse

(Morse) set defined by A′ is a subset of the pseudo-Morse

(repsectively, Morse) set defined by A.

Proof. (i) follows immediately from the description of refine-

ment operation in Section 4.2.2. (ii) is a simple consequence

of (i).

Proof of part (iii). Take a strongly connected component A in

G that does not contain f. Pick any node g ∈ A. A is the union

of all loops passing through g. These loops are also loops

in G ′ and therefore A is a subset of its strongly connected

component A′. It remains to show that A and A′ are the same.

If they are not, there is a loop β in G ′ through g that is not a

loop in G . It has to pass through f1 or f2. But then β̂ is a loop

in G passing through both g and f. This is a contradiction.

Proof of part (iv). For any loop β in G ′ passing through f1 or

f2, β̂ is a loop in G passing through f. Therefore, if there is a

strongly connected component of G ′ containing f1 or f2, then

there is a strongly connected component A of G containing f.

Let A′ be a strongly connected component of G ′ containing

fi. Any node g ∈ A′ \{f1, f2} is on a loop β passing through fi

and g. But then, g is also in A since it is on the loop β̂ (that

passes through f and g).

Proof of part (v). This follows immediately from the def-

initions, part (iv) and the containment fi ⊂ f for i ∈ {1,2}.

Q.E.D.

Corollary 1: Assume that the transition graph G ′ is ob-

tained from the transition graph G by means of refinement

operations. Any Morse (pseudo-Morse) set obtained from G ′
is a subset of a Morse (pseudo-Morse) set obtained from

G . Moreover, Morse (pseudo-Morse) sets defined by strongly

connected components of G whose nodes are not refined are

identical to Morse (pseudo-Morse) sets obtained from G ′.
Proof. Use Lemma 5 and induction with respect to number of

refinement operations. Q.E.D.
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